Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционные слои влияние

    Влияние давления. При физической адсорбции давление оказы-. вает заметное влияние на равновесие. При снижении давления система возвращается в исходное состояние процесс полностью обратим. С другой стороны, равновесие при хемосорбции почти не зависит от давления. Мономолекулярный адсорбционный слой, который характерен для хемосорбции, образуется даже при очень низких давлениях. Однако скорость обоих типов адсорбции возрастает с увеличением давления. [c.206]


    Установлено, что свойства дисперсной фазы синтетических латексов почти не влияют на свойства латексов. Это объясняется тем, что у каждой частицы каучука имеется достаточно плотный адсорбционный слой. Влияние дисперсной фазы сказывается лишь при очень глубоких изменениях, которые ведут к разрушению латекса. К таким изменениям относятся коагуляция, высыхание при пленкообразовании и др. Только в этом случае свойства коагулянта и физико-химическая характеристика полученных пленок определяются природой полимера, который содержится в латексе. [c.263]

    СИ сукцинимида и дитиофосфата цинка присадки адсорбируются не последовательно, а одновременно. Это оказывает существенное влияние на поведение присадок если в первом случае адсорбция усиливается, то во втором (т. е. при одновременной адсорбции сукцинимида и дитиофосфата цинка) наблюдается конкуренция сукцинимида и дитиофосфата цинка при образовании адсорбционных слоев [58]. Последнее исключает возможность объяснения синергетического эффекта смеси этих присадок повышенной адсорбцией сукцинимида в присутствии дитиофосфата цинка. [c.184]

    Зависимость констант скоростей элементарных физико-химических процессов на поверхности от концентрации адсорбата, по-видимому, является фундаментальной особенностью поверхностных процессов. В настоящее время концентрационная зависимость установлена для коэффициентов поверхностной диффузии, констант скоростей термической десорбции и некоторых бимолекулярных химических реакций [92]. Основными причинами этого принято считать, во-первых, возможную энергетическую неоднородность поверхности относительного данного адсорбата и, во-вторых, латеральные взаимодействия в адсорбционном слое. Влияние первого фактора обусловлено в основном увеличением энергии активации с возрастанием энергии взаимодействия молекулы [c.75]

    Металлические катализаторы с необходимой дисперсностью удалось получить в виде платинированных силикагелей, а поверхность Pt на носителе определялась по хемосорбции водорода (несколько позже был разработан для этой цели метод абсолютных изотерм адсорбции [155]). В результате изучения большого числа различных реакций гидро-дегидрогенизации гидрирования гексена-1, циклогексена, аллилового спирта [154], дегидрирования циклогексана [156] и изопропилового спирта [157], гидрогенолиза пентана [157] и др. — было обнаружено примерное постоянство удельной активности при переходе от граней к ребрам и дефектам кристаллической платины. Отличия в активности оказались связанными не со строением поверхности, а с изменениями химического состава адсорбционного слоя — влиянием кислорода, различной дезактивацией катализаторов под влиянием побочных процессов и т. д. Казалось бы, данные Полторака подтверждают вывод Борескова [134] о постоянстве удельной активности, с той лишь разницей, что в работах Полторака исследовался интервал дисперсности кристаллов, в котором принципиально возможно обнаружить зависимость каталитических свойств от структуры, т. е. 10—50 А. Боресков же искал эту зависимость в той области размеров частиц (50 А), где, по мнению Полторака, ее вообще нельзя найти. [c.53]


    Движение лептонов (легких частиц) может происходить внутри твердого тела, в тонком периферическом слое, на поверхности, в тонком адсорбционном слое или через поток реакционной среды. Для того, чтобы вывести лептоны из стабильного или метастабильного состояния, необходима определенная энергия активации следовательно, скорости их миграции увеличиваются экспоненциально с увеличением температуры. Поэтому температура имеет заметное влияние на значения 5, Ь и Ы, которые в настоящее время однако невозможно точно рассчитать. Для оценки этих эффектов можно прибегнуть к помощи старых эмпирических правил, которые гласят, что кристаллические решетки становятся заметно более мобильными при температуре внутри твердого вещества > 0,5 Т (правило Таммана) [c.17]

