Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация связь с ассоциацией

    Интерпретация спектров. Как показано в предыдущих главах, каждый отдельный метод дает возможность изучать важные физико-химические явления, но и в этих случаях комбинация спектральных методов дает больше информации. К изучаемым проблемам относятся конформационные, таутомерные, ионизационные равновесия и процессы сольватации и ассоциации, в каждом из которых находит отражение действие внутри- и межмолекулярных сил (например, дипольное взаимодействие, водородная связь и эффекты с переносом заряда). [c.224]


    В жидких растворах сохраняются все особенности строения чистых жидкостей. Оно также характеризуется ближним порядком в распределении молекул, наличием флуктуаций плотности, ориентации и концентрации и явлений сольватации и ассоциации. Однако строение растворов более сложно из-за нахождения в них частиц разных компонентов и поэтому многие явления в растворах сложнее, чем в чистых жидкостях. При образовании растворов может происходить частичный или полный распад ассоциированных комплексов, существующих в чистой жидкости. Неполярные молекулы в чистой жидкости и растворе могут ассоциировать в результате действия дисперсионных сил, а полярных — в результате диполь-дипольного взаимодействия, причем прочность ассо-циатов при большом дипольном моменте исходной молекулы достигает в ряде случаев значительной величины. Сущность явления ассоциации молекул вследствие образования водородной связи можно рассмотреть на примере моле сул воды — наиболее распространенного на Земле химического соединения и эффективного растворителя. [c.63]

    Связь сольватации с ассоциацией. Очень часто главная масса растворенного электролита, например, кислоты, находится в растворе в виде ассоциированного с растворителем продукта присоединения различного состава  [c.181]

    Рассматривая связь между теплотами растворения и диссоциацией солей в растворах, А. М. Сухотин [47 ] показал, что в определенных случаях учет ионной ассоциации позволяет количественно объяснить ход изотерм АЯ = / (т) и вычислить важные энергетические характеристики, могущие служить основой для проверки теории сольватации и ассоциации ионов. [c.159]

    Если два вещества имеют перекрывающиеся полосы поглощения, то на определенной частоте (или частотах) их молярные коэффициенты поглощения равны. При изменении соотношения концентраций указанных веществ (но при постоянстве их суммарной концентрации) оптическая плотность образца на этой частоте (частотах), очевидно, не будет меняться (рис. 4.4). Эти особые точки спектра носят название изобестических точек, являющихся, таким образом, критерием наличия в системе определенного количества различных компонент (или разных форм одного и того же соединения). Метод изобестических точек, подробно описанный в спектроскопической литературе, находит широкое применение при решении самых разнообразных физико-химических вопросов (конформационные и таутомерные проблемы, ионизационные равновесия, процессы сольватации и ассоциации, влияние водородной связи, эффекты переноса заряда и т. д.). [c.125]


    На практике чаще приходится встречаться с неидеальными растворами, которые не подчиняются закону Рауля. Отклонения от идеальности обусловлены как физическими, так и химическими причинами (дипольные взаимодействия, поляризация, образование водородных связей, ассоциация, диссоциация, сольватация и др.). Существуют неидеальные растворы с положительным и отрицательным отклонениями от закона Рауля, в которых взаимодействия между однородными и разнородными молекулами различны. В растворах с положительным отклонением от идеальности AI/>0. Образование таких растворов сопровождается поглощением теплоты и увеличением объема. В растворах с отрицательным отклонением от идеальности АС/СО. Образование таких растворов сопровождается выделением теплоты и уменьшением объема. Зависимости общего и парциальных давлений пара от состава неидеального раствора показаны на рис. 8.2 и 8.3. [c.159]

    Следует отметить, что ассоциация молекул растворителя в жидкости и присоединение их к молекулам растворенных веществ (сольватация) не препятствует определению молекулярного веса растворенного вещества в разбавленных растворах. Ассоциация растворителя в паре мешает определению молекулярного веса вещества, растворенного в жидкости, так как все коллигативные свойства разбавленных растворов связаны с законом Рауля, который не выполняется, если пар растворителя ассоциирован. Примером такой жидкости может являться уксусная кислота, пар которой в значительной степени диме-ризован (ассоциирован в двойные молекулы). [c.248]

