Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время для алканов

    Во время адсорбции применяли остаточное давление от 30 до 400 мм рт. ст., которое, как известно из французского патента [8], препятствует оставаться на поверхности цеолита неадсорбированным углеводородам, что способствует выделению н-алканов в чистом виде. [c.198]

    В соответствии со сказанным выше следует внести некоторые уточнения в употребление терминов парафин и церезин и указать в каком значении они будут применяться в дальнейшем изложении. Название церезин будет сохранено только за соответствующими техническими или товарными продуктами. Парафины как товарные и технические продукты будут называться технический парафин или товарный парафин . Термин же парафин будет применяться как обобщающее понятие для обозначения все твердых кристаллических углеводородов, входящих в состав различных нефтяных продуктов, независимо от их молекулярного веса и химического строения, а также от того, в какие исходные нефтяные продукты — в дистиллятные или остаточные, в технические парафины или церезины, либо в какие-нибудь еще продукты эти углеводороды входят. Название парафин может при необходимости поясняться тем или иным определением, например легкоплавкий , мелкокристаллический и др. Чтобы избежать смешивания понятия парафин в указанном выше смысле со старым термином парафин , обозначавшим в прежней литературе углеводороды гомологического ряда алканов и встречающимся в этом значении в некоторых литературных источниках, особенно зарубежных, и в настоящее время, то здесь будет использована установленная в органической химии терминология и углеводороды ряда алканов будут именоваться только алканами. Все же другие применявшиеся иногда в литературе для этих углеводородов названия (например парафиновые, метановые, жирного ряда и пр.) употребляться не будут. [c.80]


    В основе промышленных способов получения ароматических углеводородов и высокооктановых бензинов лежат реакции С5- и Се-дегидроциклизации алканов. Широко дискутируемым в настоящее время является вопрос о путях превращения алканов в бензол и его гомологи. В настоящее время он перерос академические рамки и важен как для химиков-технологов, так и для специалистов в области приготовления катализаторов. Важное значение приобрел в последние несколько лет вопрос об участии водорода в реакциях дегидроциклизации (или активирования им катализаторов дегидроциклизации).  [c.7]

    Как известно, предложены два механизма превращения алканов на металлических катализаторах механизм сдвига связи [24 и циклический [28]. Первый объясняет протекание изомеризации, второй — циклизации, протекание гидрогенолиза предсказывается обоими механизмами. Поскольку скорость изомеризации, отнесенная к единичной поверхности Р1, не зависит от размера кристаллита, полагают [27], что механизм сдвига связи не зависит от степени координации атома металла. В то же время наблюдаемая зависимость скорости гидрогенолиза от дисперсности катализатора свидетельствует о том, что гидрогенолиз скорее всего протекает по циклическому механиз- [c.93]

    Механизм отравления Pt-катализатора в ходе превращений 3-метилпентана исследован с помощью изотопных методов [117]. Показано, что в ходе протекания реакций Сз-дегидроциклизации и изомеризации происходит необратимое удерживание части молекул углеводорода на катализаторе, следствием чего является селективное отравление активной поверхности катализатора. Предполагают, что реакции Сз-дегидроциклизации и изомеризации алканов протекают на участках поверхности Pt-черни, представляющих собой определенную геометрическую комбинацию атомов металла. При этом из участия в реакциях дегидроциклизации — изомеризации выводится весь активный центр, если этому предшествует хотя бы частичное блокирование атомов в ансамбле. В то же время реакция дегидрирования может успешно протекать на оставшейся незанятой части ансамбля. В соответствии с этим на рис. 42 изображены возможная схема хемосорбции 3-метилпентана при его Сз-дегидроциклизации и схема хемосорбции метилциклопентана при гидрогенолизе на грани Pt (111) [118]. Таким образом становится очевидным определенное сходство в строении промежуточных комплексов реакций Сз-дегидроциклизации алканов, гидрогенолиза циклопентанов и изомеризации алканов [63, 82, 101, 118]. [c.224]