    Эффект Марангони зависит также от объема жидкости, прилегающей к поверхностному слою — по мере убыли объема жидкости этот эффект должен возрастать [14]. При утончении пленки роль эффекта Марангони усиливается, однако для пленок очень малой толщины, состоящих практически из двух соль-ватированных адсорбционных слоев, влияние эффекта падает, поскольку в адсорбционном слое разрежение частокола молекул ПАВ крайне затруднительно. Поэтому степень влияния эффекта Марангони на стабильность пленки имеет некоторое максимальное значение при оптимальной ее толщине. [c.49]

    Слои адсорбированных инородных молекул могут воздействовать на перенос молекул газа (пара) через поверхность раздела и способствовать возникновению поверхностного сопротивления. Например, монослои некоторых веществ подавляют испарение воды с поверхности . Подобные эффекты вряд ли могут оказывать серьезное влияние на характеристики промышленных или экспериментальных аппаратов, в которых происходит постоянное обновление поверхности, так как для создания адсорбционных слоев требуется заметное время. Однако в определенных условиях поверхностно-активные вещества могут снижать скорость абсорбции, подавляя свободное движение поверхности жидкости. [c.75]

    С одной стороны, в результате ряда экспериментальных исследований установлено наличие у поверхности латексных частиц, модифицированной адсорбционными слоями эмульгаторов,, гидратных прослоек, эффективная толщина которых имеет порядок 10 м и зависит от ряда факторов степени насыщения адсорбционных слоев, температуры, содержания электролитов в латексе и др. Однако эти данные сами по себе недостаточны для того, чтобы делать какие-либо выводы о влиянии особых свойств и структуры граничных прослоек водной среды на агрегативную устойчивость синтетических латексов. Как будет здесь показано, к представлению о существовании неэлектростатического фактора стабилизации — структурного отталкивания, обусловленного граничными гидратными прослойками, — приводят результаты исследований кинетики коагуляции латексов [c.189]

    Следовательно, экспериментальные зависимости хорошо согласуются с выводами капиллярно-фильтрационной модели механизма полу-проницаемости. Следует ожидать, что данный подход с учетом взаимного влияния ионов и внешних факторов на процесс гидратации, а также с учетом влияния электролитов на толщину адсорбционных слоев растворителя даст возможность разработать количественную теорию обессоливания растворов обратным осмосом. Однако решение этой задачи невозможно без точного определения размеров пор и их распределения, толщины слоя связанной жидкости на внутренней поверхности пор при течении жидкости под действием градиента давлений. Уместно отметить, что и для процесса ультрафильтрации определение толщины слоя связанной жидкости также имеет важное значение, особенно при сравнительно небольших диаметрах пор (порядка 5 30 нм, или 50—300 А). Как было показано выше (см. стр. 105), в этом случае толщина слоя связанной жидкости становится соизмеримой с радиусом пор ультрафильтров. [c.211]

    Об устойчивости нефтяных эмульсий, механизме образования адсорбционного слоя и его роли, о влиянии твердых частиц на эмульсию имеется достаточно сведений в литературе [14, 20—27]. [c.19]

    Граничный слой формируется в результате 1) индукционного влияния поля твердой фазы через адсорбционный слой 2) влияния собственного молекулярного поля адсорбционного слоя. [c.67]

    Исследования, описанные в настояшей главе, показали, что адсорбционные процессы, происходящие на границе нефть — порода, оказывают существенное влияние на фильтрацию нефти и приводят в ряде случаев к значительному затуханию фильтрации. Если толщины адсорбционных слоев настолько малы по сравнению с диаметром фильтрационных каналов породы, что не могут оказать влияние на фильтрацию нефти, то величины граничных слоев соизмеримы с диаметром фильтрационных каналов породы. [c.161]

    Возникновение д. э. с. может быть результатом специфической адсорбции катионов или анионов на поверхности электрода. Под специфической адсорбцией понимается накопление на поверхности электрода катионов или анионов под влиянием химических сил. Анионы, как правило, проявляют большую, по сравнению с катионами, склонность к специфической адсорбции с образованием ка поверхности металлов адсорбционных слоев. Например, гидроксил-ионы, адсорбируясь специфически на поверхностных атомах металла, образуют адсорбционный слой гидроокиси металла сульфид-ионы — адсорбционный слой сульфида металла и т. п. [c.299]


Рис. 16. Влияние температуры прокаливания на толщину адсорбционного слоя Рис. 16. <a href="/info/15368">Влияние температуры</a> прокаливания на <a href="/info/142904">толщину адсорбционного</a> слоя
    Рис, 4. Влияние температуры прокаливания коксов на толщину адсорбционного слоя связующего б, обволакивающего зерно коксового наполнителя  [c.23]

