Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкильные группы ароматических кислот

    Под действием разбавленной азотной кислоты или перманганата калия алкильные группы ароматических соединений окисляются в карбоксильные. Так, в промышленности получают из -ксилола терефталевую кислоту— полупродукт для производства волокна лавсан, или терилен, а из о-ксилола — фталевый ангидрид, применяемый в синтезе полимеров  [c.82]


    Заместители первого рода (—ОН, —МНз, алкильные группы) увеличивают реакционную способность ароматического ядра и позволяют проводить сульфирование в более мягких условиях и получать большее число продуктов. Так, можно сульфировать анилин 96%-НОЙ серной кислотой. [c.316]

    Ароматические углеводороды при взаимодействии с- серной кислотой сульфируются. Однако эта реакция зависит от строения углеводородов, в частности от положения алкильного заместителя, от длины и количества алкильных цепей и цикличности углеводорода. Сульфирование затрудняется, если алкильные группы находятся в пара-положении. Чем длиннее боковая цепь и чем больше этих цепей при ароматическом ядре, тем сильнее оно экранируется, что уменьшает возможность протекания реак-ции сульфирования. [c.229]

    При окислении гомологов бензола различными окислителями или воздухом боковые алкильные цепи превращаются в карбоксильные группы. Таким образом можно получать соответствующие ароматические кислоты. Эта реакция имеет большое практическое значение для синтеза двухосновных фталевых кислот. [c.30]

    Алкильные группы можно отщепить от ароматических колец при действии протонных кислот и (или) кислот Льюиса. Легче всего отщепляются третичные группы К, а поскольку это так, то иногда для селективного введения какой-либо группы в молекулу используют грег-бутильный заместитель, который впоследствии удаляют [378]. Примером может служить следующий синтез [379]  [c.381]

    Декарбоксилирование карбоксилат-ионов в процессе электролиза с последующей рекомбинацией образующихся радикалов носит название реакции Кольбе [356]. Реакция используется для получения симметричных углеводородов R—R. Алкильные группы могут иметь прямую или разветвленную цепь, однако разветвление в а-положении к карбоксильной группе затрудняет реакцию. К ароматическим соединениям реакция неприменима. В реакцию вступают функционально замещенные субстраты, но некоторые функциональные группы препятствуют реакции [356]. Введение в реакцию смеси солей двух разных кислот позволяет получать несимметричные димеры R—R.  [c.111]

    Алкильные цепи, соединенные с ароматическими кольцами, окисляются до СООН-групп под действием многих окислителей, включая перманганат, азотную кислоту и бихромат в кислой среде [198]. Этот метод чаще всего применяется для окисления метильной группы, хотя в эту реакцию можно вводить и соединения с более длинными цепями. Однако третичные алкильные группы оказываются устойчивыми к окислению, но если и окисляются, то одновременно, как правило, происходит раскрытие кольца [199]. Обычно бывает затруднительно окислить группу R, соединенную с конденсированной ароматической системой без раскрытия кольца или окисления его до хинона (реакция 19-19). Однако такие реакции известны (напри- [c.286]


    Третичные ароматические амины, содержащие две алкильные группы у атома азота, реагируют с азотистой кислотой с образованием продуктов нитрозирования ароматического кольца. Эти нитрозопроизводные являются основаниями, имеющими зеленую окраску при переходе в соль цвет вещества становится оранжевым. [c.108]

    Неразветвленную алкильную группу, большую чем этильную, обычно вводят в ароматическое кольцо путем двустадийного процесса ацилирования ароматического кольца хлорангидридом соответствующей карбоновой кислоты и последующего восстановления образовавшегося кетона. Почему нельзя непосредственно ввести неразветвленную алкильную группу  [c.136]

    Сильно влияют на этерификацию пространственные факторы. С ростом объема алкильных остатков, связанных с карбоксильной группой, а также со спиртовым гидроксилом, скорость этерификации падает. Поэтому разветвленные у а-углеродного атома алифатические, а также орто-замещенные ароматические кислоты вступают в реакцию медленно и с плохими выходами. В ряду от первичных к третичным спиртам реакция также затрудняется кроме того, в условиях реакции (сильнокислая среда) параллельно возрастает и тенденция к превращению спиртов в простые эфиры и олефины (разд. Г, 3.1.1.1 табл. 29). Как следствие последнего, эфиры третичных спиртов прямой этерификацией получаются лишь с очень низкими выходами. [c.75]

