Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия распределения зарядов

    Другой вопрос, изучавшийся при помощи статистического метода, — это полная энергия ионизации, т. е. энергия, необходимая для того, чтобы удалить все электроны из нейтрального атома. Такие вычисления были проведены Милном и Бекером ). Была вычислена электростатическая энергия распределения заряда. Полная энергия равна половине ее, так как в силу теоремы вириала среднее значение кинетической энергии в системе частиц, взаимодействующих по закону Кулона, равно их потенциальной энергии, взятой со знаком минус. Полная энергия нормального состояния нейтрального атома с атомным номером 1 оказалась равной [c.329]


    См. [1]. К представляет собой так называемую собственную энергию распределения зарядов р = аЬ. [c.194]

    За исключением случаев, когда структура X заметно отличается по распределению зарядов от свободного комплекса (А В. . . ) или когда имеются сильные специфические взаимодействия, можно ожидать, что энергия испарения X приблизительно равна А-1-В+. .., так что [c.433]

    Для оценки взаимодействия между ионами в такой гипотетической системе первоначально рассчитывается наиболее вероятное распределение ионов вокруг любого данного центрального иона, а затем определяется энергия, которой может обладать система при таком распределении зарядов. [c.447]

    Энергию такого взаимодействия можно приближенно вычислить на основе модели распределения зарядов в молекуле адсорбата и в гидроксильной группе поверхности адсорбента. В случае адсорбции этилена или бензола на силикагеле эта энергия составляет до 2—4 ккал моль. [c.499]

    В рассмотренном выще примере с НС1 приведенные численные данные создают впечатление, что электроны должны смещаться от атома С1 к атому Н, поскольку первая энергия ионизации у водорода (1310 кДж моль больще, чем у хлора (1255 кДж моль ). Однако на образование химической связи влияют не только энергии ионизации соединяющихся атомов, но также и сродство к электрону каждого из них. Сродство к электрону у С1 (356 кДж моль настолько выще, чем у Н (67 кДж моль ), что предсказание, основанное только на сопоставлении энергий ионизации, оказывается прямо противоположным истинному положению. Для выяснения распределения зарядов вдоль связи между двумя атомами следует принимать во внимание одновременно энергию ионизации и сродство к электрону-другими словами, электроотрицательность каждого из двух атомов. [c.535]

    Разность энергий между различными уровнями и, следовательно, частота перехода зависят как от градиента поля создаваемого валентными электронами, так и от квадрупольного момента ядра. Квадрупольный момент eQ является мерой отклонения распределения электрического заряда ядра от сферически симметричного. Для данного изотопа величина eQ постоянна, и для многих изотопов она может быть получена из различных источников [5, 6]. Величина еЦ может быть измерена в экспериментах с атомными пучками. Размерностью eQ является заряд, умноженный на квадрат расстояния, но чаще квадрупольный момент выражают через О в см . Например, квадрупольный момент Q ядра - С с ядерным спином 1 = 3/2 составляет —0,0810 см отрицательный знак указывает на то, что распределение заряда сжато относительно оси спина (см. рис. 7.1). [c.266]


    Вполне естественно предположить, что подобное строение двойного слоя возможно при отсутствии теплового движения ионов, Б реальных же условиях распределение зарядов на границе раздела фаз в первом приближении определяется соотношением сил электростатического притяжения ионов, зависящего от электрического потенциала фо, и теплового движения ионов, стремящихся равномерно распределиться во всем объеме жидкой или газообразной фазы. К такому выводу независимо друг от друга пришли Гун и Чепмен. Они предположили, что двойной электрической слой имеет размытое (диффузное) строение и все противоионы находятся в диффузной его части — в диффузном слое. Поскольку протяженность диффузного слоя определяется кинетической энергией ионов, то в области температур, близких к абсолютному нулю, все противоионы будут находиться в непосредственной близости к потенциалопределяющим ионам. [c.54]

