Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основность Льюису

    Способы транскрипции связи. Если отвлечься пока от ван-дер-ваальсовских сил и металлической связи, которые сами по себе наблюдаются лишь в предельных случаях, то мы будем иметь два простых пути иллюстрации возможностей связи — от гетерополярных до гомеополярных, определяемых валентностями элементов. (При этом мы пока не будем касаться предельного случая совершенно одинаковых частиц.) Первый путь предложен Косселем и ведет к предельному случаю ионной связи, второй развит в основном Льюисом и Лэнгмюром и приводит к концепции ковалентной (до гомеополярной) связи. [c.176]


    Известно, что сульфоксиды способны ассоциироваться при помощи водородных связей с такими слабыми кислотами, как фенолы [169]. Экспериментально установлено, что теплота ассоциации диметилсульфоксида с фенолом в два раза больше, чем при ассоциации фенола с ацетоном и на 7 ккал/моль больше, чем при его ассоциации с диметилформамидом [170]. Получен комплекс диметилсульфоксида с иодом состава 1 I [171, 172]. И в этой реакции основность диметилсульфоксида по Льюису несколько выше, чем основность ацетона и диметилформамида. По основности Льюиса некоторые окисленные соединения располагаются в следующий ряд [173, а]  [c.259]

    По электронной теории Льюиса, кислотой и основанием являются вещества, являющиеся соответственно акцептором и до — нором электронных пар. Льюисовские кислоты (Ь—кислоты) и основания могут не содержать протонов и, следовательно, являются апротонными. Кислотно — основное взаимодействие заключается в образовании донорно-акцепторной связи типа [c.90]

    Большинство катионов являются Ь —кислотами, а анионов — льюисовскими основаниями. Соли — типичные кислотно —основные комплексы. Как видно, электронная теория Льюиса рассматривает вопрос о кислотах и основаниях более широко, чем другие теории. [c.90]

    Это основное расчетное уравнение, действительное и для паровой и для жидкой фазы. Если допустить выполнение приближенного правила Амага, согласно которому не происходит изменения объема г-того компонента при изобарно-изотермическом смешении, то V — = О, и фугитивность компонента смеси можно приближенно представить в виде известного правила Льюиса [c.26]

    Много места в книге отведено кислотно-основным равновесиям и теории кислот и оснований. Однако в соответствии с многоступенчатым характером изложения весь этот материал подан не как обычно-одной и не всегда легко усвояемой порцией, а увязан с другими, подчас далеко отстоящими в тексте темами. Например, вводя представления об электролитической диссоциации растворов, авторы ограничиваются определениями кислот и оснований по Аррениусу. Далее в связи с обсуждением кислотноосновных равновесий в растворах приводятся более общие определения Бренстеда и Лаури. И только после ознакомления с льюисовыми структурами молекул даются наиболее общие определения кислот и оснований по Льюису. Сложные проблемы расчета кислотно-основных равновесий вообще вынесены в отдельное приложение. [c.7]

    Углерод. Два новых электрона в молекуле углерода, С2,. окончательно заполняют связывающие молекулярные орбитали и л . Таким образом, в молекуле С2 эффективное число связывающих электронов равно четырем, и, согласно терминологии Льюиса, в ней образуются две ковалентные связи. В основном электронном состоянии эта молекула не должна содержать неспаренных спинов. В согласии с предсказаниями, энергия связи 2 приблизительно вдвое больше, чем для В2 (603 кДж моль против 274 кДж-моль ), а длина связи меньше (1,24 А против 1,59 А). У молекулы С2 не обнаруживается парамагнитных свойств. [c.526]


