Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт в анодном никеле

    В задачу электрометаллургии входят получение и очистка металлов с использованием электрического тока. Электрометаллургия включает в себя три большие ветви электроэкстракцию, электрорафинирование и электролиз расплавов. Электроэкстракция состоит в получении металлов из растворов путем электролиза. Часто таким способом удается получить не только металлы высокой степени чистоты, но одновременно осуществить это и с наименьшими экономическими затратами (например, в случае кадмия, хрома, кобальта, железа, цинка). При электрорафинировании загрязненный металл очищают, подвергая его анодному растворению и последующему осаждению на катоде при соответствующем выборе условий электролиза. Таким образом получают медь, золото, серебро, свинец, висмут, никель, олово высокой степени чистоты. Электролиз расплавов является промышленным способом получения алюминия, щелочных и щелочноземельных металлов. Эти металлы выделяются в жидком виде, так как электролиз проводится при высоких температурах, а указанные металлы являются [c.7]


    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]

    Электролитическое растворение применяется для перевода в раствор кобальта из металлических или сульфидных кобальтсодержащих сплавов. Основными компонентами таких сплавов, кроме кобальта, являются железо, никель и медь. Анодное растворение металлических сплавов производится в подогретом растворе серной кислоть[. При этом на катоде основным процессом является выделение водорода. Кобальт, никель и железо из-за большой катодной поляризации в кислом растворе полностью остаются в электролите. Медь, растворившаяся на аноде, почти нацело осаждается на катоде, поэтому растворы, полученные анодным растворением, практически не содержат меди, что облегчает последующую их переработку. По мере электролиза раствор становится все менее кислым. Процесс прекращают, когда достигается почти полная нейтрализация электролита. [c.95]

    Однако добавка кислоты, в особенности сильной, может изменить благоприятное для осаждения никеля соотношение концентраций (ИОНОВ водорода и никеля. Это поведет к увеличению доли участия ионов Н+ в разряде. Обычно в никелевую ванну вводят слабые, мало диссоциированные кислоты и таким образом сохраняют pH раствора в ограниченных пределах. Процесс катодного осаждения никеля очень чувствителен ik присутствию примесей в растворе. Обычные примеси в черновом (анодном) никеле — )медь и железо. Никелю всегда сопутствует кобальт. Реже встречаются цинк, мышьяк, свинец. При анодном растворении никеля эти примеси большей частью переходят в раствор. В дальнейшем они могут отлагаться на катоде, что приведет к загрязнению катодного никеля, ухудшению его структуры. Последнее сопровождается падением выхода по току. [c.385]


    Аналогичный метод с использованием нитрозо-Н-соли описан также [316] для определения кобальта в анодном никеле [c.201]

    Значения константы а, приведенные в табл. 4, показывают, что перенапряжение водорода является наибольшим у таких металлов, как свинец, кадмий, цинк, таллий и олово, и наименьшим — у платины, вольфрама, кобальта и никеля. Промежуточное положение занимают железо, серебро и медь. Следовательно, на первых металлах катодная реакция восстановления водорода идет с большими затруднениями. На платине же и никеле разряд ионов водорода происходит гораздо легче. Каждый лежащий ниже в таблице металл, будучи введенным в состав впереди стоящего металла, усиливает коррозию основного металла, если только не возникнет новая фаза, обладающая повышенным перенапряжением. Вследствие пониженного перенапряжения водорода на примеси реакция восстановления водорода будет в основном протекать на этой примеси и притом со значительной скоростью, это и вызовет ускорение сопряженной анодной реакции ионизации металла, т. е. приведет к разрушению металлической структуры. [c.18]

    Суть этого наблюдения заключается в том, что обратный процесс, а именно анодное растворение железа, кобальта и никеля, сопровождается значительной поляризацией, которая быстро уменьшается по мере повышения температуры. Вероятно, как при разряде, так и при образовании ионов должен быть преодолен высокий энергетический барьер приблизительные расчеты, проделанные на основе данных табл. 81, указывают на то, что высота этого барьера для прямого процесса составляет 12—18 ккал- [c.612]

    Комплексонат трехвалентного кобальта восстанавливается в слабощелочном растворе при —0,25 в по отношению к насыщенному каломельному электроду, образуя отвесную волну, которая непосредственно связана с анодным растворением ртути и следовательно не имеет нижней площадки [12]. В присутствии комплексона медь, никель, марганец восстанавливаются при более отрицательных потенциалах, ввиду чего этот способ позволяет определять следы кобальта в никеле и т. п. Железо мешает определению, и его небольшие количества выделяют предварительно осаждением пиридином. Для окисления кобальта в трехвалентный наиболее пригодной оказалась двуокись свинца. Как указывают авторы, метод пригоден для определения кобальта в сплавах. [c.229]