    Средние взаимодействия между молекулами проявляются на расстояниях между ними в диапазоне 0,3-0,7 нм и характеризуются малой долей переноса заряда, или, более строго, плотности вероятности распределения заряда электрона, с одной молекулы на другую. Энергия связи при этом колеблется в пределах 40-100 кДж-моль. Подобные значения энергии взаимодействия присущи комплексам с переносом заряда, которые образуются, например, при контакте молекул бензола в жидком агрегатном состоянии с молекулами СС1 . При образовании комплекса с переносом заряда одна молекула поставляет один возбужденный электрон на вакантную орбиталь заданной симметрии другой молекулы. [c.92]

    Носителем цвета является катион. Положительный заряд катиона распределен между атомами углерода и азота, что служит причиной его устойчивости. Кроме того, такое равномерное распределение заряда связано с уменьшением энергетического состояния молекулы, а это значит, что она способна возбуждаться световыми волнами с меньшей энергией. [c.328]

    Наряду с энергией связи и стабильностью ядер больщое значение в химических процессах имеют также магнитный и электрический моменты ядра. Спин ядра складывается из спинов нуклонов С/2Й) таким образом, что составляет четное или нечетное число, кратное исходному спину /гй. Поэтому спин ядра может для разных элементов меняться от О до 4,5. Он проявляется в сверхтонкой структуре атомных спектров и является основой метода ядерного магнитного резонанса. Так называемый квадрупольный момент ядра Q отражает асимметрию распределения заряда в ядре. Он особенно важен при взаимодействии между неполярными молекулами (например, молекулами СОг в газовой фазе). Q дает также информацию об отклонении ядра от сферической формы. [c.35]

    Наиболее низкое значение энергии системы для атома углерода имеет орбиталь типа з, обладающая шаровой симметрией, при которой распределение заряда зависит только от расстояния г от ядра. Далее принимаются во внимание три атомных орбитали типа р, имеющие направленный характер по осям координат р , р , р . Все три орбитали эквивалентны, независимы, энергетически равноценны, поэтому характеризуются трехкратным вырождением. Каждая орбиталь р может быть представлена как симметричная гантель [c.33]

    Покажем на примере расчета молекулы бутадиена, как при помощи метода ЛКАО—МО вычисляются основные параметры молекулы энергия делокализации, распределение зарядов, порядок связей, индекс свободной валентности. У бутадиена возможно перекрывание четырех орбиталей 2р -электронов, которые совместно образуют я-электронное облако молекулы. Исходная волновая функция бутадиена имеет вид [c.52]

    Для того чтобы установить, как изменяются термодинамические свойства ионов в связи с изменением концентрации, следует рассмотреть, как изменяется с концентрацией ионная атмосфера. Таким образом, первая задача состоит в том, чтобы объяснить изменение энергии, а вместе с тем и коэффициентов активности с концентрацией с помощью модели распределения зарядов вокруг иона. Вторая задача состоит в том, чтобы с помощью этой же модели объяснить влияние ионного облака на электропроводность. [c.71]

    Основания, способные к образованию водородной связи в качестве доноров протона (содержащие водород) и не способные к их образованию (не содержащие водорода), по-разному взаимодействуют с растворителями и эго взаимодействие сопровождается различным выделением энергии. Энергия сольватации ионов основания зависит от их химической природы. Можно ожидать большого различия во влиянии растворителя на алифатические и ароматические основания, которое будет следствием различного распределения заряда в катионе. [c.353]

    Пусть имеются два атома благородного газа. Если рассматривать статическое распределение зарядов в них, то эти атомы не должны влиять друг на друга. Но опыт и квантовая теория говорят о том, что в любых условиях (в том числе и при абсолютном нуле температуры) содержащиеся в атоме частицы находятся в непрерывном движении. В процессе движения электронов распределение зарядов внутри атомов становится несимметричным, в результате чего возникают мгновенные диполи. При сближении молекул движение этих мгновенных-диполей перестает быть независимым, что и вызывает притяжение. Взаимодействие мгновенных диполей — вот третий источник межмолекулярного притяжения. Этот эффект, имеющий квантовомеханический характер, получил название дисперсионного эффекта, так как колебания электрических зарядов вызывают и дисперсию света — различное преломление лучей света, имеющих различную длину волны. Теория дисперсионного взаимодействия была разработана Лондоном в 1930 г. Из изложенного следует, что дисперсионные силы действуют между частицами любого вещества. Их энергия приближенно выражается уравнением [c.241]


