Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость и степень превращения

    Очень существенно отражается увеличение вязкости реакционной среды на процессах роста макрорадикалов и их обрыва. Например, при полимеризации бутилметакрилата увеличение степени превращения до 70% приводит к уменьшению [c.232]

    Степень превращения СНзОН в СНаО х = 70%, причем на реакцию (1) расходуется 75% превращенного СНзОН, а на реакцию (2)—25%. Температура в реакторе i = 600 С. Диаметр зерен катализатора d = 2,5 мм. Его плотность Рт= 10680 кг/м . Плотность газа в рабочих условиях рг = 4,12 кг/м . Кинематический коэффициент вязкости газа Vr = 8,07-10 м /с. Продукт — раствор формальдегида в воде (формалин) концентрацией С = 40% (масс.). [c.152]


    На некоторых НПЗ установки термического крекинга реконструированы и работают в режиме легкого крекинга, предназначенного для получения маловязких котельных топлив — висбрекинга. Поскольку основная задача при висбрекинге состоит в том, чтобы до требуемого значения снизить вязкость, степень превращения сырья (чаще всего гудрона или полугудрона) ограничивают настолько, чтобы предотвратить образование карбенов и карбоидов и распад промежуточных фракций до бензина и газа. [c.187]

    Реактор заполняется чистым исходным веществом А. Мольная масса А равна 110 кг/кмоль. Вязкости исходного вещества и продукта составляют 1100 и 1320 кг/м , соответственно. Требуется рассчитать время, необходимое для достижения конечной степени превращения а = 0,9. [c.300]

    Рассмотренные выше математические модели процессов химической технологии лишь частично отражают стохастические особенности ФХС в виде неравномерности распределения элементов фаз по времени пребывания в аппарате. В большинстве практических случаев проявление стохастической стороны процессов, протекающих в полидисперсных средах, связано не только с неравномерностью РВП, но и с эффектами механического взаимодействия фаз (столкновения, коалесценции, дробления), зарождением новых и исчезновением (гибелью) включений за счет фазовых превращений, неравномерностью их распределения по таким физико-химическим характеристикам, как вязкость, плотность, степень превращения, поверхностное натяжение и т. п. Эффективным средством математического моделирования отмеченных особенностей процессов химической технологии с единых позиций служат уравнения баланса свойств ансамбля (БСА) элементов дисперсной среды (см. 1.5), которые дополняют детерминированное описание процесса, учитывая его стохастические стороны. [c.272]

    Очень редко характер потока в изучаемом реакторе известен настолько полно, что удается произвести точный расчет степени превращения. Пример этого редкого исключения — реактор с потоком вязкой жидкости (постоянная вязкость) некоторые вопросы расчета такого реактора рассмотрены ниже. [c.101]

    Изменение вязкости среды приводит к изменению порядка реакции по инициатору. Так, для винилацетата при степени превращения = 0,15 0,25 порядок реакции п уменьшается с [c.232]

    Процесс необходимо проводить прн постоянной температуре (—15° С). Поэтому используется реактор с перемешиванием, позволяющим поддерживать одинаковую тем-пературу во всей реакционной массе (рис. 111-8). Эффективное перемешивание приводит к высокому коэффициенту теплопередачи через стенки реактора. Если прп малых степенях превращения для этого достаточно обычного перемешивания, то при больших степенях превращения вследствие увеличения вязкости среды требуются особые условия. Действительно, простое перемешивание уже не может создать турбулентные потоки, и поэтому становится необходимым разделить реакционную массу на небольшие объемы, которые перемещались бы к стенкам реактора, охлаждались и затем перемешивались. [c.129]


    Еслп проводится непрерывная полимеризация в массе и летучий продукт не выделяется, то применяют реакторы с полным вытеснением, которые при минимальном их объеме обеспечивают высокую степень превращения. Два типичных примера использования таких реакторов для проведения реакций в жидкой среде с большой вязкостью приведены ниже. [c.133]

    Большинство промышленных полимеров получают полимеризацией, протекающей до глубоких степеней конверсии при повышенной вязкости среды или в гетерофазных условиях. Полимеризация при глубоких степенях превращения мономера в полимер имеет ряд особенностей, связанных с диффузионным механизмом элементарных реакций. Так, при гомофазной полимеризации в массе ряда виниловых мономеров наблюдается резкое увеличение скорости реакции после достижения определенных степеней конверсии. Это явление получило название гель-эффекта. Протекание полимеризации до глубоких степеней превращения сопровождается изменением практически всех кинетических параметров. [c.74]