    Результаты наблюдений Льюиса [64] за появлением спонтанной турбулентности, проведенные капельным методом, представлены в табл. 1-11. Шервуд [931 делал визуальные наблюдения над почти 40 разными системами из несмешивающихся жидкостей. Опыты производились в трубках, в которые вводились водная и органическая фазы с растворенными тремя веществами, реагирующими между собой. Почти для всех систем наблюдалось три основных явления I) волны и колебания пограничной поверхности 2) прозрачные струи и мелкие капли, покидающие поверхность контакта 3) непрозрачные струи спонтанно образующейся эмульсии. В некоторых случаях капельки жидкости отделяются от поверхности контакта и двигаются вниз в водной фазе, а затем возвращаются, всплывая вверх. Эти явления констатировал Шервуд в системах, в которых растворение происходит чисто физическим путем, однако они происходят чаще в случае экзотермических реакций. Активность зависит от концентрации и чаще всего появляется при переходе из органической фазы в водную, реже при противоположном направлении, что согласуется с наблюдениями других авторов. На рис. 1-31 дана картина слоев у поверхности контакта для изобу- [c.60]

    Электронная теория. Согласно электронной теории, разработанной Льюисом, основание — это соединение, поставляющее электронные пары для образования химической связи,— донор электронных пар кислота — вещество, принимающее электронные пары,— акцептор электронных пар. Кислотно-основное взаимодействие, согласно электронной теории, заключается в образовании донорно-акцепторной связи. В результате взаимодействия кислоты с основанием образуются солеподобные вещества, называемые ад-дуктами. Часто (но не всегда) их удается выделить как индивидуальные соединения. [c.283]

    Недостатком электронной теории является то, что установление природы химической связи и выяснение вопроса о наличии или отсутствии донорно-акцепторного взаимодействия часто представляет очень сложную задачу. Поэтому для многих реакций пока невозможно сказать, следует ли их причислять к кислотно-основным в понимании теории Льюиса или нет. [c.252]

    Льюис и Уитмен использовали основное положение Нернста при анализе процессов, протекающих на границе раздела двух фаз. Основные положения двухпленочной теории Льюиса и Уитмена  [c.236]

    При технологических расчетах систем газ—жидкость широко используют предложенную Льюисом и Уитменом модель, согласно которой основное сопротивление передаче массы и химическому взаимодействию сосредоточено в газовой и жидкостной пленках, образующихся по обе стороны раздела фаз. Например, скорость поглощения компонента из газовой фазы жидкостью можно выразить соотношением  [c.371]

    Для установления природы и числа кислотных центров на поверхности твердых кислот использовались различные методы. Авторы стремились выявить различия между кислотными центрами Бренстеда и Льюиса, а также найти их общее число и распределение. К сожалению, большинство описанных методов применимо лишь при невысоких температурах, далеких от тех, которые используются в каталитическом крекинге, вследствие чего они только в общих чертах отражают основные тенденции, но не дают точных результатов. [c.108]

    Неослабевающий интерес исследователей к изучению структуры и состава комплексов ароматических соединений с катализаторами Фриделя — Крафтса объясняется тем, что выяснение этого вопроса в значительной степени облегчает познание закономерностей электрофильного замещения. Еще в ранних работах на основании изменения в ультрафиолетовых спектрах поглощения было установлено, что ароматические углеводороды при взаимодействии с СЬ, Вгг и Ь образуют комплексы, проявляя при этом основные свойства. Кроме того, было показано, что при растворении НС1 в ароматических углеводородах получаются комплексы состава 1 1, не вызывающие заметных изменений в спектрах поглощения, а в экспериментах с D I обмена с водородными атомами ароматических ядер не происходило. Ароматические углеводороды при взаимодействии с сильными кислотами Льюиса проявляют себя как основания, образуя двойные (ArR—МХ ) и тройные (ArR— MX —НХ) комплексы. [c.79]

    Кислотно-основные свойства катализаторов. Сведения о кислотности часто необходимы при оценке свойств катализаторов. Активность и селективность катализаторов в реакциях крекинга органических соединений, изомеризации, полимеризации, дегидратации и других находятся в непосредственной связи с их кислотными свойствами. В настоящее время общепризнанным является принцип родственности механизмов гомогенного и гетерогенного кислотного катализа. Поэтому, по аналогии с гомогенным катализом, в гетерогенном катализе используются такие понятия, как кислота Бренстеда , кислота Льюиса и, соответственно, бренстедовские и льюисовские кислотные центры. Однако вопросы структуры кислотных точек на поверхности катализаторов, возможность перехода одного типа кислотных центров в другой, а также их влияние на поведение катализатора в процессе все еще остаются дискуссионными. [c.381]


