Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие константа крекинг-реакции

    В табл. 16 приведены константы равновесия и равновесные степени превращения для некоторых реакций, протекающих при термокаталитических процессах производства моторных топлив. Как видно из таблицы, крекинг, гидрокрекинг и гидрогенолиз протекают в широком интервале температур как практически необратимые до полного израсходования исходного вещества. Что касается изомеризации нормальных парафинов в изопарафины, то для этой реакции термодинамические ограничения значительны. [c.125]


    Для выяснения конкурентных отношений между этими реакциями недостаточно знания скоростей прямых реакций, необходимо также знать положение равновесия в этих реакциях. Располагая величинами констант равновесия реакций соединения радикалов с молекулами алкенов, реакций замещения радикалов с молекулами алканов и алкенов, а также реакций диссоциации молекул на радикалы (мономолекулярным или бимолекулярным путем), можно выяснить, являются ли равновесия при некоторых из этих реакций в условиях крекинга причиной замедления реакций распада алканов, описанного в предыдущей главе. Так, например, реакции присоединения атомов Н к молекулам пропилена или изобутилена могут вызывать торможение цепного распада вследствие меньшей активности вторичных пропильных и третичных изобутильных радикалов в том лишь случае, когда эти радикалы обладают устойчивостью в условиях крекинга алканов, т. е. при значительном размере обратимой реакции образования их. Точно так же и реакции замещения Н и СНз-радикалов с молекулами алкенов, несмотря на возникновение в результате этих реакций менее активных радикалов, не смогут явиться серьезной помехой для развития цепей крекинга, если равновесия в этих реакциях в условиях крекинга сильно смещены в сторону исходных продуктов. [c.246]

    Температура. Процесс крекинга ведется при 450—550°. Температурный режим выбирается в соответствии с характером сырья и требованиями, предъявляемыми к продуктам реакции. Изменением температуры можно значительно усилить одни реакции, подавить другие и в результате получить продукт нового качества. Эти изменения являются следствием функциональной зависимости константы равновесия и константы скорости реакции от температуры. [c.221]

    В табл. УП-9 приведены константы равновесия и равновесные степени превращения при 500 °С для некоторых реакций, протекающих при крекинге и риформинге. [c.211]

    Продемонстрируем возможные стандартные константы равновесия Кр° и конверсии при стандартном давлении, х (доли) в газофазных реакциях крекинга и пиролиза  [c.281]

    Как и следовало ожидать, равновесие в интервале температур 300—900 К для сильно экзотермических реакций рекомбинации и диспропорционирования алкильных радикалов сдвинуто в сторону образования молекул. С ростом температуры константы равновесия этих реакций резко уменьшаются. Это означает, что растет роль реакций диссоциации и молекулярного диспропорционирования. Например, для реакции 15 (см. табл. 10.1), протекающей, как и все реакции диспропорционирования, без изменения числа частиц, температурная зависимость нормального сродства может быть приближенно описана уравнением (1.25) ЛС = —274-10 -( 36,8 Т, при 7400 К значение А.0 = О, т. е. ТС = д/ м.д = 1- Отсюда следует, что константы скорости прямой и обратной стадий равны между собой. Однако при более низких температурах, в частности при температурах крекинга, УС 2> 1 и йд > д т. е. равновесие рассматриваемой реакции сдвинуто в сторону образования молекулярных продуктов. [c.112]


    Объяснить снижение константы скорости крекинга парафиновых углеводородов приближением процесса к состоянию равновесия нельзя, так как это опровергается термодинамическими расчетами. Большее признание получили взгляды, в соответствии с которыми предельно заторможенная реакция считается цепной, и замедление скорости процесса обусловлено кинетическими факторами. [c.160]

    Константы равновесия реакции крекинга этана и количества этана, разложившегося в момент равновесия, в % нри различных температурах [c.44]

    Пример 104, Вычислив константы равновесия нижеперечисленных реакций, по которым возможен крекинг н-эйкозана, показать, какие продукты будут содержаться в равновесной смеси при 800° К. Реакция протекает а газовой фазе [c.152]

    Нужно подчеркнуть, что константа равновесия указывает только направление, по которому может пойти процесс, но не указывает, с какой скоростью идет этот процесс. Возможно, скорость процесса будет настолько мала, что в системе не удастся обнаружить каких-либо изменений. Это нужно помнить, и поэтому, например, указание на то, что дегидрирование цикланов в ароматические углеводороды в условиях крекинга идет необратимо, нужно понимать не в том смысле, что все цикланы должны превратиться обязательно в ароматические углеводороды (для этого потребовались бы может быть чрезвычайно много времени и чрезвычайно глубокий крекинг), а в том смысле, как это указано выше, т. е. что обратной реакции — гидрирования ароматических углеводородов — наблюдаться не будет. [c.32]