    При взаимодействии угля VYO-74-53 с сннтез-газом в антраценовом масле в присутствии 25% влаги при 425 °С, 27—28 МПа и времени реакции 1 ч степень превращения угля составила 99% при селективности 72% по образующемуся маслу (в расчете на уголь без золы и влаги). Вязкость каменноугольного масла была очень низкой (50 мПа-с при 60°С). При более коротком времени контакта (15—30 мин) вязкость каменноугольного масла была заметно выше, причем степень превращения масла менялась незначительно (табл. 3 и рис. 1). [c.331]

    При полимеризации до глубоких степеней превращения, протекающей с увеличением вязкости реакционной смеси, для оценки ка иногда справедливо равенство [c.75]

    В технологическом отношении удобнее проводить процесс полимеризации в суспензии кристаллов триоксана в алифатических углеводородах или в другой среде, в которой растворяется катализатор. Таким путем из триоксана, содержащего 0,01% влаги, можно получить продукт с вязкостью (1п /с) в 0,5%-ном растворе диметилформамида при 150° С порядка 0,75—1,00, что соответствует средпечисловому молекулярному весу приблизительно 80 10 — 100-10 . В дальнейшем было показано, что полученный продукт отличается большой неоднородностью и плохо поддается ацетилированию. При обработке избытком уксусного ангидрида в гомогенной среде (раствор полимера в метилендиацетате, катализатор — пиридин) наблюдается сильное разрушение полимера и уменьшение его вязкости степень превращения концевых групп невелика. Причины этого явления могут быть найдены только после определения молекулярно-весового распределения твердофазного полимера и изучения его химической структуры. [c.231]

    Радикальная полимеризация при глубоких степенях превращения, когда резко возрастает вязкость среды, замедляется рекомбинация макрорадикалов и вследствие этого увеличивается длина кинетич. цепи. [c.21]

    Преимущества Б. п. перед др. способами полимеризации 1) более высокая степень чистоты получаемых полимеров, обусловленная отсутствием примесей, привносимых р-рите-лями или диспергирующими агентами 2) упрощение операций, связанных с обработкой полимера, в частности исключение стадии его сушки 3) большие потенциальные возможности интенсификации процесса (благодаря высокой концентрации мономера процесс м. б. осуществлен при наиб. т-рах и концентрациях возбудителя) 4) возможность использования в большинстве случаев непрерывных режимов полимеризации. Осн. недостаток процесса-трудность регулирования температурного режима из-за резкого роста вязкости среды при высоких степенях превращения мономера (вязкость мономеров составляет обычно 5-10 мПа-с, р-ров и расплавов полимеров-до 10 -10 Па-с). Вследствие этого затрудняется тепло- и массообмен, а следовательно, и регулирование св-в (в частности, ММР) полимера. [c.298]

    В колбе емкостью 120 мл степень превращения составляла 67% Полученный полимер имеет логарифмическую приведенную вязкость [5] 1,94 (30°, раствор в бензоле — концентрация 0,0703 г на 100 мл). [c.71]

    Молекулярный вес бутилкаучука очень чувствителен к условиям реакции, что вообще характерно для катионной полимеризации (например, чистота реагентов, влага, колебания температуры, равномерность перемешивания и т. д.). Используя хорошо очищенные реактивы, можно получить в данных условиях полимеризации желаемое молекулярно-весовое распределение. Получение при —78° полимера с молекулярным весом ниже 130 000 свидетельствует об ошибках в эксперименте. Молекулярный вес мало зависит от степени превращения (в пределах 10—90%). Молекулярные веса рассчитывают по уравнению Флори [6] на основании значения характеристической вязкости по одной точке, определенной для 0,1%-ных растворов полимера в диизобутилене при 20°. Вместо диизобутилена можно использовать циклогексан. [c.79]

    Подобные результаты были получены на таких полимерах, как акрилаты [153], которые относительно плохо растворимы в мономере. При очень низкой степени превращения (нанример, 2% для бутилакрилата) полимер может начать осаждаться из раствора в виде коллоидных гелей. Можно ожидать, что строение образующегося в этом случае полимера будет сильно-препятствовать диффузии больших радикалов. Эти полимеры имеют не простую прямую цепочку полимерные цепи связаны между собой в нескольких точках. Диены, например изопрен и бутадиен, наиболее склонны к образованию таких перекрестных связей, так как образующийся полимер содержит двойные связи. Сравнительно недавно Бенсон и Норс [154] показали, что, используя смешанные растворители и меняя таким образом вязкость в значительном интервале, можно наблюдать соответствующее изменение величины А)(, в то же время кр не изменяется. Нозаки [155] показал, что если достаточно долгое время подвергать фотолизу водную эмульсию винилового мономера для образования стабильных частиц, то этп последние будут содержать долгоживущие радикалы полимера, которые могут продолжать реагировать с мономером в течение 24 час и более . Гелеобразные частицы этилендиметилакрилата дают спектры парамагнитного резонанса, показывающие, что концентрация частиц с неспаренными спинами [157] достигает 10 — Эти образцы полностью стабильны в отсутствие Ог. [c.520]