    Таким образом, показано, что более общий подход на основе основных уравнений тепло- и массопереноса приводит к такому же выражению для температуры влажного термометра, как и полученное из уравнений баланса энергии и массы, при условии, что справедлив закон Льюиса и мольные концентрации значительно меньше единицы. [c.139]

    Катализаторами процесса зачастую служат кислоты Льюиса, облегчающие образование промежуточных комплексов и ускоряющие прохождение основной реакции  [c.19]

    Теория протолитического равновесия (Бренстеда) не может объяснить кислотно-основные свойства апротонных веществ, в состав которых водород не входит, как, например, галогениды бора и алюми-1ШЯ, хлорид олова (IV) и др. Кислотно-основные свойства апротонных веществ рассматриваются на основе электронной теории кислот и оснований (Льюис). Отличительным признаком кислоты и основания по электронной теории является их взаимная нейтрализация, осуществляемая образованием ковалентной связи между атомом в молекуле основания, обладающим свободной парой электронов, и атомом в молекуле кислоты, в электронную оболочку которого эта пара электронов включается. [c.421]

    Дифференциальный метод Льюиса рекомендуется в основном для насадочных колонн, так как в его основе лежит допущение о непрерывном изменении концентраций фаз. Число теоретических тарелок определяется следующими уравнениями для укрепляющей части колонны [c.357]

    На рис. 7-3 показана превосходная корреляция между донорными числами и параметром основности Льюиса В, который учитывает вызываемый растворителем сдвиг частоты колебаний связи О—D в мономерном дейте-рометаноле [14, 69]  [c.167]

    Основную массу отходов производства резинотехнических изделий вывозят на свалки или сжигают. Это приводит к загрязнению атмосферы, подпочвенных вод, исключению из севооборота сотен гектаров земли. Отходы производства резинотехнических изделий перерабатывают с помощью различных методов деструкции нолнмеров термической, термокаталитической в присутствии соединений марганца, ванадия, меди, хрома, молибдена или вольфрама с применением химических агентов (кислот Льюиса, нитрозосоединений, окислительно-восстановительных систем и др.) биохимической, механохимической, фо-тоокислнтелыгай, ультразвуковой и др. [c.142]

    Льюис [73], ссылаясь на такие основания Бренстеда, утверждает, что должны существовать обобщенные кислоты, а именно такие соединения, которые могут служить акцепторами пары электронов. Это дает возможность говорить о кислотно-основных реакциях в непротонных системах. [c.499]

    Метод Льюиса-Матесона в основном применяется при расч( те колонн, имеющих один сырьевой поток. На основе этого метода разраоотано несколько модификаций [106,8,103,107], основной особенностью которых является корректировка состава дистиллята и остатка от итерации к итерации. [c.11]

    Основное положение теории Льюиса заключается в том, что кислотно-основные процессы не могут сводиться только к передаче протона. По Льюису, кислота — это вещество, сгособное использовать свободную пару электронов посторонней молекулы для образования устойчивой электронной оболочки, а основани е— это вещество, обладающее свободной парой электронов, которая может быть использована для образования устойчивой электронной конфигурации с посторонним атомом. Таким образом, всякое равновесие, удовлетворяющее этому признаку, следует рассматривать как кислотно-основное. Например, при взаимо-де11ствии 50з и НзО вода является основанием, так как имеет свободную пару электронов, а серный ангидрид, который может взаимодействовать с водой, используя эту пару электронов, является кислотой. [c.471]