    Трудность решения этого уравнения заключается в том, что невозможно разделить волновые функции различных электронов. Эта проблема может быть, однако, разрешена с помощью метода Хартри , в котором каждый данный электрон рассматривается так, как если бы он двигался в центральном электрическом (поле, являющемся результатом усредненного распределения заряда ядра и всех остальных электронов. Вначале вычисляют функцию потенциальной энергии системы, состоящей из ядра и всех электронов. Затем вычисляют волновую функцию определенного электрона, рассматривая движение выбранного электрона в усредненном поле остальных электронов и ядра. Решение волнового уравнения для первого электрона позволит лучше рассчитать усредненное центральное поле, которое затем может быть использовано для волнового уравнения второго электрона, и т. д. Поступая таким образом, получают последовательно улучшающиеся волновые функции электронов и продолжают расчеты до тех пор, пока улучшение становится уже незаметным. В этом случае пола называют самосогласованным. [c.71]

    Другое объяснение возможно с помощью так называемых корреляционных диаграмм. Энергия молекулярного иона Н5 складывается из энергии электрона и энергии отталкивания протонов и Я). Можно убедиться, что энергия электрона при сближении ядер будет убывать до некоторого конечного значения. Действительно, в пределе при О образуется система по распределению зарядов, эквивалентная иону Не+ Энергия электрона в Ь-состоянии этой системы равна —54,4 эВ, т. е. на 40,8 эВ ниже, чем для исходного атома Н. Между тем энергия отталкивания стремится к бесконечности при Я 0. [c.58]

    Другое объяснение возможно с помощью так называемых корреляционных диаграмм. Энергия молекулярного иона Н2+ складывается из энергии электрона Ее Я) и энергии отталкивания протонов Ия Я). Можно убедиться, что энергия электрона при сближении ядер будет убывать до некоторо-Рис. 19. Полная энергия Е и конечного значения. Действитель-ее составляющие (полная энер- НО, В пределе при Я- -0 образуется ГИЯ электрона Ее и энергия система ПО распределению зарядов, отталкивания ядер СУя) как эквивалентная иону Не+. Энергия [c.64]

    У всех трех перечисленных молекул энергия связывания одинакова точно так же одинаково распределение заряда или неспаренного электрона, которое можно вычислить довольно простым способом [93]. [c.76]

    У неальтернантных углеводородов энергии связывающей и разрыхляющей орбиталей противоположны по знаку, но не равны, а распределение заряда в катионах, анионах и свободных радикалах неодинаковое. Рассчитать его намного сложнее, но тем не менее такие расчеты были выполнены [95]. Различить альтернантные и неальтернантные соединения (в случаях, когда точная структура неизвестна или не окончательно установлена) можно с помощью комбинированного метода, основанного на фотоэлектронной и УФ-спектроскопии [96]. [c.76]

    При сферическом распределении заряда лигандов вокруг центрального иона Е . должна монотонно, почти линейно, изменяться в этом ряду элементов пропорционально увеличению заряда ядер атомов. Относительно уровня энергии Ех + Ед комплексные катионы с КЧ = 6 будут наименее прочными в случае Са , Мп и 2п , пА которых равна 0. Наиболее же прочными должны быть комплексные катионы у У - -, которые имеют наибольшее абсолютное значение пА. Этот вывод полностью подтверждает эксперимент. В качестве иллюстрации рассмотрим характер ионов М(Нр) + з тех же элементов первой декады периодической системы. Для этой цели на рис. 22.4 приведены значения энергии процесса для элементов первой вставной декады от 8с до 1т [c.277]