    С целью выяснения роли алкенов и водорода в процессе Сб-дегидроциклизации и изомеризации алканов исследованы [125] превращения 3-метилпентана, а также З-метилпентена-1, цис- и транс- изомеров 3-метилпен-тена-2 на платиновой черни при температуре 300—390 °С Е1 токе Нг и Не при ( азличном содержании Нг в газе-носителе. Выявлено четкое влияние концентрации Нг в газе-носителе на превращения (Сз-циклизация, скелетная изомеризация, образование метилциклопентана и бензола) 3-метилпентана и изомерных алкенов. Полагают [125], что скелетная изомеризация должна проходить через промежуточный поверхностный комплекс, общий для 3-метилпентана и 3-метилпентенов. Этому комплексу соответствует полугидрированное поверхностное состояние углеводорода, адсорбированного на двух центрах. При малом содержании Нг возникает сильное взаимодействие между углеводородом и металлом с образованием кратных связей углерод—платина, что приводит к образованию З-метилпентена-1 из 3-метилпентана и. к частичному покрытию поверхности катализатора коксом. При больших количествах Нг преобладает слабое взаимодействие, увеличивается время жизни промежуточного комплекса и протекают характерные реакции дегидрирование алкана с образованием 3-метилпентена, Сз-де- [c.229]


    Таким образом, в настоящее время наиболее распространенной и достаточно строго доказанной является точка зрения, что Се-дегидроциклизация н-алканов в присутствии оксидных катализаторов идет по схеме  [c.239]

    На рис. VII, 7 показано соотношение между теплотами образования (дя,, 29з) н-алканов и н-алкенов в газообразном состоянии по данным В то время как зависимость ДЯf, 293 от числа атомов углерода (п) становится линейной только начиная с п = 6, зависимость тех же величин для двух гомологических рядов в форме, представленной на рис. VII, 7, вследствие примерно одинаковых отклонений от линейной зависимости будет иметь линейный характер и для низших гомологов (обычно все же кроме первого и иногда второго члена). Подобные же соотношения характерны и для теплот сгорания. [c.300]

    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]

    Данные по групповому составу нефтей показывают, что основ-ную часть углеводородов, выкипающих в интервале 200—430 С. составляют насыщенные углеводороды (алканы - - цикланы), на долю которых приходится 60—80% всей фракции. Соотношение же между концентрациями алканов и цикланов весьма различно. Так, например, концентрация алканов изменялась в пределах от 6 до 60%, поэтому следует предположить, что эта величина является определяющим фактором в разнообразии углеводородного состава нефтей. В то же время среднее содержание алканов, цикланов и аренов приблизительно равное, что хорошо согласуется с работами Французского института нефти, в которых, также в среднем (для 517 изученных нефтей), было найдено для фракций с т. кип. >210° С равное соотношение углеводородов этих трех типов [5]. Вместе с тем отдельно взятые нефти различаются большим разнообразием группового состава. В табл. 2 приведены пределы изменения и наиболее часто встречающиеся значения группового состава для нефтей различных химических типов, рассмотренных в табл. 1. [c.17]

    Кроме относительного распределения изомеров, известный интерес представляет также оценка относительного распределения алканов в различных гомологических рядах, т. е. оценка содержания углеводородов того или иного типа строения в зависимости от их молекулярной массы. Оба эти способа и будут в дальнейшем использоваться при оценке закономерностей количественного содержания алканов различного строения в нефтях. В настоящее время имеются надежные даппые о количественном содержании в нефтях различных алканов Сз—С4,,, Эти данные получены методом газовой хроматографии п отличаются достаточно большой точностью. [c.42]

    Определение компонентного состава легких фракций нефти не представляет сейчас особых затруднений. В настоящее время имеются данные по распределению изомерных алканов в десятках, а может [c.42]

    В настоящее время еще нельзя достоверно назвать марки топлив для сверхзвуковых пассажирских самолетов. Но можно высказать предположение о том, какими они будут. Вероятнее всего это будут керосины как продукты прямой перегонки, так и гидрокрекинга, подвергнутые тщательной гидроочнстке. Из топлива будут максимально удалены гетероорганические соединения микрозагрязнения и вода. Углеводородная часть будет состоять главным образом из алканов и нафтенов. Температурные пределы выкипания будут определяться условиями применения на самолете и экономическими соображениями. Можно предполагать, что фракционный состав топлива будет находиться в пределах 150—300° С. [c.115]