    Очень большая константа скорости обрыва цепи ( 10 л моль сек) свидетельствует о том, что фактическая скорость, с которой реагируют два полимерных радикала, приближается к скоростям диффузии молекул в растворе. При полимеризации, проводящейся в неразбавленной массе мономера, это часто ведет к очень интересным последствиям, а именно к тому, что по мере увеличения вязкости системы и повышения запутанности полимерных цепей скорость, с которой растущие цепи могут сближаться, снижается до меньшего значения, чем скорость, при которой они могли бы нормально реагировать снижается и скорость процесса обрыва цепей, который в конце концов начинает контролироваться диффузией. В результате этого кривая скорости для таких реакций полимеризации может быстро расти с увеличением степени превращения. Типичный пример показан на рис. 3. Это явление легко может привести к неуправляемым и почти взрывообразным реакциям, особенно потому, что в вязкой, быстро полимеризующейся системе тепло не может рассеиваться с такой же скоростью, с какой оно выделяется. Правильность этого объяснения, впервые предложенного Норришем и Смитом [116], подтверждается тем, что молекулярные веса полимеров увеличиваются в стадии ускорения полимеризации [ 144], а также путем прямых измерений ki и кр как функции глубины реакции методом вращающегося сектора. Так, например, при полимеризации в массе мономера метилметакрилата к1 может снизиться менее чем до 1% от начального его значения при 35%-ном превра- [c.128]

    Необратимая реакция первого порядка протекает в длинном цилиндрическом реакторе. Объем, температура и вязкость не изменяются. В частном случае для модели идеального вытеснения степень превращения равна 86,5%. Какова будет степень превр1ащ Н11я при ламинарном потоке (диффузией можно пренебречь)  [c.79]

    Истинный механизм образования полимеров столь стереорегулярного строения, как уыс-1,4-полиизопрен, на стереоспецифических катализаторах изучен совершенно недостаточно. Проведено углубленное исследование катализатора, состоящего из триизобутилалюминия и четыреххлористого титана [210]. При смешении этих компонентов образуется твердый осадок, в котором титан практически полностью находится в состоянии низшей валентности. С увеличением количества алкилалюминрш это твердое вещество изменяется, превращаясь из коричневого треххлористого титана в другие соединения, в которых хлор частично замещен алкильными группами. Скорость полимеризации зависит от отношения алюминий титан максимальная скорость с получением целевого г мс-1,4-полиизопрена достигается при молярном отношении 1 1 вторичный максимум скорости наблюдается при отношении 3 1 и соответствует образованию смолистого полимера. С увеличением степени превращения собственная вязкость полимера возрастает, а затем стабилизируется. С точки зрения кинетики эта реакция имеет первый порядок по отношению к концентрации мономера при постоянном отношении алюминий титан и постоянной активности катализатора энергия активации ее равна около 14,4 ккал/молъ. Кинетика суммарной реакции может быть представлена уравнением [c.199]

    Изучено влияние предварительного нагрева пасты, размера и скорости седиментации частиц в пасте, а также вязкости пасты на гидрогенолиз угля Разработан процёсс каталитического пиролиза рас-цыленных топлив под давлением водорода со специальным методом смешивания сырья и катализатора без образования пасты. Степень превращения органической массы углей и сланцев 91—97% [c.21]

    В реакторе с потоком вязкой жидкости режим пдеального вытеснения возможен при эффективном радиальном массопереносе. Это наблюдается, например, при ламинарном потоке через изогнутые трубы (см. стр. 109). Ховарка и Кендолл Ь2 показали, что за счет установки перегородок внутри трубчатого реактора удается увеличить конверсию при протекании реакций второго порядка в ламинарном потоке. При химическом превращении высоковяаких материалов вязкость потока зависит от степени превращения. Вследствие того, что в таких системах вязкость около стенок трубы очень высока, большая часть загрузки проходит через центральную часть трубы, и может возникнуть значительная поперечная циркуляция. [c.102]