    При качественной интерпретации соотношения между химическими сдвигами энергий связи электронов оболочки и распределением заряда в молекулах возникло много фальсификаций. В гл. 3 упоминалось, что с помошью метода молекулярных орбиталей можно рассчитать формальный заряд (8) на атоме в молекуле. Напомним, что формальный заряд определяется как электронная плотность на атоме в молекуле минус электронная плотность на свободном атоме. Из рис. 16.15 следует, что можно коррелировать формальный заряд на атоме азота в молекуле (полученный с помощью итерационных расчетов по расширенному методу Хюккеля) с наблюдаемыми энергиями связи 1. -электронов азота для ряда азотсодержащих соединений. Отметим, что для корреляции со сдвигом в энергиях фотоионизационных переходов электронов оболочки используют заряд основного состояния атома, который определяют произвольным образом. Наблюдаемый успех либо случаен, либо обусловлен тем, что члены, такие, как энергии электронной релаксации, сохраняют постоянное значение. [c.347]

    Вообще говоря, возможны четыре типа факторов, определяющих каталитическую активность фермента. Во-первых, необходим химический аппарат в активном центре, способный деформировать или поляризовать химические связи субстрата, что делает последний более реакционноспособным, во-вторых,— связывающий центр, иммобилизующий субстрат в правильном положении к другим реакционным группам, участвующим в химическом превращении, в-третьих,— правильная и точная ориентация субстрата, благодаря которой каждая стадия реакции проходит с минимальным колебательным или вращательным движением вокруг связей субстрата, и, наконец, в-четвертых, способ фиксирования субстрата должен способствовать понижению энергии активации ферментсубстратного комплекса в переходном состоянии. Соответствующее распределение зарядов в активном центре и геометрия активного центра входят в число факторов, определяющих снижение суммарной энтропии переходного состояния. Все эти факторы в той или иной степени влияют на структуру активного центра фермента, и их нельзя рассматривать изолированно, вне связи друг с другом. В совокупности они увеличивают скорость ферментативной реакции и позволяют ферменту выступать в роли мощного катализатора [77]. [c.209]

    Такое идеальное распределение заряда особенно легко осуществляется в цепис нечетным числом атомов углерода (СН = СН) —СН =. В случае полиметинов с четным числом углеродных атомов (СН = СН) — для этого необходима значительно большая затрата энергии. Поэтому здесь, чтобы достичь батохромного эффекта, приходится создавать дополнительно поляризуюш ие структурные элементы, например внутри- [c.598]

    Сходным образом ведут себя молекулы, у которых распределение зарядов более сложно. В молеку.те углекислоты распределение зарядов носит характер квадруполя. Ленель [36] определил расчетным путем то влияние, которое оказывает на энергию адсорбции взаимодействие квадруполя с поверхностью кристалла галоидной соли щелочного металла, и пришел к выводу, что оно может вызвать увеличение энергии адсорбции прнбл Изительно на 3 ккал/моль. Недавно Дрэйну [37а] удалось получить очень важный результат, который состоит в том, что теплота адсорбции азота на ионных кристаллах во многих случаях оказывается значительно большей, чем теплота адсорбции кислорода и аргона на тех же поверхностях, чего не наблюдается, когда эти газы адсорбируются на поверхностях, не имеющих ионного характера. Как было показано названным автором, аномальное поведение молекул азота обт ясняется наличием у них квадруполей. Мы вернемся к этой проблеме в разделе VI, 2. [c.38]

    Энергия квадрупольного взаимодействия д отлична от нуля только в том случае, когда не равен нулю интеграл (1У.6), т. е. распределение заряда ядра не имеет сферической симметрии. Наличие спина ядра / 1 придает распределению заряда ядра эффективно цилиндрическую симметрию. Если принять за главную ось эллипсоида вращения, представляющего тензор квадрупольного момента, ось = 2, то, учитывая, что ++ = ИМвбМ Qxx—Qvv = — Qzг 2. Таким образом, для определения квадрупольного момента ядра нужен, как уже говорилось, всего один параметр Q Qгz, а выражение энергии квадрупольного взаимодействия (1У.7) в координатах 1=х, у, г можно переписать в виде [c.93]