    Для того, чтобы убедиться, что прекращение выделения н-алканов вызвано отсутствием их в исследуемом образце, а не падением адсорбционной способности синтетического цеолита, последняя проверялась па свежем образце бензина, и она оказалась почти прежней. Опыты по выделению н-алканов одним н тем же образцом синтетического цеолита СаА проводились в продолжспии 200 часов. За это время работы его адсорбционная способность оставалась постоянной. [c.194]

    Интересные данные о различии в составе ОВ современных осадков дна Мирового океана приведены в работе Э.М. Галимова, Л.А. Кодиной [3]. Так, в Марокканской впадине (Атлантический океан) во всех образцах битумоидов современных осадков наблюдалось умеренное преобладание нечетных УВ над четными в интервале i 5 -С31 (нч/ч 2). Длн н-алканов была характерна двухгорбан хроматограмма. Во всех исследованных образцах был обнаружен перилен. Для ОВ осадков Калифорнийского залива (Тихий океан), которое, по мнению авторов, имело как морское (водорослевый планктон), так и наземное (речной сток) происхождение, характерна высокая доля алканов в области С]б — С33 (морские водооосли> в сочетании с высокой распространенностью н-алканов в области С25— Сз1 (высшие растения) отмечались невысокое нч/ч, близкое к единице, наличие никелевых порфиринов. Изучение современных осадков [17] показало, что липиды морских организмов, характеризуются большей длиной цепи, чем липиды наземных растений и животных. Повышенную длину и более высокую насыщенность углеводородной цепи имеют липидные компоненты живого вещества в жарких климатических зонах по сравнению с липидами организмов, обитающих в умеренных и прохладных зонах. Весьма вероятны и более тонкие различия в составе на первый взгляд однотипного (например, сапропелевого) ОВ материнских пород, образовавшегося в разное время или в разных бассейнах. [c.191]


    Полагают, что строение этого соединения аналогично известным в настоящее время я-аллильным комплексам солей палладия [27]. В связи с этим имеет безусловный интерес отмеченный в работе [3] факт, что миграция двойной связи при гидрировании замещенных циклоалкенов происходит лишь в присутствии водорода. Это перекликается с аналогичной зависимостью в случае ал-кенов с открытой цепью [28—30], а также с закономерностями, обнаруженными нами при изучении реакций конфигурационной изомеризации диалкилциклоалканов [31], Сз-дегидроциклизации алканов [32] и некоторых превращений алкенил- и алкилиденциклобутанов [33]. Об этом речь пойдет в следующих разделах. [c.30]

    Развивая высказанные выше положения, А. Л. Либерман пришел к выводу [154], что взаимообратимые реакции — гидрогенолиз циклопентанов и Са-дегидроцик-лизация алканов,— идущие в сходных условиях в присутствии одного и того же катализатора (Pt/ ), проходят через общее циклическое переходное состояние (рис. 26), в состав которого входят атомы углерода, водорода и катализатора, непосредственно участвующие в перераспределении связей. В переходное состояние входят также два атома водорода, расположенные по обе стороны разрывающейся во время гидрогенолиза (или образующейся при Сз-дегидроциклизации) углерод-углерод-ной связи. Эти атомы водорода адсорбируются, как и атомы углерода кольца, в междоузлиях решетки платины (см. рис. 26). В отличие от рис. 25, на рис. 26 пока- [c.126]

    Металлы VHI группы периодической системы элементов различным образом ведут себя в качестве катализаторов гидрогенолиза циклопентанов. Платиновые катализаторы являются весьма специфическими в присутствии этого металла водород, присоединяясь к двум соседним атомам углерода, расщепляет С—С-связь кольца практически без каких бы то ни было побочных реакций. Соверщенно иначе, и в то же время по-разному, ведут себя в этой реакции Pd- и Ni-катализаторы. Б. А. Казанским с сотр. показано, что Pd/ не активен в реакциях гидрогенолиза циклопентана и его гомологов [216—218], в то время как над Ni/A Oa [142, 218, 219] происходит глубокий распад циклопентанов с преимущественным образованием метана. Исследован [138, 220] гидрогенолиз пятичленного цикла над Pt- и Ni-ка-тализаторами при гидрогенолизе н-бутилциклопентана над Ni/AbOa обнаружено большое количество нпзкомо-лекулярных углеводородов [138]. Аналогично при гидрогенолизе метилциклопентана над тем же катализатором при 240°С образовывалось до 40% газообразных алканов [142]. Подробно изучен [218] гидрогенолиз самого циклопентана над Ni-катализатором. Прн 250 около 30% циклопентана превращалось в метан, а жидкий катализат почти целиком состоял из исходного циклопентана. Таким образом, Ni-катализаторы оказались далеко не столь селективными при гидрогенолизе циклопентанового кольца, как Pt/ . Такое же жесткое действие на циклопентан и метилциклопентан оказывают и [c.160]