    Температура крекинга °С Логарифмы константы равновесия ОпКр) для реакции  [c.174]

    Попутно были рассчитаны свободные энергии и константы равновесия деструктивного алкилирования изооктана пропиленом и изобутиленом, причем выяснилась термодинамическая возможность этих реакций J условиях крекинга. Протекание этих реакций при крекинге было подтверждено при помощи углеводородов, меченных радиоуглеродом. [c.153]

    Теплота реакции зависит от структуры исходных соединений и потому колеблется в небольших пределах. На ход реакций дегидрирования влияют состав и активность катализатора, температура, давление, продолжительность процесса и наличие примесей в исходных веществах. Выход дивинила ограничивается не только условиями термодинамического равновесия, но и протекающими одновременно реакциями крекинга углеводородов. На рис. 82 показана зависимость равновесия реакции дегидрирования н-бутана от температуры и давления. В соответствии с принципом Ле-Шателье увеличению выхода дивинила способствуют пониженное давление и применение более высоких температур. Зависимость константы равновесия реакции дегидрирования -бутана в бутилен от температуры выражается уравне- [c.198]

    Константы равновесия этих реакций приведены в табл. II1-6, откуда видно, что термодинамически более устойчив этилен. Вообще в ряду парафиновых углеводородов склонность к крекингу с выделением углерода повышается с увеличением их молекулярного веса. [c.70]

    Константы равновесия реакций крекинга углеводородов на простые [c.70]

    Было изучено действие ингибиторов (ядов) реакции крекинга кумола на алюмосиликатном катализаторе посредством интерпретации кинетических данных. Эти ингибиторы конкурируют с кумолом за место на крекирующих центрах. Теоретический анализ привел к выражению, из которого может быть рассчитана константа равновесия для адсорбции ингибитора на крекирующих центрах. Описана кинетика как для дифференциального (Шваб) реактора, в котором концентрация реагента по существу постоянна над всем слоем катализатора, так и для интегрального реактора, в котором концентрация реагента значительно уменьшается при прохождении над слоем. [c.601]

    Другие методы применения. Представляет интерес процесс ионного обмена с применением кипящего слоя , с большим успехом используемого при каталитическом крекинге в нефтяной промышленности. Вероятно, что в случае ионообменных реакций, характеризующихся благоприятными константами равновесия, методом кипящего слоя удастся осуществить непрерывный процесс ионного обмена. [c.76]

    Уравнения (У.2)—(У.б) применимы для расчетов первой фазы крекинга углеводородов (А- В + О), изомеризации (А-> В) и других реакций первого порядка в соответствующих реакторах (смешения или вытеснения) они нередко применяются в технологии для приближенного расчета константы скорости или времени пребывания реагентов в аппарате при обратимых процессах, если они в данном аппарате еще далеки от состояния равновесия. [c.103]

    Ароматические углеводороды имеют тенденцию разлагаться с образованием бензола или его непосредственных г01мологов, а последние затем подвергаются характерному превращению, которое состоит в сцеплении двух ядер, с образованием соединений с более высоким молекулярным весом и одновременным отщеплением водорода. Так, бензол, согласно указанной реакции, дает дифенил и водород. Многоядерные ароматические углеводороды, например, нафталин, могут подобным же образом конденсироваться с отщеплением водорода. Многократного повторения этого процесса достаточно для образования коксообразных продуктов с низким содержанием водорода. С этой точки зрения ароматические углеводороды повидимому мож но рассматривать, как основное исходное вещество для образования кокса и тяжелых остатков во время реакций крекинга. Саханов и Тиличеев рассчитали константы равновесия для различных реакций углеводородов, проведенных при 477° свои расчеты они производили на основании термических данных, применяя формулу Мегп51 а. Авторы пришли к следующим выводам относительно пиролиза ароматических углеводородов наиболее стойкими к термическому воздействию из замещенных ароматических углеводородов являются метил-замещенные бензолы и в меньшей степени — этил-замещенные с другой стороны, гомологи бензола с более длинными боковыми цепями имеют тенденцию к более легкому разложению, заключающемуся в отщеплении боковых цепей с образованием олефинов или парафинов. Согласно последним реакциям, наиболее легко получается стирол. [c.105]