    Действительно, замещение алкильной группы ароматической в третичных аминах вызывает значительное уменьшение его основности и ухудшает экстракцию примерно в 10 раз [43]. Моно- и диарил амины по своей экстракционной способности занимают место между ТОФО и основаниями более слабыми, чем ТБФ, но при экстракции хлорной кислоты бензольными растворами, по-видимому, образуется простая аммониевая соль. Опять-таки мы видим различие в поведении аминов и фосфорильных оснований. Очевидно, первые по сравнению со вторыми связывают небольшие нейтральные молекулы типа воды и хлороформа более слабо, а заряженный протон более сильно. Однако, подбирая подходящую систему и используя слабо сольватирующий разбавитель, например циклогексан, можно найти условия, при которых существуют не аммониевые соли, а другие соединения. Поиск таких систем продолжается. [c.195]

    После того как было показано, что фтористый водород является сильным катализатором реакций конденсации, его использование в качестве катализатора и добавление к нему малых количеств некоторых веществ, увеличивающих его каталитическую активность (промоторов), стало обычным. В смеси с серной кислотой он был использован в качестве катализатора реакции алкилирования изопарафвнов олефинами [49], а также в смеси с трифторидом бора [30] для ускорения некоторых других реакций. Эти же смеси были использованы для получения насыщенных циклогексановых углеводородов из метилциклопентана и пропилена [47]. Эти смеси применялись также для замены алкильных групп ароматических углеводородов [c.242]

    Ароматические углеводороды из экстракта керосиновой фракции можно алкилировать отборными олефиновыми фракциями, например фракциями, получаемыми при крекинге парафина или при полимеризации олефипов в присутствии таких катализаторов, как А1С1з или серная кислота [8]. Нафталин тоясе используется в этой реакции, по для обеспечения хорошей, растворимости необходимо, чтобы алкильные группы содержали девять атомов углерода или меньше. [c.506]

    Изомеризация является следующим типом побочной реакции, встречающейся прп сульфировании ароматических углеводородов. Перегруппировка Якобсена происходит только в случае тетра- и пентаалкилирован-ных бензолов (включая октагидрофенантреп), причем скорее сульфоновая кислота, чем углеводород, претерпевает перегруппировку при контакте с избытком серной кислоты [94]. Отмечалось TaKHte, что миграция алкильных групп обычно происходит как внутри молекулы, так и между молекулами и приводит к образованию смеси, состоящей из нескольких сульфокислот с различным числом и положением алкильных групп в кольце. [c.526]

    В качестве депрессанта широко применяются полиалкилиро-ванные ароматические соединения с конденсированными бепзаль-ными ядрами, количество углеродных атомов в алкильной группе равно, как это можно установить по молекулярному весу, — 20 алкилэфиры полимера метакриловой кислоты, причем алкильные группы также содержат 15—20 атомов углерода [25]. Следует отметить, что присадки для понижения температуры застывания более всего эффективны, если их вводят в легкие масла и используют в небольших концентрациях при этом условии температура застывания масла снижается на 8—11° С. Для масел типа брайтсток та же самая присадка вызывает незначительное повышение температуры застывания. Существует специальная литература по вопросам, связанным с недостатками, проявляющимися при использовании депрессантов [26]. [c.496]


    Каталитическое жидкофазное окисление. Газофазное окисление не может быть использовано в случаях, когда образуются кислоты, не способные к образованию стабильных циклических ангидридов. Серьезные трудности возникают и при газофазном окислении боковых алкильных групп, так как промежуточные продукты окисления последних с большой скоростью сгорают, образуя диоксид углерода и воду. Даже при окислении о-ксилола во фталевый ангидрид подбор селективных катализаторов и оптимальных условий процесса был весьма сложен [60, с. 356—357]. При газофазном каталитическом окислении не удается получить и многих индивидуальных продуктов окисления полициклических ароматических углеводородов. Однако, если получение фталевого ангидрида жидкофазным окислением о-ксилола, несмотря на близкий к теоретическому выход целевого продукта, не выдержало конкуренции с газофазным окислением [61, 62], то терефталевую кислоту и диметилтерефталат получают только жидкофазным окислением л-ксилола. Только жидкофазное окисление можно использовать для синтеза поликарбоновых кислот из триметилбен- [c.41]