    При введении в молекулу полярного растворителя дополнительных групп, таких как N02, ОН, ЗОгСНз и других, например при переходе от нитробензола к изомерам динит робен-зола, происходит более неравномерное распределение зарядов в молекуле, усиливается электроноакцепторная способность растворителя, стабильность п-комплексов с ароматическими или непредельными углеводородами и, как правило, возрастает селективность растворителя. Однако наряду с увеличением энергии Еас при введении подобных заместителей происходит еще большее возрастание энергии взаимодействия молекул растворителя между собой Есс, что и приводит к увеличению коэффициентов активности углеводородов, к снижению растворякжцей способности растворителей. [c.30]

    Распределение заряда определяется состаиом и энергиями заселенных МО молекул, а также возможностью изменения их заселенности за счет переноса электронов на вакантные МО. Это и показано на рис. 4.47 соответствующими стрелками, соединяющими заселенные МО двух молекул и возможные возбуждения электронов с заселенных на вакантные МО. Дисперсионный вклад связан с корреляцией движения электронов и обязательно включает взаимодействия заселенных и вакантных МО обеих молекулярных систем. Эти два вклада по своей природе отрицательны и способствуют притяжению молекул. между собой. [c.155]

    Согласно теории Нернста, при погружении металла в раствор, содержащий его ионы, сразу же начинается обмен ионами между металлом и раствором В зависимости от природы металла и состава раствора возможны три случая 1) л> Р 2) л < Я и 3) л = Р. В первых двух случаях происходит преимущественный переход ионов или из раствора в металл (п> Р), или из металла в раствор (л<сЯ). I Так как ионы за 1яжены, то их преимущественный переход в какую- либо сторону сразу приводит к появлению в ней положительного заряда, в то время как другая фаза зарядится отрицательно Разность потенциалов, возникающая в результате неравномерного распределения зарядов, будет ускорять медленный процесс и тормозить быстрый. Через некоторый (очень малый) промежуток времени скачок потенциала уравняет скорости обмена в обоих направлениях. В дальнейшем потенциал не будет изменяться. Его постоянное значение соответствует равновесию между металлом и раствором и является мерой изменения свободной энергии Гиббса, которая отвечает электродной реакции. В этих условиях осмотическая работа A = RT u P/n.) будет уравновешиваться электрической работой 2/ ф, т. е. [c.163]

    То очень сильно. Очевидно, эффект заключается не столько в размерах радиусов анионов, сколько в характере сольватации анионов кислот различной природы. У ароматических карбоновых кислот заряд в анионе менее локализован, чем у алифатических кислот, а у фенола локализация еще меньше. Следовательно, энергия переноса анионов зависит от характера распределения зарядов в анионах и от величины непо.иярных радикалов ионов. [c.204]

    ОТ >гла 9 получают информацию о геометрии радикала и кристалла. Аниго-тропную сверхтонкую структуру нельзя наблюдать только у 5-электронов, так как они характеризуются шаровой симметрией распределения заряда. Наблюдаемые спектры поликристаллических образцов возникают вследствие наложения спектров всех беспорядочно ориентированных кристаллов и характеризуются значительным уширением линий. Диполь-дипольное взаимодействие свободных радикалов в растворе обусловливается молекулярным движением. Если вязкость раствора препятствует статистическому движению молекул, то линии сверхтонкой структуры уширяются, так как диполь-дипольное взаимодействие осуществляется частично. Изотропное или ферми-контактное взаимодействие можно объяснить только на основании квантовой механики. Предполагается, что вероятность пребывания электрона вблизи ядра ф(0) отлична от нуля, что и является причиной возникновения сверхтонкой структуры. Это может иметь место только для электронов, расположенных на 5- или сг-орбиталях. Тогда константа сверхтонкого взаимодействия а для этого изотропного взаимодействия равна (а единицах энергии) [c.268]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Электростатический вклад в потенциальную энергию представляет собой энергию электростатического взаимодействия молекул с недеформироваиными электронными оболочками. Это взаимодействие может быть описано в рамках классической электростатистики. Оно возникает, если обе взаимодействующие молекулы обладают постоянными электрическими моментами (дипольным, квадрупольным, октупольным). Взаимодействие на больших расстояниях определяется дипольными моментами (диполь-дипольные взаимодействия) . При уменьшении расстояния между молекулами возрастает роль диполь-квадрупольных, квадруполь-квадрупольных и т. д. взаимодействий. Электростатическое взаимодействие на близких расстояниях следует рассчитывать непосредственно по закону Кулона, исходя из распределения зарядов (электронной плотности). [c.118]