    Межфазная граница в нефтяных системах может быть двух типов непроницаемой по отношению к ряду растворителей (кристаллиты карбенов и карбоидов) и частично проницаемой (ассоциаты). В первом случае на межфазной границе образуется адсорбционный слой, непосредственно примыкающий к кристаллиту, и граничный (поверхностный) слой, включающий в себя адсорбционный, свойства которого в результате влияния поля поверхностных сил отличаются от объемного слоя. При рассмотрении нефтяных смесей с дисперсной фазой в виде ассоциатов следует, по-видимому, считать, что сольватный слой на границе раздела фаз возникает как результат адсорбционного взаимодействия и локальной диффузии ее компонентов, что обусловлено их различной склонностью к межмолекулярным взаимодействиям. [c.32]

    Работа 7. ИССЛЕДОВАНИЕ ВЛИЯНИЯ СТРОЕНИЯ МОЛЕКУЛ ПАВ НА ИХ ПОВЕРХНОСТНУЮ АКТИВНОСТЬ. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ АДСОРБЦИОННОГО СЛОЯ [c.43]

    Поверхность раздела фаз должна искривляться в какую-либо сторону молекулами ПАВ, но адсорбционный слой нельзя рассматривать как статический. Молекулы ПАВ поверхности и объема непрерывно обмениваются, причем преимущественно с той фазой, в которой растворимо данное ПАВ. Ориентировочный расчет скорости обновления поверхности дает среднее время нахождения молекулы на границе раздела фаз, составляющее — 5-10 [12, 13]. Естественно, что при этом адсорбированные молекулы несколько втянуты в фазу, в которой они растворимы, и это оказывает влияние на тенденцию к изгибу адсорбционного слоя в сторону непрерывной фазы. [c.420]

    Результаты оказались довольно неожиданными. Из материалов, приведенных в 4, следует, что активные центры процессов гидро-дегидрогенизации при всех степенях заполнения водородом имеют близкие свойства, независимо от строения поверхности кристаллов платины. Необходимо подчеркнуть, что при случайном выборе объектов здесь можно найти довольно большие различия, но в наших опытах они всегда оказывались не связанными со структурой кристаллов и при более детальном изучении тех же реамций причиной являлись изменения химического состава адсорбционного слоя—влияние кислорода, различная дезактивация катализаторов под влиянием побочных процессов и т. п. Важно и то, что слои платины с у=1 и 0,3 обладают многими различными свойствами, т. е. они являются различными физическими объектами, но в гидрогенизационном катализе они отличаются мало. Это позволяет сделать вывод о том, что в этих реакциях свойства активных центров не зависят от их положения в решетке. [c.174]

    Тем не менее из представленных данных видно, что ряд особенностей процесса привитой полимеризации, инициируемой 7-06-лученибм (эффективная полимеризация лишь в тонком адсорбционном слое, влияние на процесс образования привитого полимера процессов адсорбции—десорбции, сложность аппаратурного оформления), ограничивают применение такого способа. Механохимическое инициирование привитой полимеризации, часто простое с точки зрения технологического осуществления, не обеспечивает достижения возможных предельных значений степени покрытия поверхности наполнителя полимерным слоем. В этом случае прививка полимера происходит не сплошным покрытием, а в форме изолированных сферических капель. При фотохимическом инициировании исключаются такие недостатки, как образование заметных количеств гомополимеров и деструкция привитого слоя. Однако этот способ не лишен недостатков, присущих самому методу фотополимеризации (возможность реализации процесса только в тонких слоях). [c.232]

    На рисунке 106, б изображена схематически зависимость величины дзета-потенциала от толщины двойного слоя. Величина дзета-потенциала, как видно из рисунка, растет с увеличением толщины двойного слоя, а последний находится в обратной зависимости от концентрации электролита, в частности от ионов, противоположно заряженных по отношению к адсорбционному слою. Влияние этих ионов растет не только с их концентрацией, но и с валентностью. Так, дляионов К , Ва и валентность относится, как 1 2 3, аодина-ковые по своему действию концентрации — как 800 25 1. Диффузионный слой как бы связывает коллоидные частицы со всей дисперсионной средой и тем самым препятствует их слипанию (склеиванию). [c.362]