    При попытке окисления нормальных углеводородов чаще всего происходит разрыв цепи с образованием сложной смеси продуктов с меньшим молекулярньпи весом /25, 36/. Однако при окислении высших нормальных углеводородов в присутствии окиси бора можно получить смесь вторичных алкилбора-тов, в которых алкильная группа содержит то же число атомов углерода, что и исходный парафин /12/. Даже малые количества ароматических углеводородов ингибируют реакцию, поэтому их следует удалить, например, с помощью силикагеля /25/. Реакцию можно вести в прюстом реакторе с мешалкой при 155-17 0°С и атмосферном давлении или, если необходимо, под давлением, применяя суспензию борной кислоты или окиси бора. В смесь прюпускается обычный воздух или воздух, разбавленный N2 и содержащий 2-5% О2. Алкилбораты выделяют при степени конверсии 10-20%, иначе возрастет содержание кетонов. [c.294]

    Очистку нефтяных фракций серной кислотой проводят для удаления из них непредельных, серо-, азотсодержащих и смолистых соединений, которые обусловливают малую стабильность топлив при хранении, нестабильность цвета и ухудщают некоторые эксплуатационные свойства. В обычных процессах очистки серная кислота не действует на парафиновые и нафтеновые углеводороды. Однако почти всегда в побочных продуктах процесса (кислых гудронах) эти углеводороды обнаруживаются, так как в присутствии сульфокислот и кислых эфиров серной кислоты эти углеводороды образуют эмульсии, увлекаемые продуктами очистки. Ароматические углеводороды не одинаково легко подвергаются сульфированию. Степень их сульфирования зависит от расположения алкильных групп. Трудность сульфирования ароматических углеводородо1в возрастает с увеличением длины и числа боковых цепей. Полициклические иафтено-ароматические углеводороды подвергаются сульфированию при большом расходе кислоты. [c.60]

    Образование ковалентной связи между протоном и одним из атомов углерода, входящего в ароматическую систему, при возникновении а-комплекса подтверждено спектром ПМР, полученным при смешивании 9,10-диметилантрацена с эквпмоль-ными количествами трифторуксусной кислоты и трифторида бора. Между сигналами ароматических протонов и протонов алкильных групп был обнаружен отсутствующий в непротони-рованном углеводороде пик в виде хорошо разрешенного квадруплета, в то время как пик протонов метильной группы расщепился на дублет. Этот факт свидетельствует о присоединении к атому С-9 протона, который вступает в спин-спиновое взаимодействие с протонами метильной группы, связанной с этим же атомом углерода, [c.320]

    Превращение сложных эфиров в амиды — полезный метод синтеза незамещенных, N-замещенных и N,N-дизaмe-щенных амидов из соответствующих аминов [727]. Реакцию можно проводить с алкильными или ароматическими группами R и R. Особенно хорошей уходящей группой является п-нитрофенильная. Эта реакция весьма ценна, так как многие сложные эфиры легкодоступны или сравнительно легко получаются даже в тех случаях, когда этого нельзя сказать о соответствующем ангидриде кислоты или ацилгалогениде. Согласно другой методике, сложные эфиры обрабатывают амидами диметилалюминия MeaAlNRR и получают хорошие выходы амидов в мягких условиях [728]. Реагент легко получить из триметилалюминия и аммиака или первичного или вторичного амина, а также из их солей. [c.158]

    Взаимодействие серебряных солей карбоновых кислот с бромом носит название реакции Хунсдиккера-, она представляет способ уменьшения длины углеродной цепи на единицу [361]. Реакция находит широкое применение и дает хорошие результаты в случае иеразветвленных алкильных групп с числом атомов углерода от 2 до 18, а также в случае многих разветвленных алкильных групп, давая первичные, вторичные и третичные алкилбромиды. В реакцию вступают функционально замещенные субстраты, за исключением соединений, содержащих заместители в а-положении к карбоксильной группе. Реакция распространяется также на ароматические соединения. Однако при лаличии в R кратных связей редко получаются хорошие результаты. Помимо брома для реакции иногда используют хлор и иод. [c.112]