    Скорость процесса в сильной степени зависит от температуры. С повышением температуры скорость резко возрастает примерно до 90%-него превращения. При дальнейшем увеличении степени превращения мономера скорость процесса значительно снижается вследствие возрастания вязкости среды. Для достижения степени завершенности, равной 98—99%, необходимо дальнейшее нагревание реакционной массы, что приводит к понижению молекулярного веса полимера. При постепенном довыше-пнп температуры от 80 до 230 °С удается получить полистирол, содержащий мепее 1 % мономера. Продолжительность процесса составляет 30—40 ч. [c.15]

    Еще одним из факторов дезактивации является закупорка макропор катализатора жидкой серой. Катализатор, как правило, работает в температурных условиях конденсации серы, причем при этой температуре сера имеет довольно значительную вязкость. Как известно, для достижения термодинамического равновесия реакции Клауса на каталитической ступени ее проводят при низких температурах. Обычно в первом реак1 оре поддерживают температуру около 620 К для гидролиза OS и S . Второй реактор работает при температуре, несколько превышающей точку росы паров серы, но сера может конденсироваться в порах катал[изатора и при такой температуре (капиллярная конденсация). Эта конденсация серы приводит к уменьшению степени превращения H S и SOj, так как блокируется некоторая площадь поверхности катализатора, а сама жидкая сера проявляет малую каталитическую активность [6]. [c.155]

    Реактор с перемешиванием (рис. П-31) имеет винтовую мешалку (конструкция мешалки обусловлена большой вязкостью среды). Перемешивание позволяет достигать большой степени превращения (25—30% в зависимости от типа полимера-продукта). Реакция полимеризации — экзотермическая, с отводом тепла частично через рубашку, а частично непосредственно с продуктами реакции (реактор действует автотермически). Емкость реактора 250—500 л, диаметр 300—400 лш. Мешалка с ге = 1500 об мин осуществляет сильное перемешивание этилена с образовавшимся полиэтиленом. Из экспериментальных онределенип распределения температур в реакторе следует, что основные реакции развиваются в средней части реактора. [c.105]

    Скорость полимеризации постепенно возрастает даже при неизменных условиях проведения реакции, но после превращения 30—40% мономера в полимер ста1ювится примерно постоянной. В конце процесса (при степени превращения 75—80%) начинается заметное уменьщение скорости полимеризации. Это явление, носящее название гель-эффекта, наблюдается во всех случаях, когда образующийся полимер нерастворим в исходном мономере. Оно объясняется тем, что осаждающиеся мельчайшие частицы полимера погло цают часть мономера и дальнейшая полимеризация протекает в набухших частицах полимера. В такой системе, отличающейся большой вязкостью, скорость обрыва цепей в результате взаимодействия двух макрорадикалов снижается. [c.262]

    Ожижение иопытуемых углей под действием чистого водорода в аналогичных условиях протекало с меньшей степенью превращения и более низкой селективностью по каменноугольному маслу, а продукт, образующийся без добавки катализатора, имел более высокую вязкость. Содержание серы и вязкость масла снижались с увеличением количества поглощенного водорода, однако для получения каменноугольного масла одного и того же качества в случае применения синтез-газа требовалось меньше водорода, чем в случае чистого водорода. Экспериментальные данные, полученные с водородом и синтез-газом, представлены в табл. 4. [c.333]

    Ожижение углей под действием Л1 — Со — Мо-катализатора и компонентов минеральной части углей. Для некоторых низкозольных углей, например для VYO-74-14 и УО-74-3, наблюдались низкая степень превращения угля и селективность образавания каменноугольного масла при действии синтез-газа в типичных условиях. Иопользование карбоната калия, пирита или молибдата кобальта (Со — Мо на АЬОз) в качестве катализаторов значительно увеличивало и общую степень превращения угля и селективность образования масла при существенном снижении вязкости продукта, растворенного в антрацене. Для угля Ш 0-74-14 [c.333]