    В настоящее время хорощо известны два типа реакций каталитической дегидроциклизации углеводородов, при которых открытая цепь углеродных атомов замыкается в цикл с отщеплением водорода. Эта. открытая цепь может принадлежать либо углеводороду ряда алканов, либо являться достаточно длинной боковой цепью циклана, например алкилбензола или алкилциклопен-тана. Первым типом рассматриваемой дегидроциклизации является ароматизация, известная также как Сб-дегидроциклизации [1] по числу углеродных атомов, входящих в образующийся цикл. Вторым типом является С5-дегидроциклизация, приводящая к углеводородам с пятичленным циклом, например к циклопентанам (из алканов) или дигидроинденам (из соответствующих алкилбензолов). Различие направлений реакции основывается в ряде случаев на разных типах применяющихся катализаторов и условиях протекания реакций, наконец, на неодинаковых механизмах обсуждаемых превращений. [c.189]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    Следует, однако, отметить, что высказанные выше соображения и выводы относительно механизма ароматизации алканов на металлических и металлоксидных катализаторах нельзя считать окончательными. Результаты, приведенные в [143, 144], дают основание считать, что механизм Сб-дегидроциклизации алканов на различных Pt-катализаторах в большой мере зависит от условий проведения эксперимента и в значительной степени— от строения исходного углеводорода. Анализируя имеющиеся данные, можно сделать вывод, что ароматизация н-алканов проходит преимущественно через промежуточные стадии дегидрирования и Сб-дегидроциклизации. В то же время алканы, имеющие четвертичный атом углерода (например, 2,2- или 3,3-диметилгексаны), не могут в условиях реакции столь же легко дегидрироваться и их ароматизация хотя бы частично проходит, по-видимому, по другому механизму — через стадию образования геж-диметилциклогексана. [c.240]

    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]

    А. Свойства синтетических углеводородов в качестве основных данных. В настоящее время имеется сравнительно немного данных по тяжелым индивидуальным углеводородам. Хорошо известны свойства /i-алканов, некоторых разветвленных алканов и однозамещенных /i-алкильных производных циклопентана, циклогексана, бензола и нафталина. Хотя Американским нефтяным институтом по Проекту 42 (директор Р. В. Шисслер) изучено большое число углеводородов высокого молекулярного веса, но ясно, что до сих пер удалось изучить лишь небольшую часть тех углеводородов, присутствие которых B03M0JKH0. Это и неудивительно, так как синтез таких высокомолекулярных углеводородов, как циклические молекулы с различными заместителями или смешанные нафтено-ароматические соедине- [c.368]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]

    Работы по химической природе парафинов различного происхождения восходят к временам Гей-Люссака. В настояш,ее время установлено, что различные парафины состоят из твердых при обычных температурах высокомолекулярных линейных или разветвленных алканов [6]. Они обычно встречаются в природе, загрязненные примесями, влияние которых на физические свойства и кристалличность парафинов остается невыясненным [7, 8]. Самая ранняя достоверная, хотя и не совсем точная работа по американским парафинам проведена Мэбери (МаЬегу [9, 10]). [c.512]

    В главе XVIII показано, что теплота адсорбции зависит от геометрической и электронной структуры молекулы адсорбата и адсорбента. Следовательно, изменяя природу адсорбента (или неподвижной жидкости в газо-жидкостной хроматографии), мояс-но изменить времена удерживания и даже последовательность выхода компонентов. Для -алканов теплота адсорбции является линейной функцией числа атомов углерода (п) в молекуле (см. стр. 492, 493), поэтому при одной и той же температуре колонки [c.564]