    Вычисления свободной энергии, сделанные Frands oM и Kleins hmidt oM, приводят к заключениям, почти аналогичным тем, которые были сделаны Сахановым и Тиличеевым на основании вычислений констант равновесия большого числа реакций углеводородов при 447° с помощью приближенной формулы Нернста. Такого рода термодинамические соображения приводят к очень важному заключению, которое вполне подтверждается экспериментальными результатами и которое состоит в том, что большинство реакций, имеющих место при техническом крекинге, обладает необратимым характером в особенности это относится к реакциям, при кот-эрых происходит разрыв связи С— С. Возможными исключениями из зтого правила являются полимеризация и деполимеризация. моноолефинов, которые до известной степени являются обратимыми. Деполимеризация однако осложняется наличием других реакций, особенно при температурах выше 500°. С другой стороны, реакции дегидрогенизации и гидрогенизации углеводородов являются реакциями обратимыми в тех узких пределах, в которых рассматриваемые углеводороды оказываются стойкими. [c.110]

    В связи с данной статьей Претера и Лего следует обратить внимание на то, что вопрос о расчете кинетики реакций в проточной системе, в том числе и реакций крекинга, рассмотрен с принципиальной стороны в статье А. А. Баландина (Вестник МГУ, 4, 137—167, 1957). Развиваемый в последней метод бинарных смесей позволил определить для очень большого числа веществ истинные константы скорости реакции, константы адсорбционного равновесия, а также изменения свободной энергии, энтальпии и энтропии при адсорбции на активных центрах. (Ср. примечания на стр. 321, 327.) — /7рим. ред. [c.315]

    Однако следует указать, что при определении активности и.мпульсным микрометодом находится величина, пропорци- ональная произведению истинной константы скорости и константы адсорбционного равновесия. Таким образом, при сравнении активности катализаторов, найденной этим мето--дом, не учитывается вклад адсорбционного взаимодействия. Есл и исключить последний и сравнивать истинные константы скорости, которые являются наиболее строгими характеристиками каталитической активности, то различие между исследованными образцами оказывается сравнительно небольшим. Ниже приводятся значения истинных констант скорости реакции крекинга кумола (при 436°С), полученных при исследовании кинетики дифференциальным методом, а также истинных энергий активации для лантанового, кальциевого и декатионированного образцов. [c.412]

    С увеличением температуры Кр резко возрастает, что вполне естественно, но и в случае более сложных алканов. имеет низкие значения. Значения Кр определяют равновесные концентрации радикалов в зоне диссоциации (или крекинга), которые, очевидно, равны корню квадратному из произведения константы равновесия на парциальное давление алкана. Эти предельные значения концентраций радикалов являются нижней границей значений их в условйях равновесного протекания химического процесса. В любом реальном химическом процессе, при крекинге, например, эти концентрации могут оказаться больше или меньше рс/вновес-ных, в зависимости от ускорения или торможения реакции. [c.268]

    В книге изложены некоторые термодинамические и кинетические методы решения задач количественной кинетики, рассмотрено их применение для расчета констант равновесия и скорости основных типов радикальных реакций, играющих важную роль в крекинге, полимеризации, окислении и других раднкально-цепных превращениях, даны примеры использо вания кинетических и термодинамических данных для выяснения механизма термических превращений углеводородов. [c.2]

    Сложность картины распада молекул прц крекинге усугубляется тем, что многие реакции, пдотекающие при,, крекинге,, - обратимы и в зависимости от условий основное направление реакции может быть сдвинуто в сторону синтеза или в сторону распада. К обратимым реакциям с дОстйВернОстью мЪхут быть отнесены реакции ]) образования простейших углеводородов из элементов, 2) гидрирования алкенов — дегидрирования алкильных цепей, 3) гидрирования ароматических углеводородов — дегидрирования шестичленных цикланов, 4) конденсации ароматических углеводородов, 5) изомеризации алканов, алкенов, цикланов, 6) полимеризации — деполимеризации алкенов и другие. Для подобных реакций были вычислены константы равновесия показывающие до какой глубины превращения могут быть в данных условиях проведены рассматриваемые реакции. Однако только для отдельных процессов, характеризующихся протеканием одной основной реакции (например, рассматриваемые ниже процессы избирательного катализа), можно говорить о приближении системы к равновесным соотношениям. В условиях обычного крекинга равновесные соотношения даже для отдельных обратимых реакций не достигаются. [c.29]