    Из двух шкал первая более удобна, так как показатель р/Са оснований, численно равный pH, при котором половина основания находится в протонированной форме (поскольку катион наполовину диссоциирован), непосредственно можно сравнивать с р/С-шкалой кислот, в то время как рКъ — нельзя. Значения р Са для некоторых обычных оснований приведены в табл. 8.3. Следует обратить внимание на общее возрастание силы основания с увеличением степени замещения атомов водорода на алкильные группы в аммиаке и очень заметное уменьшение основности, когда заместителем является ароматическая группа (разд. 6.4). [c.155]

    Возможно, это обусловлено тем, что алкильные группы, занимающие большое пространство по соседству с карбоксильной группой, мешают образованию промежуточного ком]ялекса, получающегося в результате ионного присоединения. Еще более отчетливо это видно на примерах подавления каталитической этерификации в ряду производных бензойной кислоты, содержащих заместители в обоих орто-положе-ниях. Это явление было открыто и тщательно исследовано В. Мейеролт (1894), но отдельные случаи такого блокирующего действия были отмечены еще раньше Гофманом (1872), наблюдавшим, что некоторые производные диалкиланилинов, замещенные в орто-положениях к функциональной группе, очень стойко выдерживают действие галоидных алкилов. В. Мейер исследовал способность ароматических кислот образовывать эфиры, проводя этерификацию как при кипячении в течение 3—5 ч раствора кислоты в метаноле, содержавшем 3% хлористого водорода (метод Фишера), так и насыщением хлористым водородом раствора кислоты в метаноле на холоду, причем раствор затем оставляли стоять в течение ночи. Он установил, что в случае бензойной кис- [c.364]

    В зависимости от условий альдегиды хлорируются хлором с замещением водорода алкильной или альдегидной группы так, например, из уксусного альдегида в водном растворе образуется дихлоруксусный альдегид или хлоральгидрат, а в безводной среде—хлористый ацетил. Ароматические альдегиды при хлорировании также могут давать хлор-ангидриды ароматических кислот. [c.177]

    Как уже указывалось, алкильные группы боковых цепей ароматических соединений окисляются в карбоксильные группы из нескольких алкильных групп наиболее легко окисляется одна. Например, из ксилолов получаются толуиловые кислоты из мезитилена образуется мези-тиленовая кислота (3,5-диметилбензойная) , из цимола—смесь моно- и дикарбоновой кислоты и-бутилбензойная кислота при высокой температуре и под давлением окисляется во фталевую кислоту . Общего правила, указывающего последовательность окисления боковых цепей различной длины, не существует, однако разветвленные боковые цепи окисляются легче, чем прямые . В случае если в боковой цепи ароматического соединения содержится галоид, окисление азотной кислотой проводят в присутствии нитрата серебра, который связывает галоид . [c.659]

    Способность алкильной группы к окислению существенно повышается, если она стоит при двойной связи или у ароматического ядра (ср. разд. Г, 1.6). В этих сл>- аях реакция идет существенно однозначнее (селективнее), образуется меньшее число побочных продуктов. Конечными продуктами окисления являются карбоновые кислоты, однако, подбирая окислители и условия реакции, можно получить также альдегиды, а иногда и спирты. [c.9]

    Ацильная группа. Может быть использовано любое производное кислоты, но обычно применяют ангидриды или хлорангидриды. Для получения максимальных выходов, кетонов необходимо брать по крайней мере I экв хлористого алюминия при реакции с ацилгалогенидами или 2 экв при реакции с ангидридами. Аци-лирующий агент является объемным, слабо электрофильным и потому весьма селективным по своей ориентационной способности. Таким образом, предпочтительным направлением замещения является замещение в лй зй-положение, и поэтому циклы, деактивированные в этом положении, как, например, ацетофеноны, производные ароматических кислот, бензонитрилы, нитробензолы, хинолины, пиридины и подобные им соединения, ацилировать не удается. Галогенангидриды кислот склонны к выделению в присутствии хлористого алюминия окиси углерода, если остающаяся часть алкильной группы представляет собой стабильный катион. [c.122]