    Различают внутримолекулярную и межмолекулярную водородные связи. Межмолекулярные водородные связи — это связи между различными молекулами. Образование таких связей носит название ассоциации, если в процессе участвуют молекулы одного типа, или сольватации, если молекулы, образующие связь, разного типа. [c.96]

    Мы рассмотрели строение простых жидкостей и те системы, которые получаются при введении в них электролитов. Общим итогом анализа состояния таких систем, очевидно, будет вывод о существовании сил связи как между однородными составными частями систем (молекулами растворителя), так и между компонентами раствора. Взаимодействие молекул растворителя друг с другом — ассоциация — наблюдается во всех жидкостях и даже в парах, а взаимодействие растворенных частиц с растворителем описывается как явление сольватации. Частицы сольватов не независимы друг от друга — в слабополярных средах образуются ионные пары, тройники и, возможно, кластеры, иллюстрирующие действие внутренних связей в таких системах. Мы намеренно ограничиваемся слабыми силами связи, так как они обусловливают большое разнообразие продуктов реакций. [c.262]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]

    Основная часть энергии, необходимая для разрушения ассоциаций молекул растворителя и растворяемого вещества и для разрыва связей в его кристаллах, выделяется при экзотермическом процессе сольватации (гидратации) отщепляемых ионов или молекул. Подсчитано, что энергия гидратации составляет 34 ккал/моль, в том случае, если к каждому иону присоединяется по одной молекуле воды. Чтобы энергии хватило на полную диссоциацию, например КС1, необходимо присоединение к каждому образующемуся иону пяти молекул воды. [c.16]

    Первых два слагаемых отражают эффект слабой ассоциации (сольватации) веществ, последнее слагаемое необходимо только для учета сильной ассоциации в газовой фазе карбоновых кислот. Константа димеризации карбоновой кислоты (определение константы смотри в следующем разделе) связана с величиной соотношением  [c.186]

    Надо сказать, что закон Бера соблюдается не всегда. Отклонения связаны с различной степенью ассоциации, сольватации и диссоциации молекул в растворах разной концентрации. Поэтому при измерении спектров поглощения в растворах разной концентрации необходимо проверять соблюдение этого закона (например, увеличение концентрации вдвое должно быть эквивалентно удвоению толщины пропускающего слоя при той же концентрации). [c.609]


    Изучение сольватации ионов и биполярных молекул в бинарных смесях растворителей показало, что отношение содержания индивидуальных растворителей в сольватной оболочке может отличаться от их отношения в смеси растворителей. Как и можно было ожидать, в окружении частиц растворенного вещества преимущественно концентрируется компонент смеси, обусловливающий более отрицательную энергию Гиббса сольватации АС°сольв. Тот факт, что состав сольватной оболочки отличается от состава раствора в целом, получил название селективной или избирательной сольватации (рис. 2.10). Обычно этими терминами пользуются для описания индуцированной растворенным веществом молекулярно-микроскопической негомогенности многокомпонентной смеси растворителей. Избирательная сольватация включает как неспецифическую ассоциацию молекул растворенного вещества и растворителя, обусловленную электростатическими взаимодействиями молекул сольватной оболочки с ионами или биполярными молекулами, находящимися в растворе, так и специфические взаимодействия молекул растворителя и растворенного вещества, например образование водородных связей или комплексов типа ДЭП/АЭП. [c.65]

    Учет процесса ассоциации ионов в ионные пары (или в более крупные комплексы) дает возможность оценить реакционную способность диссоциированных ионов в различных растворителях. Эта величина тесно связана со способностью ионов вступать с растворителем в специфические сольватационные взаимодействия. В протонных растворителях сольватация анионов осуществляется за счет ион-дипольных взаимодействий в сочетании с сильными водородными связями. В соответствии с законами электростатики прочность водородных связей максимальна для небольших ионов. Сольватация протонными растворителями сильно уменьшается в ряду ОН", Р С1 >Вг-> >Нз->1 >5СЫ >пикрат . В диполярных апротонных растворителях сольватация анионов выражена гораздо слабее и обусловлена исключительно иои-дипольными взаимодействиями. Водородные связи не вносят в этом случае существенного вклада в сольватацию. Вследствие этого природа аниона сравнительно слабо влияет на его сольватацию диполярными апротонными растворителями. [c.50]