    Для реакций в конденсированной фазе наблюдается ряд специфических процессов, изменяющих течение процесса по сравнению с протеканием его в газовой фазе. Большое увеличение плотности при переходе от газовой фазы к жидкой увеличивает удельную ионизацию, но одновременно облегчает возможность дезактивации и сокращает длительность пребывания в возбужденном состоянии. Процессы рекомбинации ион9в и радикалов облегчаются близостью молекул жидкости, играющих роль третьей частицы. Кроме того, возможна непосредственная рекомбинация тех частей молекулы, которые образуются вследствие прямой диссоциации. Это явление наблюдается и в газах с большим молекулярным весом. Вероятность рекомбинации радикалов, возбужденных молекул и ионов возрастает с увеличением молекулярного веса соединений. Чем больше молекула газа, тем больше у нее степеней свободы и тем большее время молекула может находиться в состоянии с большим запасом энергии, благодаря распределению этой энергии по степеням свободы. Кроме того, чем больше молекула, тем меньше будет различие между конфигурацией иона и конфигурацией незаряженной молекулы и тем более вероятен будет процесс разряда иона без последующего распада. Ниже приведены данные Шепфле и Феллоуса о количестве выделяющегося газа при облучении различных алканов нормального строения электро- [c.264]

    Битум, являясь тя>Келой частью нефти, представляет собой чрезвычайно сложную смесь углеводородов и гетероорганичес-ких соединений самого разнообразного строения. Поэтому проблема идентификации всех составляющих битум соединений практически не разрешена. В то же время для решения многих задач оказывается достаточным определить содержание отдельных классов или групп веществ. Издавна общепринятым методом определения соединений различных классов и групп является разделение веществ по их избирательному отношению к растворителям и адсорбентам. Для разделения битумов известно большое число вариантов анализа, но в основе этих методов лежит выделение нерастворимой в н-алканах части и разделение растворимой части на силикагеле. По этому широко распространенному методу можно принять, что битум состоит из ас-фальтенов — соединений, нерастворимых в алканах С5—С7, смол — соединений, растворимых в алканах и десорбируемых с поверхности силикагеля бензолом или его смесью со спиртом, но не десорбируемых алканами, и масел — соединений, растворимых в алканах и десорбируемых указанными элюентами. [c.8]

    Общая картина окисления ароматических углеводородов очень близка к тому, что было описано для олефинов атака боковой цепи в бензильном положении с образованием альдегида или кислоты происходит быстрее и легче, чем атака ядра, при которой образуются хиноидные соединения и продукты их разложения. Селективному окислению благоприятствуют те же слабые катализаторы (УгОа, М0О3, ШОз), в то время как сильные катализаторы (N10, МпОг) и металлы (Р1, N1, Аи) приводят к полному разложению до СО2 и СО. Каталитическое сгорание ароматических углеводородов, по-видимому, протекает легче, чем сгорание алканов, но медленнее, чем сгорание олефинов [5]. [c.173]

    Согласно правилам ШРАС префикс изо , обозначаюший терминальную группу (СНз)2СН—, применяется только для родоначальных алканов С4—Се, префикс грет- — только для алкилов С4 и s, префикс втор- — только для етор-бутила, но не для всех аналогичных углеводородных остатков. Префикс нео применим только для неопентана С (СНз) (и его радикала). Следует напомнить, что трет- и втор- пишутся курсивом, через дефис, в то время как изо и нео пишутся слитно и обычным (прямым) шрифтом. В тех случаях, когда это требуется для указателей, буква н- , означающая нормальный пишется курсивом и отделяется дефисом (однако применять ее следует только в случаях, когда это необходимо подчеркнуть). В указателях СА для названия алканов такие префиксы не применяются например, неопентан С(СНз)4 там называют так Пропан, [c.97]

    Трициклические углеводороды с двумя бензольными кольцами и одним пятичленным насыщенным кольцом (аценафтен) несколько слабее адсорбируются на кристаллах карбамида и его комплексах с н-алканами. Это можно объяснить тем, что в насыщенном кольце на один углеродный атом меньше, чем у тетралина, а электронное облако в меньшей степени смещено от оси симметрии молекулы. Самая слабая интенсивность спектра поглощения ЭПР обнаружена у трициклических углеводородов (антрацен), причем поверхность кристалла насыщается пара-магннтными центрами антрацена при его концентрации в растворе порядка 0,8-1.0% (масс.),в то время как в [c.50]