    Дальнейшее развитие теории ДЭС идет в основном по линик построения еще более сложных моделей, включающих диффузное распределение заряда и потенциала не только в жидкой фазе, но и в приповерхностном слое твердой фазы (внутренней обладке). Для ионных кристаллов это связано с изменением энергии образования дефектов (ионов внедрения и вакансий) вблизи поверхности для окислов и гидроокисей — с адсорбцией ионов в пористом [c.187]

    Дальнейшее развитие теории ДЭС идет в основном по линии построения еще более сложных моделей, включающих диффузное распределение заряда и потенциала не только в жидкой, но и в приповерхностном слое твердой фазы (внутренней обкладке). Для ионных кристаллов это связано с изменением энергии образования дефектов (иоНов внедрения и вакансий) вблизи поверхности, для оксидов и гидроксидов — с адсорбцией ионов в пористом слое ( гелеобразном слое), характерном, например, для стекол для высокополимерных ионитов — с адсорбцией ионов в матрице, постепенно уменьшающейся в глубь фазы ионита. Несмотря на видимое различие причин, для всех этих представлений характерна замечательная общность следствий, а именно некоторая часть скачка потенциала приходится на твердую фазу, и поверхностный потенциал г зона границе раздела (а тем более — потенциал ilJi) оказывается меньшим, чем межфазная разность потенциалов Д<р. [c.207]

    Протекающие в хроматографической системе взаимодействия можно подразделить на специфические (близкодействующие) и неспецифические (дальнодей-ствующие). К неспецифическим, чисто физическим, взаимодействиям способны все растворенные вещества. Эти взаимодействия можно подразделить на дисперсионные и ориентационно-индукционные. Дисперсионные силы имеют в своей основе согласованное движение электронов во взаимодействующих молекулах. Мгновенное распределение заряда, отвечающее мгновенному дипольному моменту одной молекулы, индуцирует дипольный момент у другой молекулы. Взаимодействие этих моментов определяет дисперсионную энергию. Дисперсионные силы действуют между любыми атомами и молекулами. Они особенно сильны у молекул с сопряженными я-электронными системами, например у ароматических углеводородов, вследствие большой подвижности я-электронов. Ориентационные силы возникают между полярными молекулами, имеющими постоянные дипольные моменты. В этом случае происходит притяжение положительно заряженного конца диполя одной молекулы к отрицательно заряженному концу другой молекулы. Индукционные силы возникают в случае поляризации молекулы, имеющей систему легко смещаемых электронов постоянным диполем другой молекулы. [c.594]

    Лисперсионное взаимодействие. Молекулы не могут находиться в состоянии покоя даже при температуре абсолютного нуля, поэтому в процессе движения электронов в отдельные моменты времени распределение зарядов может стать несимметричным, то есть может образоваться такая конфигурация, в результазе которой молекула приобретает мгновенный дипольный момент. Эти быстро меняющиеся (виртуальные) диполи создают вокруг молекулы электрическое поле, которое индуцирует в соседних молекулах дипольные моменты. Это приводит, в свою очередь, к появлению постоянно возобновляющихся сил притяжения, что обусловливает взаимную ориентацию неполярных молекул. Следовательно, природа дисперсионного взаимодействия тоже дипольная н поэтому сила этого взаимодействия обратно пропорциональна /. Энергия дисперсионного взаимодействия также не зависит от температуры. [c.25]


Смотреть страницы где упоминается термин Энергия распределения зарядов: [c.216]    [c.196]    [c.164]    [c.75]    [c.294]    [c.61]    [c.64]    [c.48]    [c.149]    [c.58]    [c.102]    [c.240]    [c.151]   
Химия малоорганических соединений (1964) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Заряд распределение

Распределение по энергиям



© 2024 chem21.info Реклама на сайте