    Одно из ограничений данного метода состоит в том, что в случае более реакционноспособных кетенов в качестве продуктов реакции образуются димеры (пример б.о). Так, галогенангидриды алифатических кислот с одной алкильной группой у а-углеродного атома дают исключительно димеры [12, 13]. Интересно, однако, отметить, что никакой другой из описанных методов синтеза не приводит к образованию альдокетенов (К)АгСН=С=0. Димеры кетенов такого типа были, наконец, получены с помощью данного синтеза. Выходы колеблются в широких пределах, хотя в случае галогенангидридов высших алифатически кислот выход димеров может составлять 90% и выше. Ароматические кетены, содержащие две арильных группы, были получены в мономерной форме с выходами от 78% до почти количественного [8, 14, 15], Более подробное обсуждение димеризации кетенов, приводящей также к образованию бутандио-нов-1,3, см. в гл. 11 Кетоны , разд. Е.8. [c.382]

    Предварительное введение алкильных групп в ароматическое ядро способствует более легкому вступлению нитрогруп-ны. Так, например толуол нитруется азотной кислотой даже при комнатной температуре, причем основнкми продуктами реакции являются мононитротолуолу, а именно о- и п-нитро-толуолы (м-нитротолуол образуется лишь в небольшом количестве) [2—4]. Если нитрование производить дымящей азотной кйсЛотой при высоких темцературах, то основным продуктом реакции оказывается 2,4 -Динит отолуол [2]. [c.21]

    Как и при алкилировании фенола и других ароматических соединений, в качестве источника алкильных групп можно использовать спирты. Так, трет-бутиловый спирт в присутствии активированной глины взаимодействует с тиофеном, образуя тре/и-бутил- и ди-трет-бутилтиофепы. Сравнительно недавно в качестве катализатора для этой реакции удалось использовать хлорное олово [19]. Альдегиды, в частности формальдегид, взаимодействуют с тиофеном в положении 2,5, образуя полимеры эта реакция катализируется сильными минеральными кислотами. Некоторые альдегиды, например бензальдегид, в присутствии активированных глин могут конденсироваться с тиофеном, давая мономерный ди(2-тиенил)фенилметан полимеры при этом не образуются. [c.286]

    Окисление конденсированных ароматических соединений приводит к различньш продуктам в зависимости от используемого реагента и условий проведения реакции. Реагенты иа основе Сг (VI) окисляют в кислой среде нафталин и алкилиафгалршы до нафтохнионов, тогда как дихромат иатрия в водном растворе окисляет только алкильные группы. Окисление нафталина перманганатом калия в щелочной среде сопровождается разрушением одного ароматического кольца с образованием моноциклических дикарбоновых кислот  [c.1009]

    Особое значение в органическом синтезе занимает восстановление карбонильной группы в ароматических и жириоароматических кетонах с помощью амальгамированного цинка и соляной кислоты по Э.Клемменсену (1913). Этот метод позволяет получать алкилбеизолы с первичной алкильной группой, недоступные по реакции Фриделя-Крафтса (гл. 13). [c.1304]

    Выходы при применении этилового эфира а-бромпропионовой кислоты значительно ниже (с капронитрилом 30—36%) однако этиловые эфиры рекомендуется применять в случае более высокомолекулярных соединений, втор-глкиловые эфиры которых при перегонке разлагаются. При применении З-пеитилового эфира я-бромпропионовой кислоты выходы несколько выше (с капронитрилом 53—60%). Для этой цели пригодны как ароматические, так и алифатические нитрилы в случае бензонитрила получают выходы, сравнимые с выходами, наблюдаемыми при применении капронитрила. Замещение на алкильные группы в а- и 8-положениях (ср. примечание 4) алифатических нитрилов приводит к снижению выходов соответственно до 29 и 38%, замещение в у-положенни не оказывает влияния на выход. [c.22]


Смотреть страницы где упоминается термин Алкильные группы ароматических кислот: [c.407]    [c.125]    [c.382]    [c.622]    [c.651]    [c.95]    [c.35]    [c.95]    [c.346]    [c.382]    [c.386]    [c.222]    [c.203]    [c.206]    [c.1094]    [c.1399]    [c.213]    [c.9]   
Курс теоретических основ органической химии (1959) -- [ c.204 , c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Алкильные группы

Ароматические кислоты

Группа С как кислота,



© 2025 chem21.info Реклама на сайте