    В настоящее время внедрены высокоэффективные адсорбционные процессы выделения н-алканов на стационарном слое цеолита. Непрерывность процесса достигается применением двух или более адсорбционных аппаратов, в которых поочередно протекают стадии адсорбции и десорбции. Процессы с движущимся цеолитом находятся в стадии разработки. При использовании цеолитов с малыми размерами внутрикристаллических полостей облегчается адсорбция, но возникают затруднения при десорбции н-алкан(ш из пор цеолитов. Поэтому показатели процесса денормализации на цеолитах, и в частности его эко- [c.177]

    Весьма важным является тот факт, что распределение нефтей различных химических типов имеет строгие температурные границы, что явно свидетельствует о важном значении температурных условий в геохимическом превращении нефтей (см. далее главу 6). Нефти типов А , и Б располагаются обычно в области средних температур (40—70° С), в то время как для подавляющей массы нефтей типа А характерны пластовые температуры выше 00° С. Имеются, конечно, и отклонения от этих общих закономерностей изменения тппов нефтей с изменением глубины, однако количество таких исключений невелико и ограничивается отдельными районами. Так, найдены единичные нефти с низким содержанием алканов на глубинах свыше 1500 м и, наоборот, нефти с высоким содержанием алканов, залегающие сравнительно неглубоко. Например, нефть месторождения Курсай в Прикаснии, находящаяся на глубине 4410 м, имеет химический тип Б в Сивинском месторождении (Вол-го-Урал) на глубине 2806 м найдена нефть типа Б . На Тиховском месторождении на глубинах 800 м — нефть типа А , а на месторождении Дуванный-море (Южный Каспий) на глубине 3900 м — нефть типа А . Как уже отмечалось, влияние геологического возраста вмещающих пород на углеводородный состав нефти проявляется менее отчетливо, что, впрочем, уже неоднократно отмечалось в литературе [5, 16, 171. [c.26]

    Алканы принадлежат к числу наиболее хорошо изученных углеводородов любой нефти. Отличительной чертой нефтяных углеводородов этого класса являются их достаточно высокие концентрации, особенно концентрации некоторых ключевых структур. К таким структурам относятся, например, нормальные алканы, моноыетил-замещенные алканы с различным положе ием замещающего радикала, а также алканы изопреноидного типа строения, или изопренаны [7]. Самое замечательное это то, что относительное содержание таких углеводородов мало зависит от их молекулярной массы и мы вправе говорить о различных гомологических рядах алканов в нефтях. Гомологичность эта распространяется на достаточно большие пределы выкипания нефтяных углеводородов. В то же время, несмотря на большие успехи в области изучения алканов на молекулярном уровне, следует иметь в виду, что, как показали масс-спектрометри-ческие данные, некоторая часть разветвленных алканов элюируется в виде горба . Состав и строение этих углеводородов пока еще не исследованы. Можно лишь предположить, что, как уже указывалось, они представлены структурами весьма разветвленными (имеющими [c.41]

    В настоящее время четко определились два главных источника образования изопреноидных алканов регулярного и нерегулярного строения. Понятно, что деструкция цепи молекул регулярного строения, таких, как, например, фитол ( ao), салоносан (С45), имеющих разветвления у каждого пятого атома цепи, может привести лишь к образованию регулярных изопреноидных алканов (схема 3). Здесь и далее рассматривается возможность разрыва лишь одной связи С—С [c.60]

    Очень интересное и необычное распределение изопреноидных алканов было найдено в нефти Анастасиевско-Троицкого месторождения (IV горизонт), добываемой из отложений миоцена. При общем содержании изонреноидов, равном 2,5% в расчете на нефть, 24,6% их суммарного содержания падало на долю 2,6,10-триметил-ундекана, 28,5% — на долю 2,6,10-триметилдодекана и 40,5 о — на долю 2,6,10-триметилтридекана. В то же время концентрация пристана и фитана была невысокой и составила всего лишь 5,6% в расчете на сумму изопреноидных алканов. [c.63]


Смотреть страницы где упоминается термин Время для алканов: [c.112]    [c.257]    [c.514]    [c.183]    [c.242]    [c.151]    [c.197]    [c.264]    [c.313]    [c.350]    [c.30]    [c.61]    [c.66]    [c.69]    [c.71]   
Руководство по газовой хроматографии Часть 2 (1988) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы



© 2025 chem21.info Реклама на сайте