    Прочность межфазной пленки на границе раздела нефть — вода зависит не только от состава и свойств содержащихся в нефти эмульгаторов, но и от pH водной фазы. Обычно в водной фазе нефтяной эмульсии содержатся ионы соединений, которые оказьшают влияние на свойства адсорбированной пленки. Для каждой системы сырая нефть - вода существует оптимальный интервал pH, в пределах которого адсорбционный слой проявляет минимальные стабилизирующие свойства. Влияние pH водной фазы на прочность межфазной пленки объясняется тем, что полярные фракции нефти содержат кислотные и основные группы, а следовательно, pH водной фазы влияет как иа количество, так и на тип веществ, образующих межфазную пленку. Исследования позволили установить, что жесткие межфазные пленки, образованные асфалыенами, более прочны в кислой среде, менее в нейтральной и становятся очень слабыми или превращаются в подвижные пленки в щелочной среде. Асфальтены обладают как кислотными, так и основными свойствами в кислой среде они проявляют основные свойства, в щелочной - слабокислотные. Эмульгирующие свойства асфальтенов выше в кислой среде, а смол — в щелочной среде, поэтому прочность эмульсий, стаоилизированных одновременно смолами и асфальтенами изменяется в зависимости от pH водной фазы. [c.25]

    Все сказанное выше о возможном ускоряющем действии поля пространственного заряда в полупроводниковых окисных пленках не может быть использовано для выбора между адсорбционной и фазовой теориями пассивации. Можно полагать, что окисные пленки могут образовываться и расти на металлах лишь при условии предварительной адсорбционной нассивации металла и переход мономолекулярного слоя в более толстый существенно не уменьшает абсолютной скорости коррозии небольшое же утолщение пассивирующего слоя не может вывести его толщину (особенно в его более тонких местах) из пределов толщин адсорбционного слоя (влияние границы фаз в некоторых случаях распространяется в глубину фазы на десятки молекулярных слоев,— см. главу I). При соответствующем увеличении толщины пленки ее наружная часть может также рекристаллизоваться и таким образом терять свою сплошность. [c.187]

    У СУКЦИНИМИДОВ преобладающее влияние на обрязпвание адсорбционных слоев оказывает полиалкиленполиамин [21]. Адсорбционная способность сукцинимидов резко увеличивается в области критической концентрации мицеллообразования [19]. Можно полагать, что высокая эффективность солюбилизирующего и стабилизирующего действия сукцинимидов обусловлена образованием [c.155]

    Действительно, спектры ЯМР высокого разрешения протонов воды в дисперсиях а- и Ь -монтмориллонита [103] характеризуются сдвигом резонансного сигнала в сторону более сильного поля. Это указывает на то, что под влиянием поверхности часть водородных связей в воде граничных слоев толщиной й 7,5 нм (межчастичное расстояние —15 нм) разрушается. Приведенные результаты нашли независимое подтверждение при изучении ИК-спектров водных дисперсий Ыа-монт-мориллонитрила 20—110%-й влажности в области составной полосы (5200—4900 см ) деформационного и валентного асимметричного колебаний связей ОН (г-2 + з) [Ш]- В цитируемой работе было показано, что вклад высокочастотной составляющей 5200 СМ , относящейся к слабосвязанным молекулам воды, в интегральную интенсивность сложной полосы для дисперсий выше, чем для жидкой воды. ИК-спектры полимолекулярных адсорбционных слоев на поверхности кварца в области валентных ОН-колебаний [112] также обнаруживают увеличение поглощения при 3600 см , характерного для слабо нагруженных ОН-групп молекул воды, хотя основная полоса 3400 см сдвинута по сравнению с аналогичной полосой в спектре жидкой воды в сторону меньших частот. (Последнее, по-видимому, связано с образованием более прочных водородных связей между поверхностными гидроксильными группами кварца и адсорбированными молекулами воды первого слоя.) Таким образом, приведенные выше данные указывают на то, [c.39]