    В основе явления азеотропии лежат силы взаимодействия между молекулами компонентов смеси, в частности — силы сцепления, ассоциации, сольватации. Большую роль при этом играют водородные связи. Однако до сих пор не удается заранее предсказать возможность образования азеотропной смеси, исходя из известных свойств компонентов. [c.33]

    На положения этих прототропных равновесий можно повлиять, изменив природу растворителя или концентрацию раствора (обзор см. [68]). Показано, что для системы 2-гидроксипиридин — пири-дон-2 в очень разбавленном растворе (10 моль/л) или в газовой фазе преобладает гидрокси-форма. Пиридон-2 в неполярных растворителях ассоциируется, образуя связанный водородной связью димер, и эта форма оказывается более стабильной, чем мономер, вследствие чего она преобладает в неполярных растворителях при средних концентрациях. Для пиридона-4 невозможно предотвратить процесс ассоциации, даже при очень низких концентрациях, поэтому нельзя определить истинное положение равновесия для мономерной формы. Однако гидрокси-форма, по-видимому, наиболее стабильна в газовой фазе [69]. Полярные растворители могут влиять на положение равновесия, что обусловлено различной специфической сольватацией таутомеров таутомеры обычно отличаются по полярности и по способности образовывать водородные связи с растворителями. Таким образом, только проводя исследования в газовой фазе, можно получить истинную информацию об отличиях в энергиях химических связей таутомеров. [c.46]

    С природой растворителя связано также протекание процессов диссоциации или ассоциации молекул определяемого вещества, их сольватации и, наконец, характер возможного химического взаимодействия с растворителем, что может привести к резкому изменению потенциалов полуволн. Как правило, потенциалы полуволн вещества в органических растворителях более отрицательны, чем в водных растворах. [c.246]

    Раствор называют идеальным, если при любом соотношении компонентов образование его не сопровождается сжатием или расширением, а также выделением или поглощением тепла. Строга говоря, ни один реальный раствор не обладает упомянутыми свойствами в связи с явлениями ассоциации, диссоциации, сольватации и т. д. Однако растворы, образованные веществами, сходными по химическому составу и по физическим свойствам (например, оптически активные изомеры), а также бесконечно разбавленные растворы по своему поведению близки к идеальным. [c.127]

    Уравнение (165.10) хорошо согласуется с экспериментальными данными для разбавленных растворов (до 2 10 г-экв/л). При больших концентрациях это согласование нарушается, что связано с влиянием на электрическую проводимость сольватации и ассоциации ионов —эффектов, усиливающихся с ростом концентрации раствора, которые не учитываются электростатической теорией растворов. Увеличение размеров сольватной оболочки сопровождается снижением скорости движения иона в электрическом поле. Образование ассоциатов — ионных пар и тройников (см. 158) —приводит к тому, что часть ионов не участвует в переносе электричества. Для расчета электрической проводимости концентрированных растворов используют полуэмпирические уравнения, например уравнение Шидлов-ского  [c.462]

    В кЕяестве варианта метода И. и. для выяснения механизма нек-рых реакций и строения химич. соединений может быть использован изотопный обмен. Снособность к изотопному обмену определяется строением молекул и природой заместителей, реакцией среды, наличием сольватации и ассоциации, окислительно-восстановительных процессов, катализаторов и т, д. Но зависимости константы скорости изотопного обмена от темп-ры определяют энергию активации реакции обмена, что позволяет судить о характере химич. связи, ее реакционной способности и о подвижности атомов и групп. [c.93]

    Пример е".анализа бинарной смеси изоамилового спирта и бензола иллюстрируется рис. 81. Кривая tgo —состав смеси интересна тем, что при небольшом содержании изоамилового спирта tg б мал, хотя у чистого изоамилового спирта эта величина значительна. Это явление может быть связано с эффектами сольватации и ассоциации. Последняя при небольших количествах изоамилового спирта в бензоле практически не возникает, что может свидетельствовать о разобщенности молекул этого спирта и равномерном их распределении в массе бензола. Противоположное явление происходит в случае загрязнения бензола водой, когда даже малые количества воды приводят к сильному повышению tg6. Можно полагать, что молекулы воды, даже при малом их числе, находятся в бензоле в виде ассоциированных агрегатов и не разобщены подобно молекулам изоамилового спирта. Последний ассоциируется в сравнительно крупные сольваты лишь при значительном возрастании концентрации спирта. Тогда, как следует из рис. 81, при содержании спирта выше 20 мол.% происходит быстрое увеличение коэффициента потерь смеси [151]. [c.182]