    Разрабатывая теорию химического строения, Бутлеров не ста зил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосыл кой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты элеК тронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. американский физико-химик Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. немецкий ученый В. Коссель предположил, что при взаимодействии двух атомов один нз них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй — в отрицательно заряженный ион взаиМ ное электростатическое притяжеиие образовавшихся ионов и приводит к образованию устойчивого соединения. Дальнейшее развитие идей Косселя привело к созданию современных представлений [c.119]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Нечетный электрон в молекуле СН так и остается неспаренным. Наличие у атома или молекулы одного или нескольких неспаренных электронов обусловливает физическое свойство, называемое парамагнетиз.чо.ч мы будем обсуждать его подробнее в следующей главе. Эксперимент показывает, что молекула СН парамагнитна, и это согласуется с наличием в ней неспаренного электрона, предсказываемым льюисовой структурой молекулы. Однако не все парамагнитные молекулы легко описать при помощи льюисовых структур. Молекулой с кратными связями и особенно труднообъяснимым (в рамках теории Льюиса) парамагнетизмом является О2, которая имеет в основном состоянии два неспаренных электрона и, следовательно, должна быть парамагнитной. Для объяснения таких магнитных свойств молекулярному кислороду пришлось бы приписать необычные структуры  [c.470]

    В настоящее время используются и разрабатываются несколько обобщенных теорий кислот и оснований. Наиболее широко применяются три теории — гео/ я сольвосистем, начало которой поло жили работы американских химиков Кэди и Франклина,опубликованные в 1896—1905 г., протонная теория кислот и оснований, выдвинутая в 1923 г. независимо датским ученым Бренстедом и английским ученд ш Лоури, электронная теория, предложенная в 1923 г. американским физико-химиком Льюисом. Хотя эти теории исходят из разных предпосылок, они не противоречат друг другу, и каждая из этих теорий анализирует те особенности кислотно-основного взаимодействия, которых другая теория не касается.. Во-, прос о том, какую из указанных теорий использовать, следует решать, исходя из конкретных условий поставленной научной или технической задачи. [c.271]

    Широко используются многие продукты кислотно-основных реакций. Так, например, фторид бора, являющийся мощным катализатором ряда органических реакций, неудобно хранить и транспортировать, так как это газообразное соединение. Поэтому ВРз часто применяют в виде эфирата РзВ 0(С2Н5)а как мы знаем, образование данного вещества представляет типичный случай кислотно-основного взаимодействия по Льюису (см. стр. 252). [c.255]

    Существующие теории массопередачи ставят своей целью дать выражения для коэффициентов массопередачи или представить их как функции частных коэффициентов массоотдачи по каждой из фаз. Сюда относятся двухпленочная теория Льюиса и Уитмена, в соответствии с которой предполагается, что на границе раздела фаз со стороны, каждой фазы образуются ламинарные пленки, в пределах которых сосредоточено основное сопротивление массопе-ренЬсу, а коэффициент массоотдачи пропорционален коэффициенту диффузии в первой степени. [c.343]

    Большое значение оказывают количество и активность катализатора, При небольших количествах катализатора и мягких условиях образуются в значительной,степени орто- и пара-то-меры. С увеличением количества катализатора возрастает содержание мета-томера. Кроме того, образование лега-изомера при мягких условиях наблюдается при высокой реакционной способности и низкой избирательности карбокатионов. В присутствии больших количеств катализатора ароматические углеводороды почти количественно превращаются в 1,3-диалкил- и 1,3,5-триалкилбензолы, что объясняется их большой основностью и соответственно стабильностью соответствующих сг-комплексов. Многочисленными примерами показано, что чем выше энергия у реагента (больше дефицит электронов), тем меньше его селективность как при атаке различных по основности ароматических углеводородов, так и отдельных положений монозамещенных ароматических соединений. Например, молекулярный бром (слабая кислота Льюиса) реагирует с толуолом в 600 раз быстрее, чем с бензолом, тогда как бром-катион из гипобромида (сильная кислота Льюиса) лишь в 36 раз. Подобный же эффект наблюдается для этих реагентов и при атаке различных положений толуола. В табл. 2.4 приведены факторы парциальных скоростей нитрования и галогенированЕя толуола и трет-бутилбензола. [c.42]