    При наличии избытка углеводородов происходит образование капельной эмульсии, стабилизация которой достигается адсорбцией эмульгатора из водного раствора с образованием мономоле-кулярного адсорбционного слоя, препятствующего коалесценции капель. При этом на границе раздела фаз возможно формирование жидко-кристаллических структур (мезофаз), сопровождающееся скачкообразным повышением вязкости и одновременно повышением агрегативной устойчивости системы [24—27]. Считают, что избыток эмульгатора над адсорбционным слоем на поверхности капель образует мицеллярную структуру, обладающую вязкоэластичностью и эффектом самоотверждения. Подобное поведение эмульсионных систем объясняется квазиспонтанным образованием на границе раздела фаз углеводородный раствор — ПАВ термодинамически устойчивых ультрамикроэмульсий прямого и обратного типов, что, по-видимому, оказывает основное влияние на обеспечение агрегативной устойчивости таких систем. [c.146]

    Медведев с сотрудниками обратили внимание на изменение скорости полимеризации и числа полимер-мономерных частиц в зависимости от конверсии мономеров и отметили, что теория Смита — Эварта не учитывает влияния адсорбционных слоев эмульгатора на скорость протекания элементарных реакций полимеризации. Количество частиц с конверсией мономеров резко уменьшается, средний диаметр их пропорционален степени конверсии, в то время как общая поверхность частиц остается постоянной. По теории Медведева скорость полимеризации обусловлена большой скоростью образования свободных радикалов инициатора и снижением энергии активации распада инициатора полимеризации в слоях эмульгатора на поверхности раздела фаз. При изучении кинетики полимеризации показано, что скорость полимеризации линейно зависит от суммарной поверхности всех полимер-мономерных частиц. Это позволяет считать, что полимеризация протекает в адсорбционных слоях эмульгатора, в которых концентрация мономера и инициатора является наибольшей. Адсорбционные слои эмульгатора определяют не только устойчивость системы, но и скорость образования радикалов и место протекания полимеризации, [c.149]

    Кинетические данные показывают, что аналогично влияет температура на длительность коагуляции. Из данных по зависимости длительности разделения фаз от температуры могут быть определены пороговые температуры коагуляции Гпор, и Тпор,, которые, так же как Спор, и Спор > являются характерными параметрами процесса коагуляции для данного типа латекса [45]. Если при введении электролита в латексные системы происходит резкое уменьшение сил электростатического отталкивания между частицами за счет снижения -потенциала частиц и подавления диссоциации адсорбированных молекул ПАВ (и изменения растворимости молекул ПАВ), то под влиянием теплового воздействия происходит ослабление водородных связей молекул воды и ПАВ адсорбционного слоя, что также способствует гидрофобизации системы и понижению ее устойчивости. В интервале времени тг — ть по-видимому, преодолевается энергетический барьер, препятствующий коагуляции системы и разделению фаз. При проведении коагуляции в условиях, при которых концентрация электролита Сэл Спорг и [c.258]

    Анализ протекающих процессов затруднен, однако, тем, что свойства воды в дисперсных системах в результате ее взаимодействия с поверхностью частиц или со стенками пор отличаются от свойств объемной воды. Изучение свойств воды в дисперсных системах ведется уже давно, но лишь в последнее время благодаря развитию физико-химических методоц удалось получить существенно новые и более полные результаты. Уточнены ранее сложившиеся представления о свойствах связанной воды. Это относится прежде всего к данным об ее плотности, которые чаще всего оказывались сильно завышенными. Как сейчас становится ясным, изменения плотности не превышают нескольких процентов от плотности объемной воды. Значительно меньшими оказались и изменения вязкости, сложились иные представления о неподвижности граничных слоев воды. Многие процессы переноса оказались более сложными, чем это представлялось ранее. Это связано с выяснившейся необходимостью учета влияния образования и перекрывания в тонких порах диффузных адсорбционных слоев молекул и ионов, изменения физических свойств и структуры воды как функции расстояния от поверхности. Резко возрос в последнее время интерес к структурным силам, возникающим при перекрывании граничных слоев воды с измененной структурой. Эти силы, в добавление к молекулярным и электростатическим, играют важ- [c.4]

    Определенный интерес для понимания роли ГС в устойчивости коллоидов представляет модифицирование поверхности частиц в процессе адсорбции ПАВ, которое должно оказывать влияние на свойства и протяженность ГС. Структурные силы проявляющиеся при сближении частиц, будут зависеть в этом случае от величины адсорбции ПАВ, степени завершенности первого и второго адсорбционных слоев, определяющей гидро-фобизацию или гидрофилизацию поверхности частиц. С этой [c.176]