    Ассоциация молекул в растворе может осуществляться двумя различными путями — соединением однородных молекул (собственно ассоциация) или соединением разнородных молекул (сольватация). Так, в неполярных растворителях (СС14, СеНв) бензойная кислота дает димеры (СбН5СООН)г, а в полярных растворителях, с молекулами которых возможна водородная связь (ацетон, фенол), образует сольваты, например СбНзСООН ОС(СНз)2. [c.94]

    Основная часть энергии, необ-ходпхмая для разрушения ассоциации молекул растворителя и растворяемого вещества и для разрыва связей в его кристаллах, выделяется при экзотермическом процессе сольватации (гидратации) отщепляемых ионов или молекул. [c.29]

    Межмолекулярные водородные связи — это связи между различными молекулами. Образование таких связей носит название ассоциации, если в процессе участвуют молекулы ОДНОГО сорта, или сольватации, если молекулы, образующие связь, разного сорта. Получающиеся соединения называют соответственно ассоциатами или сольватами (иногда термин ассоциат употребляют в более общем смысле, включая сюда и сольваты). [c.285]

    Между частицами жидкости существуют различные взаимо действия приводящие к образованию соединений молекул раст В0ренн0(0 вещества с растворителем (сольватация) и друг с другом (ассоциация) Сольватация сильно проявляется в водных растворах (гидратация) и особенно в растворах электролитов Известно что по своей структуре жидкости занимают про межуточное положение между газами в которых расположение молекул хаотично и кристаллами где частицы находятся на определенных расстояниях друг от друга в узлах кристалличе ской решетки В жидкостях сохраняются некоторые элементы упорядоченной структуры Например считается что вода час тично сохраняет структуру льда, в котором каждая молекула имеет водородные связи с четырьмя соседними молекулами При образовании раствора вследствие появления новых сил взаимодействия между частицами структура чистых жидкостей нарушается Возникает новая структура с другим расположе нием частиц и иным взаимодействием между ними Все это сильно влияет на процессы протекающие в растворах [c.179]

    Сольватация всегда сопровождается изменением степени упорядоченности молекул растворителя, поэтому при рассмотрении сольватации необходимо учитывать не только энтальпийный, но и энтропийный фактор. В неполярных и малополярных растворителях молекулы мапо упорядочены — как в чистых растворителях, так и в растворах. Сольватационные энтропийные эффекты для таких растворителей обычно невелики. Напротив, дпя полярных растворителей, молекулы которых способны к ассоциации за счет образования водородных связей (вода, спирты, карбоновые кислоты), степень упоря- [c.98]

    В качестве HSolv выступают спирты, карбоновые кислоты и другие растворители. Энергия сольватации двух противоионов, доходящая до 600 кДж/моль, покрывает затраты на активацию первой стадии реакции (6.22). На второй стадии происходит процесс ионной ассоциации катиона и аниона, который протекает быстро и не требует существенной энергии активации, как все известные процессы соединения ионов противоположного знака. В целом, скорость реакции замещения, идущей по механизму SnI, определяется концентрацией карбкатиона R . Эта концентрация настолько мала, что карбкатион не обнаруживается даже в электронных спектрах поглощения. Это понятно, так как реакции диссоциации полярных связей С-Х в большинстве случаев имеют очень низкие константы равновесия, для реакций диссоциации алкилгалогенидов они настолько малы, что до сих пор не измерены. [c.208]

    Существуют двойные и тройные смеси с определенным соотношением компонентов, у которых состав насыщенного пара и жидкости одинаков. Такие смеси кипят при температуре более низкой или более высокой, чем температура кипения каждого компонента смеси в отдельности, и называются постояннокипя-щими, или азеотропными смесями. Явление азеотропии обусловлено сложными взаимоотношениями молекул в жидкости, основанными главным образом на силах сцепления, ассоциации и сольватации. Большую роль в этих явлениях играют водородные связи, т. е. свойство атома водорода в группах ОН, ЫНз, СООН и т. п. быть координационно связанным с атомами кислорода или [c.162]