    Дезалкилирование. Ионный механизм. Допустив, что алкилирование ароматических соединений олефинами происходит в соответствии с механизмом, изображенным уравнением (34), мы должны предположить, что при более высоких температурах, при которых алкил-ароматические соединения становятся менее устойчивыми по сравнению с олефином и исходным ароматическим углеводородом, будет протекать обратная реакция (табл. 8-1). Об этом же говорят и многочисленные данные по дезалкилированию, в особенности результаты исследования крекинга кумола, который широко используется в качестве модельной реакции для еравнения каталитической активности (см. например, табл. 8-3). Исходя из кинетических факторов (стабильности различных ионов карбония) или из термодинамических соображений (зависимости констант равновесия от температуры—табл. 8-3), можно предположить, что легкость отщепления алкильных групп должна уменьшаться в такой последовательности  [c.81]

    Вода является довольно сильным основанием и будет принимать протоны от сильной протонной кислоты с образовапием гидксо-ниевых ионов, следовательно в разбавленной водной системе нельзя изучать кислоты, более сильные, чем ион гидроксопия. Несмотря на это, был проведен ряд исследований каталитической кислотности в водных системах. Применявшиеся методы состояли в титровании гидроокисями щелочных металлов [25, 56, 147—150], выделении кислоты из катализаторов посредством ионного обмена и ее последующего определения [22, 151—153], измерении количества углекислоты, выделяющейся из раствора бикарбоната, и исследовании скорости инверсии тростникового сахара [22, 103]. Хотя эти методы, особенно в первых работах по определению кислотности катализаторов крекипга, дали ценные сведения о химическом поведении и кислой природе катализаторов, их нельзя рекомендовать для измерения кислотности на поверхностях сильно дегидрирующих катализаторов крекинга [22, 88, 147]. Хэнсфорд [88] считает, что адсорбция гидроокиси щелочного металла в большей степепи является мерой удельной поверхности, чем кислотности катализатора. Это в действительности было бы так, если бы адсорбция измерялась по величине pH. Но вместе с тем титрование очень слабым раствором гидроокиси при величине рИ, близкой к нейтральной, могло бы дать полезные сведения, подобные тем, которые получаются при измерениях ионного обмена. Мы уже видели, что измерения ионного обмена могут дать некоторые сведения о кислотности поверхности прокаленных катализаторов. Как показал Планк [152], измерение величины ионного обмена с применением ацетата аммония дает результаты, очень хорошо согласующиеся с крекирующей способностью катализатора. Холм и др. [154] установили, что существует превосходное соответствие между каталитической активностью катализатора реакции полимеризации пропилена и величиной ионного обмена с ацетатом аммония. Последующие исследователи предлагали ввести индекс кислотной силы, основанный на константе равновесия реакции обмена. Значение этой константы равновесия также было рассмотрено Планком [118], который показал, что ее величина находится в соответствии с рКо в диапазоне 3,2- 3,6 для гидратированной в воде алюмосиликатной кислоты. [c.78]

    Превращение органических соединений в летучую форму, удобную для анализа на масс-спектрометре, может быть осуществлено одним из лшогих методов, предложенных для прямого определения кислорода [42, 579]. Одним из наиболее важных является метод Тер-Мейлена [1390], по которому кислород, содержащийся в органических соединениях, количественно превращается в воду при испарении в токе чистого водорода, крекинге или пиролизе соединения при высокой температуре и пропускании продуктов реакции над никелевым катализатором при 350°. Другой метод был предложен Шютце-[1806] и модифицирован Унтерцаухером [669, 2066]. В методе Шютце — Унтерцаухе-ра образец термически разлагается в токе чистого азота, и полученные продукты пропускаются над углеродом при температуре около 1000°, причем они превращаются в окись углерода и далее в двуокись углерода под действием пятиокиси иода. Дёринг и Дорфман [501], используя этот метод, получили хорошие результаты. В случае работы на масс-спектрометре с высокой разрешающей силой превращение окиси углерода в двуокись необязательно. Для исследования смеси СО и N2 необходимо, чтобы отношение М/АМ было равно 2300. Если применяется метод анализа Тер-Мейлена, то вода может быть исследована непосредственно, как и при определении дейтерия, либо по двуокиси углерода. Для этого перемешиванием воды и двуокиси углерода в запаянных стеклянных трубках в течение нескольких часов при комнатной температуре, как это описано Коуном и Юри [368], достигают состояния равновесия [1403]. Содержание 0 в воде может быть вычислено из состава равновесной смеси двуокиси углерода и воды по константе равновесия обменной реакции, равной 2,094 при 0° 2141]. [c.89]