    Реакция внутримолекулярного циклоалкилирования привлекает внимание исследователей как метод синтеза индановых и нафталиновых углеводородов, потребность в которых для промышленных целей заметно возрастает. На преимущественное образование бензоцикленовых углеводородов с пяти-, шести- или семичленными циклами основное влияние оказывает длина и строение углеродной цепочки алкильного заместителя, а также природа активного центра — наличие двойной связи, галогенов или гидроксильных групп. Заметную роль в направленности атаки ароматического ядра и структуры образующегося кольца играют стерические эффекты и эффекты взаимодействия арома -тической группы с катионным центром. Катализаторами такой реакции могут быть как протонные кислоты, так и кислоты Льюиса. [c.123]

    Для многих реакций важны кислотные и основные центры на поверхности катализаторов. Ими могут быть центры типа Бренстеда или Льюиса. Нередко для диссоциативной хемосорбции необходима пара расположенных рядом кислотного и основного центров. Например, диссоциативная адсорбция метанола на поверхности оксидов происходит с образованием метоксиль-ных и гидроксильных групп на бренстедовском основном (В) и льюисовском кислотном (L) центрах  [c.12]

    Основные представления о ковалентной связи. Попытка объ-ясшгрь механизм образования химической связи между взаимо-действуюпгими, в том числе одинаковыми, атомами была сделана Гильбертом Льюисом (1875—1946) в 1916 г. Согласно воззоениям [c.42]

    Исследованиями, проведенными фирмой Monsanto, было установлено, что этилен реагирует с бензолом, содержащим лишь небольшое количество хлористого алюминия, полностью и фактически мгновенно. Хлористый алюминий используется один раз и в системе не рециркулирует. В такой гомогенной системе требуется работать осторожно, чтобы образование высших этилбензолов было минимальным. Эти соединения с позиций теории Льюиса более основны, чем этилбензол. Действительно, тетраэтилбензолы обладают достаточной основностью, чтобы связать небольшое количество хлористого алюминия, присутствующего в системе, и тем приостановить алкилирование. [c.272]

    При использовании взвешенного разностного метода существенным является определение необходимой степени аппроксимации, т. е. отыскание значения п, достаточно малого для обеспечения легкости вычислений и достаточно большого для получения необходимой точности. Естественно предположить, что для изучения устойчивости системы, описываемой моделью частицы катализатора, достаточно довольно малого значения п. Куо и Амундсон (1969 г.) в результате тщательного исследования получили профили четырех стационарных состояний с помощью метода Галеркина. В любом случае заключение об устойчивости системы было корректным уже при п = 1 и ни в одном из случаев не потребовалось значения /г > 3, чтобы получить собственные значения с точностью до трех значащих цифр. Для изучения той же системы Макговин (1969 г.) также использовал метод Галеркина, но он в основном исследовал влияние изменений числа Льюиса. В качестве примера был выбран случай с тремя стационарными состояниями, приведенный на рис. У1-10. Эти профили оказались справедливыми для любых чисел Льюиса при следующих значениях остальных параметров  [c.174]

    Лучшим растворителем для синтеза является эфир, которого достаточно брать 1 объем на 2,5 объема алкилгалогенида. Целесообразно сильное перемешивание, обеспечивающее хорошее измельчение и большую поверхность патрия. Во избежание побочной реакции диспропорционирования радикалов целесообразно придерживаться низких температур синтеза и приливать галоидалкил достаточно медленно. Льюис, Хендрикс и Джое [139], проводившие конденсацию н-бромистого бутила, отметили образование наряду с октаном не только бутана и бутена, но и углеводородов состава 0 2Н56 и СщНз . Побочные продукты синтеза обычно легко отделимы от основного, и образование их не может служить основанием для отказа от использования реакции в целях синтеза желаемых структур. [c.285]