    H. А. Измаиловым предложена новая схема диссоциации электрс литов, учитывающая все глзЕнейшие процессы, протекаюшие в растворах. На основании этой схемы и учета энергии взаимодействия ионов и молекул электролитов с растиорителем выведены обшие уравнения, характеризующие зависимость силы кислот и оснований от физических >5 химических свойств растворителей. Дифференцирующее действие растворителей связано с различием в энергии сольватации ионов и молекул, г также с различной ассоциацией ионов. [c.147]

    Водородная связь (водородный мостик). Атом водорода имеет один электрон и потому может участвовать только в одной ковалентной связи. Однако в некоторых груннах, например в О—Н или С—О, связи имеют характер частично ковалентных, частично ионных связей. Атом водорода, отдав свой электрон, остается в виде ядра очень малого размера, почти лишенного электронной оболочки. Он не испытывает отталкивания от электронной оболочки другого атома и, притягиваясь ею, может вступать с ней во взаимодействие. Новая связь, образующаяся между атомом водорода одной молекулы и атомами кислорода, азота, фтора, хлора или серы другой (или той же) молекулы, является одной из причин ассоциации или сольватации молекул. Энергия водородных связей составляет 3,5—10 ккал1моль. [c.19]

    Отклонения от идеальности обусловлены как физическими, так и химическими причинами (дипольные взаимодействия, поляризация, различная интенсивность ван-дер-ваальсовых сил, влияние водородных связей и вызываемые этими причинами ассоциация, диссоциация и сольватация). Все эти взаимодействия настолько переплетаются, что трудно предугадать суммарный результат. Однако благодаря преобладанию одной из форм взаимодействия можно произвести классификацию растворов по признаку отрицательного и положительного отклонения от закона Рауля. [c.176]

    При условии, что молекулы неразветвлены, определение числа концевых групп в образце автоматически дает возможность рассчитать средний молекулярный вес полимера. И наоборот, число концов, а следовательно, и степень деструкции можно рассчитать по известным молекулярным весам. Однако определение молекулярного веса методом концевых групп имеет ряд недостатков. Реакции, положенные в основу этих методов, часто осложняются побочными процессами и не являются универсальными поэтому в ряде случаев трудно сравнить различные системы, поскольку невозможно применить к ним один и тот же метод. Часто, особенно при исследовании веществ с высоким молекулярным весом, трудно провести реакцию количественно. Однако основной недостаток этих методов состоит, по-видимому, в том, что они дают правильные результаты только тогда, когда молекулы неразветвлены и не связаны поперечными связями, т. е. если каждая молекула имеет только два конца. Это не всегда соблюдается, когда речь идет об углеводах. В то же время большим преимуществом этих методов является то, что на них не оказывают влияние эффекты ассоциации и сольватации. [c.100]

    О значительной роли сольватации ионов в процессе ассоциации или диссоциации свидетельствуют опыты по влиянию небольших добавок воды на электропроводность неводных растворов, произведенные Улихом. Так, добавка 0,1% воды к 0,0001 н. раствору слабой соли ЫСМЗ в нитрометане увеличивает электропроводность на 60%. Об этом же свидетельствуют данные Геманта, который наблюдал резкие различия в константах диссоциации соли Ви4ЫС1 в смесях ксилола со спиртом (/С=90-10 ) и в смесях диоксана с водой К=2-10 ) с одинаковой е=3,2. Кроме того, на способности солей к ассоциации сильно сказывается возможность образования водородной связи между ионами как правило, соли частично замещенных аммониевых оснований относятся к слабым солям, так как катионы этих солей способны к образованию водородных связей. [c.138]

    В нескольких случаях были определены скорости образования и диссоциации водородных связей. Ультразвуковым методом был исследован (стр. 108) циклический димер бензойной кислоты, содержащий две эквивалентные водородные связи. В растворе четыреххлористого углерода, где эффекты сольватации, по-видимому, несущественны, константа скорости ассоциации при 25° имеет высокое значение ( 5-10 л-моль -сек ), позволяющее предполагать лимитирование диффузией значение, найденное для АН, составляет около 3 ккал-молъ , что очень близко [c.275]


Смотреть страницы где упоминается термин Сольватация связь с ассоциацией: [c.93]    [c.353]    [c.126]    [c.356]    [c.385]    [c.123]    [c.76]    [c.443]    [c.231]    [c.415]    [c.48]    [c.62]    [c.85]   
Аналитическая химия неводных растворов (1982) -- [ c.181 , c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Об ассоциации и сольватации

Сольватация



© 2024 chem21.info Реклама на сайте