    Сопоставление этих уравнений показывает, что, во-первых, с увеличением вязкости значения А"р и уменьшаются, а во вторых, значительно более чувствительна к величине эффективной вязкости среды, чем Ар. Отношение с увеличе-. нием степени превращения растет, а следовательно, растет и скорость реакции полимеризации. Значения А р начинают существенно изменяться при > 0,5. Очевидно, что увеличение вязкости приводит к замедлению диффузионных процессов. В реакции роста макрорадикала принимают участие и макро-, и микрочастицы, т. е. макрорадикал и молекула мономера. Вместе с тем обрыв цепи происходит легче всего за счет рекомбинации двух макрорадикалов. Поэтому должна уменьшаться значительно медленнее, чем Л д, а вместе с тем их отношение должно расти, и, следовательно, должна возрастать скорость полимеризации в целом, что и наблюдается как гель-эффект. Диффузионные ограничения с ростом вязкости для малых молекул возрастают в значительно меньшей мере, чем для фомоздких макрорадикалов. Кроме того, макрорадикалы по мере увеличения степени полимеризации, находясь в растворенном состоянии, будут стремиться занять термодинамически наиболее выгодную конформацию статистического клубка. [c.233]

    Скорость роста макрорадикалов в начальный период полимеризации сохраняется постоянной и уменьшается при глубокой степени превращения, когда концентрация полимера в мономере, а вместе с этим и вязкость среды значительно возрастают. Так, константа скорости роста макрорадикалов винилацетата уменьшается в 3 раза после превращения в полимер 57% мономера и в 22 раза—при степени лревращенкя мономера 65%. Резкое уменьшение скорости роста цепи установлено для метилметакрилата при степени превращения в полимер, равной 50%. При полимеризации бутилового эфира акриловой кислоты константа скорости роста цепи снижается в 4 раза после превращения 20% мономера в полимер и в 700 раз по достижении 70%-ной концентрации полимера в мономере . [c.116]

    Рециркуляция остатка низкотемпературного разложения кислого гудрона в среде нефтепродукта должна проводиться с учётом агрегативно-кинетической устойчивости, вязкости и склонности реакциошой смеси к карбоидообразованию. предусматривая ввод требуемого количества свежего нефтепродукта в цикл. Продолжительное пребывание остатка разложения в циркуляционной системе уменьшает его раскисляющую способность и увеличивает степень превращения его в карбоиды. Так, шестикратное использование остатка низкотемпературного разложения кислого гудрона в среде гудрона арланской нефти без ввода свежего нефтяного гудрона в последующие циклы сопровождалось увеличением содержания а-фракции до 49% и повышением требуемой температуры разложения со160 до 250°С. При этом реакционная смесь сохраняет агрегативно-кииетическую устойчивость без закоксовывания реактора н не содержит кислые компоненты. Применяя проточно-циркуляционную систему и изменяя температурный профиль процесса, его гидродинамический режим, соотношение кислый гудрон ре- [c.158]

    Уравнение (XVI.10) справедливо для радикальной полимеризации при небольших степенях превращения мономера в полимер (не выше 10—15%). При более глубокой полимеризации наблюдаются отклонения из-за возрастания вязкости реакционной смеси при увеличении в ней концентрации полимера. Диффузия макрорадикалов в таккх условиях замедляется и резко уменьшается вероятность их рекомбинации или диспропорционирования, т. е. уменьшается эффективная константа скорости обрыва. Поэтому концентрация радикалов в системе возрастает и, соответственно, увеличивается скорость полимеризации. Это приводит к возникновению так называемого гель-эффекта (студиеобразования) при 25—30% степени полимеризации. [c.389]

    Осуществлен твердофазный механохимический синтез водорастворимых форм активно использующегося в последнее время в фармации природного биополимера хитина и его производного - хитозана. Хитин выделяли из рачка Gammarus алтайский - перспективного хитин содержащего сырья. Карбоксиметилирование проводили в двух видах мельниц в планетарно-центробежной мельнице АГО-2 и вибрационной SPEX-8000. В качестве карбоксиметилирующих реагентов использовались натриевая соль монохлоруксусной кислоты и гидроксид натрия. Установлено, что полученные в результате механической обработки образцы частично или полностью растворимы в воде и имеют невысокую относительную вязкость. С увеличением продолжительности синтеза степень превращения [c.42]

    Пример VI-1. В лабораторном реакторе (труба диаметром 25 мм, занолнен-йая на высоту 38 мм частицами катализатора диаметром 6,35 мм) достигается степень превращения 99% при объемной скорости 0,076 л /ч (массовая скорость ( = 239 кг-ж"2-4" ). Необходимо определить высоту слоя для достижения такой же степени превращения в реакторе, представляющем собой трубу диаметром 35 мм, при объемной скоростп 113 м 1ч (<3 = 2670 кг м ч ). Реакция имеет первый порядок, объем не изменяется, условия изотермические, вязкость ц = 0,01 СПЗ. [c.431]