    Единственным слабым пунктом теории перекисей является то обстоятельство, что ненасыщенные углеводороды обладают значительно меньшей склонностью к детонации, чем парафины однако они имеют ярко выраженную склонность образовывать перекиси. Это видимое противоречие приходится объяснять тем, что степень детонации может обусловливаться не столько количеством, сколько характером перекисерг, а также дополнять теорию перекисей —теорией свободного водорода, выдвинутой Льюисом. Последний считает первичным процессом окисления парафинов дегидрогенизацию их, в результате чего образуются ненасыщенные углеводороды и водород. Последний и является основной причиной возникновения детонации в двигателе. Можно думать, что получающийся в результате дегидрогенизации водород находится в атомарном состоянии, т. е. что процесс распада парафиновых углеводородов сопровождается химической активацией молекул водорода. Как известно, атомарный водород может мгновенно соединяться с кислородом, причем это соединение связано с выделением огромного количества энергии. Таким образом, получающееся соедпнение можно рассматривать как активный центр, который может активировать молекулы горюч й смеси и тем самым сильно способствовать ускорению химической реакцпи. Подтверждением теории свободного водорода (как дополнительного фактора-детонации) и является хорошо известная большая склонность к детонации нормальных углеводородов парафинового ряда по сравнению с нормальными углеводородами олефинового ряда. Можно также полагать, что в случае непосредственно окнсляел1ых ненредельных углеводородов первично получающиеся нестойкие перекиси успевают превратиться в стойкие перекиси, тогда как в случае нос родстве и но окисляемых предельных углеводородов этот процесс завершиться не успевает. Это том более важно, что именно нестойкие формы перекисей глав- [c.356]

    Еще более универсальное определение кислоты и основания было предложено Г. Льюисом, пытавшимся распространить эти понятия не только на реакции с переносом протона, но и на все остальные. В этом определении основная роль отводится участию электронных пар нейтральных или заряженных частиц в химическом взаимодействии. Катионы, анионы или нейтральные молекулы, способные принять одну или несколько электронных пар, называются кислотами. Например, А1Гз — кислота, способная принимать электронную пару при взаимодействии с аммиаком  [c.75]

    Как известно, основные вычислительные трудности, возникающие прн решении этой задачи, связаны с проблемой достижения сходимости итерационного расчета. Книга Ч. Холланда Многокомпонентная ректификация является монографией, посвященной в основном систематическому излои<ению одного из наиболее эффективных методов сходимости расчета — 0-методу. В книге рассматривается применение этого метода и приводится решение различных задач многокомпонентной ректификации, включая расчет колопп с полным возвратом флегмы и при минимальной флегме, сложных колонн, установок со стриппинг-секциями и т. д. Описаны различные подходы к расчету процесса многокомпопепт-ной ректификации методика расчета от тарелки к тарелке , когда в качестве независимых переменных выбраны составы продуктов разделения (автор называет ее методикой Льюиса и Матисопа) методика независимого определения концентраций, когда в качестве независимых переменных принята температура фаз на тарелках (методика Тиле и Геддеса). Последняя методика применяется наиболее широко и рекомендуется для сочетания с 0-методом сходимости. Большой практический интерес представляет таюке ()-мстод составления тепловых балансов. [c.10]

    В настоящей главе рассмотрены методики, предложенные Льюисом и Матисопом а также Тиле и Геддесом описаны методы обеспечения сходимости расчета. Применение каждой методики иллюстрируется решением простой задачи. Прежде чем перейти к изложению материала, следует остановиться на некоторых основных понятиях и условиях, встречающихся далее н книге. [c.63]

    Основные принципы использования способа простых итераций в методике Льюиса и Матисона разработаны Листером и др. Хотя эта методика не была достаточно широко проверена, тем пе менее ее применение дало удовлетворительную сходимость для примера 111-1, Данный пример иллюстрирует применимость простых итерагщй для проведения последовательных приближений по методике Лыоиса и Матисона, а также Тиле и Геддеса. [c.84]


Смотреть страницы где упоминается термин Основность Льюису: [c.214]    [c.259]    [c.28]    [c.123]    [c.234]    [c.626]    [c.320]    [c.342]   
Введение в электронную теорию органических реакций (1977) -- [ c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Льюис



© 2025 chem21.info Реклама на сайте