    Основными видами реах ций гидратации яв.пяются гидратация олефинов в спирты, ацетиленовых углеводородов в альдегиды и кетоны и нитрилов в амиды. При гидратации этилена образуется этиловый спирт гидратация прочих олефинов нротекает обычно но правилу Марковникова нри этом образуются вторичные или третичные спирты Н—СИ = СИ2 Ч- ПдО — —>-П—СИ(ОН)СНз. Этот процесс лежит в основе промышленного способа нолучения спиртов — этано.ла, изонроианола, бутаиола-2, триметилкарбинола. Сырьем при этом служат одефииы газов крекинга или др. попутных или отходящих газов нефтяной или химич. промышленности. Каталитическая гидратация олефинов — обратимая реакция, константа равновесия которой уменьшается с температурой поэтому ео выгодно проводить ири низких температурах и высоких давлениях (при парофазных процессах обычно [c.448]

    Это уравнение по существу применимо лишь к обратимым химичесх им реакциям однако для случаев, когда скорости дальнейших превращений продуктов реакции очень малы, а в пределе равны нулю, некоторые авторы расширяют область его применения на реакции, по существу необратимые, в частности — на реакции образования и распада углеводородов. Таким образом, могут быть произведены, например, вычисления свободной энергии образованпя углеводородов различных типов из элементов и тому подобные расчеты. Хотя все вычисления этого рода за недостатком необходимых опытных данных неизбежно являются весьма ириближенными, тем но менее ими мо жно пользоваться для приблизительного расчета измепепия свободной энергии при отдельных реакциях крекинга и пиролиза зная же величину А, можно на основании вышеприведенного уравнения вычислить liOH TanTy равновесия К для данного процесса, которая, указывая на количественные соотношения концентраций веществ, принимающих участие в данном равновесии, по существу определяет направление реакции чем больше константа равновесия, тем глубже протекает реакция в данном направлении, и наоборот. Таким образом, с помощью расчета оказывается, по крайней мере, возмон ным предугадать возможность или невозможность реакции в данном нанравлении. [c.459]

    В этом уравнении К — константа равновесия реакции, зависяпщя только от абсолютной температуры 7 Q — тепловой эффект реакции крекинга, определенный на основе термохимического соотношения  [c.463]

    Реакция конденсации бензола идет крайне медленно. Однако в процессах, протекающих продолжительное время, особенно же в присутствии веществ, ускоряющих конденсацию, а также в отсутствии водорода реакции конденсации бензола и его гомологов могут пойти очень глубоко. Если же принять во внимание, что, как показывает расчет, дальнейшая 1 онденсацня дифенила в более сложные продукты (дифенилбензол и т. д.) термодинамически вполне оправдывается и обладает константами равновесия, близкими к константе конденсации бензола в дифенил, то становится понятным, что в благоприятных условиях (крекинг) конденсация ароматических углеводородов может привести к продуктам очень глубокого уплотнения, вплоть до карбоидов. Наоборот, под сильным давлением водорода реакции рассмотренного тина практически могут совсем прекратиться, что, как мы видим, также находится в полном соответствии с опытом (гидрогенизация). [c.535]

    Реакции, перечисленные в пунктах 1—4, можно считать практически необратимыми например, константа равновесия реакции (VIII,1) при температуре 700° С равна 10 атм° . Равновесные глубины крекинга рассматриваемых углеводородов при температурах дегидрирования составляют примерно от 50 до 80—95%. [c.201]

    Пайне и Хааг [26] оценивали силу кислотных центров различных образцов окиси алюминия по скоростям изомеризации циклогексена и диметилбутена-1 и скорости дегидратации бутанола-1. Сиба и др. [27] предположили, что константа равновесия адсорбции аммиака на поверхности катализатора может служить мерой силы кислотных центров. Константа равновесия определялась из анализа данных обратимого отравления аммиаком реакции крекинга кумола. Некоторые другие методы описаны в следующих разделах, посвященных определению числа кислотных центров. [c.22]


Смотреть страницы где упоминается термин Равновесие константа крекинг-реакции: [c.177]    [c.593]    [c.30]    [c.92]    [c.51]    [c.351]    [c.607]    [c.10]    [c.662]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Константа равновесия

Константа равновесия реакции

Константы равновесия реакци

Равновесие константу, Константа равновесия

Равновесие реакций

Реакции крекинга

Реакция константа



© 2025 chem21.info Реклама на сайте