    В пром-сти П. у. получают гл. обр. термич. полимеризацией в массе по непрерывной схеме так же, как и полистирол, и т. наз. блочно-суспензионным способом по периодич. схеме. В первом случае бутадиеновый или бутадиен-стироль-ный каучук измельчают и растворяют в стироле (4-15%-ная концентрация). При нагр. и интенсивном перемешивании р-ра параллельно протекают полил1еризация стирола и прививка его на каучук. После образования 2-3% полистирола реакц. среда расслаивается на стирольную фазу (р-р полистирола в стироле) и каучуковую (р-р каучука и привитого сополимера в стироле). Образование привитого сополимера протекает на границе раздела фаз. Структура, размеры дискретной каучуковой фазы, содержание в ней окклюдированного полистирола зависят от интенсивности перемешивания, концентрации основных компонентов и модифицирующих добавок. При степени превращения стирола 30-40% реакц. система из-за высокой вязкости становится стабильной и перемешивания уже не требуется. На завершающей стадии процесса происходит частичное сшивание каучука в частицах микрогеля, в результате чего возрастает их устойчивость к сдвиговым деформациям. Продукт представляет собой расплав П. у., содержащего 0,5-10% непрореагировавшего стирола, к-рый удаляют в вакууме, а полимер гранулируют. [c.25]

    С увеличением степени превращения мономера в ходе Р. п. происходят существ, изменения состава и физ. св-в реакц. среды, к-рые отражаются на кинетике р-ции и характеристиках образующихся продуктов. Так, значит, увеличение вязкости реакц. среды ограничивает в первую очередь диффузионную подвижность макрорадикалов и, следовательно, снижает скорость обрыва, приводя к увеличению скорости Р. п. и мол. массы образующегося полимера (гель-эффект). При образовании нерастворимого полимера подобные явления проявляются уже в начале процесса вследствие иммобилизации ( застревания ) растущих цепей в матрице полимера. [c.158]

    По механизму радикальной полимеризации могут отверждаться, например, олигоэфиракрилаты. Начальная стадия процесса характеризуется довольно длительным индукционным периодом, в течение которого вязкость олигомера существенно не изменяется. Продолжительность этого периода можно регулировать подбором инициатора, В качестве инициатора используют различные пероксиды Период роста и сшивания макромолекул сопровождается быстрым, практически мгновенным нарастанием вязкости и потерей текучести Образуется полимер пространственно-сстчатой структуры с ценными эксплуатационными свойствами. Переход от жидкого олигоэфиракрилата к сетчатому полимеру происходит прн степенях превращения =г0,25—1% В дальнейшем в связи с заметным уменьп1ением подвижности макромолекул наблюдается резкое автоторможе-пие процесса. Предельная степень превращения, при которой начинается автоторможение, определяется жесткостью цепей  [c.183]

    Свежеперегнанный стирол (100 г) взвешивают в колбе емкостью 120 мл с завинчиваюш,ейся крышкой с алюминиевой фольгой или тефлоно-вон прокладкой. Дисульфид бис-(4-аминофенола) (3,68 г) (примечание 1) и 0,05 г азо-бис-тобутронпт-рила (примечание 2) растворяют в стироле и, перед тем как закрыть колбу, продувают очищенным азотом. Колбу помещают в термостат при 50° на 16 час. За это время степень превращения мономера составит (примечание 3). Вязкую массу при интенсивном перемешивании выливают в 10-кратный объем метанола (примечание 4). Осажденному полимеру дают возможность отстояться, пока слой жидкости над ним не станет прозрачным. Полистирол декантируют или отфильтровывают, растворяют в 50 ли бензола или метилэтилкетона и переосаждают в 10-кратном объеме метанола при интенсивном перемешивании. Пере-осаждение повторяют еще дважды, очищая продукт от непрореагировавшего дисульфида быс-(4-аминофе-пола). Полимер сушат до постоянного веса в вакуумном сушильном шкафу при 60°. Характеристическая вязкость полученного таким образом полистирола в бензоле пр 1 30° равна 0,24, что соответствует средне- [c.98]


Смотреть страницы где упоминается термин Вязкость и степень превращения: [c.473]    [c.273]    [c.277]    [c.58]    [c.333]    [c.334]    [c.611]    [c.153]    [c.27]    [c.466]   
Основы синтеза полимеров методом поликонденсации (1979) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Степени вязкости

Степень превращения

Степень превращения и степень превращения



© 2024 chem21.info Реклама на сайте