    Адсорбция дифильных молекул, вероятно, сказывается различным образом на зависимости энергии пленки от ее толщины h. При больших толщйнах диполь-дипольное взаимодействие молекул должно приводить к увеличению глубины вторичного минимума i/a min. При малых значениях h, сравнимых с удвоенным размером молекул ПАВ, следует ожидать противоположного влияния адсорбционных слоев на утончение пленки, поскольку последнее связано с необходимостью переориентации диполей на одной из границ раздела фаз. Возможность заметного изменения молекулярной компоненты расклинивающего давления при адсорбции ПАВ на межфазных поверхностях подтверждается результатами расчетов, выполненных уже сравнительно давно [551] в соответствии с микроскопической теорией молекулярного взаимодействия конденсированных сред и, более строго, в работе [550] на основе макроскопической теории. Такие изменения особенно значительны при значениях h порядка нескольких нанометров. [c.209]

    Велико значение адсорбционно-сольватных слоев в НДС в нефтяной промышленности. Прежде всего толщина адсорбционно-сольватных слоев влияет на устойчивость НДС против расслоения, что важно при добыче, транспорте и переработке нефти. В зависимости от структуры и физико-химических сво ктв слоя продолжительность жизни ССЕ может колебаться от Т1.1-сячных долей секунды до бесконечности. Несомненно, продолж -тельность жизни ССЕ оказывает важное влияние на действие смазочных масел, пластичных смазок, профила тическнх средств, котельных топлив и др. Коэффициент охвата пласта реагентами также во многом зависит от размеров ССЕ и влияет на конечные результаты процесса. Между адсорбционно-сольватным слоем и дисперсионной средой идет непрерывный обмен соединениями. В период пребывания соединений в слое на них действует силовое (адсорбционное) поле ядра. Если силы адсорбционного слоя поля превышают прочность нефтяных соединений, то в слое протекают процессы, связанные с деструкцией молекул —химические превращения (межфазный катализ). После разрыва молекулы ее активные осколки не могут оставаться в слое и покидают его, уступая место новым молекулам, и процесс повторяется. [c.82]

    Поскольку теория Штерна учитывает наличие плотного адсорбционного слоя ионов, это позволяет выявить влияние их гидрата-цин на qr, а учет специфической адсорбции ионов дает возможность объяснить перезарядку поверхности ири наличии в растворе иротивоиона, обладающего большим адсорбционным потенциалом. Лучше адсорбируются и ближе подходят к поверхности менее гидратированные ионы, которые по этой причине значительнее компенсируют поверхностный потенциал, и их соответственно меньше будет в диффузном слое. [c.61]

    Среднестатистическая сдвинутость адсорбционного слоя внутрь фазы по сравнению с поверхностью раздела чистых жидкостей подтверждается исследованием энергетики процесса адсорбции в системах жидкость — жидкость [14]. Приведенное объяснение показывает влияние и растворимости, и геометрии молекул ПАВ на тип эмульсии. [c.421]

    Природа такого влияния силиката еще не выяснена. Можно предполагать, что увеличение адсорбции ПАВ, очевидно, связано с образованием в поверхностном слое силикатосульфонольных комплексов. Последние обеспечивают ориентационный эффект молекул ПАВ и гидрофильность поверхности. Несомненно, что добавка силиката препятствует вытеснению додецилбензолсульфоната из адсорбционного слоя при контакте с углеводородной средой (мангышлакская нефть) в отличие от сульфонольных растворов без добавок силиката и соды. [c.104]

    При химическом взаимодействии молекул двух различных веществ на поверхности катализатора хемосорбционную связь с последней могут образовывать молекулы обоих веществ или только одного из них. В последнем механизме, известном под названием механизма Ридиэла, молекулы обоих видов ударяются о поверхность катализатора, но адсорбируется только одно вещество. Молекулы второго вида ударяются о хемосорбнро-ваииые молекулы и образуют активированный комплекс , который приводит к реакции. Однако эти молекулы могут также адсорбироваться под влиянием сил Ван-дер-Ваальса н взаилюдействовать с хемосорбированным реагентом, находясь в вандерваальсовом адсорбционном слое. Исходя из сведений [c.101]


Смотреть страницы где упоминается термин Адсорбционные слои влияние: [c.226]    [c.51]    [c.99]    [c.140]    [c.336]    [c.337]    [c.96]    [c.124]    [c.75]    [c.107]   
Коагуляция и устойчивость дисперсных систем (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные слои

Адсорбционный слой



© 2025 chem21.info Реклама на сайте