    Хотя большинство металлов групп В (медь, серебро, цинк, кадмий, олово и свинец) в активном состоянии поляризуются очень мало, в случае переходных элементов (например, железа, кобальта и никеля) наблюдается иная картина, и их анодные кривые идут круче по сравнению с кривой цинка. Наличие сероводорода благоприятствует анодному растворению железа, сдвигая точку пересечения от к Р2 (фиг. 163, б) и увеличивая, таким образом, скорость коррозии. Но следы олова или меди в растворе (медь, возможно, переходит в раствор из стали), соединяясь с сероводородом, переводят его в осадок, и скорость коррозии падает (стр. 292). [c.763]

    Значительное улучшение защитных свойств анодной ленки может быть достигнуто ее легированием, которое ожет быть достигнуто при формировании пленки из лектролита, содержащего ионы других металлов, или ри добавке солей различных металлов — ацетата магия, никеля, кобальта, цинка, сульфата марганца и др. [c.65]

    В процессе анодного растворения чернового никеля, содержащего 90—94% N1, в раствор наряду с ионами никеля переходят и ионы железа, кобальта и меди. Потенциал разряда ионов меди на катоде даже при малой ее концентрации будет более электроположительным, чем наблюдаемый потенциал разряда ионов никеля. [c.316]

    Плотность католита всегда меньше плотности анолита потому, что в катодном пространстве идет процесс осаждения никеля и обеднения раствора его ионами, в то времй как католит, вытекающий через поры диафрагмы в анодное пространство, обогащается от растворяющегося анода ионами никеля, железа, кобальта и меди. [c.318]

    Трудно дать определенные правила в отношении эффективности электрода для анодного окисления. В случае окислительных процессов, происходящих в присутствии кислорода в активной форме, можно ожидать, что высокий анодный потенциал будет указывать на более эффективную окисляющую способность. Но это справедливо не во всех случаях как будет показано дальше, существуют процессы, которые, по-видимому, не зависят от анодного потенциала. В этих случаях возможно, что эффективным окисляющим агентом может быть не кислород, а, вероятно, перекись водорода. Основным требованием, предъявляемым к металлу, применяемому в качестве анода, является его достаточная пассивность в используемых в процессе электролитах. В отсутствие галоидов такие металлы, как платина или золото, обычно не реагируют с электролитом и могут быть использованы в качестве анодов. Иногда они могут быть применены и при наличии небольших количеств хлоридов в среде. Это относится и к анодам из кобальта и никеля в тех случаях, когда применяются высокие плотности тока. При еще более высоких плотностях тока в качестве анода можно использовать железо. Однако, как только этот,металл становится пассивным, можно применять такой элек- [c.15]


    Так как этот процесс идет при относительно отрицательных потенциалах, то разряда ионов хлора или восстановления молекул воды с выделением газообразных хлора и кислорода обычно не происходит. Однако большая анодная поляризация приводит к тому, что примеси не только более электроотрицательных, чем никель, металлов, но и некоторых более электроположительных металлов, таких, как медь, переходят с анода в раствор. Таким образом, все основные примеси, содержащиеся в никелевых анодах,— медь, железо, кобальт — оказываются в растворе. [c.79]

    Анодный процесс сопровождается образованием шлама. Количество шлама достигает 2—5% от веса растворившихся анодов. Шлам состоит из содержащихся в анодах сульфидов, окислов, шлаковых и других включений, а также содержит металлы платиновой группы, которые, являясь значительно более электроположительными, чем никель, не растворяются на аноде. В п лам переходит до 1% от содержания в анодах никеля, кобальта и железа и 5—20% меди. Основными компонентами шлама являются сульфиды этих металлов. При электролизе металлических анодов содержащиеся в них примеси сульфидов почти не растворяются, поэтому переход металлов в шлам и количество последнего резко возрастают с увеличением содержания серы в металлических анодах. На практике стремятся не допускать содержания серы в анодах выше 1%. [c.79]

    Один из основных продуктов кобальтового производства — гидроокись кобальта — получают обычно осаждением кобальта после его окисления хлором или гипохлоритом из раствора, очищенного от железа (никель после осаждения кобальта остается в растворе). В некоторых случаях осаждение гидроокиси кобальта ведут электролитически анодным окислением кобальта. В принципе этот метод существенно не отличается от обычного химического. [c.99]

    На рафинирование никеля поступили аноды, содержащие 90 % Ni, 4 % Си, 3 % Fe, 1 % Со и другие примеси. Анодные примеси железа и кобальта растворяются полностью, меди - на 3/4 (К = 3/4) своего состава (считать, что при анодном процессе образуется только двухвалентная медь). [c.243]

    Электроосаждение кобальта и никеля. Принято считать, что металлы группы железа но электрохимическим свойствам существенно отличаются от остальных металлов. Поэтому исследование перенапряжения при осаждении и растворении этих металлов представляет особый интерес. В последнее время у нас в лаборатории 3. А. Соловьевой и О. А. Абраровым [32] изучалась катодная и анодная поляризация кобальта и никеля. Ими было показано, что с повышением температуры электролита наблюдается уменьшение в одинаковой степени как катодной, так и анодпой поляризации. При изучении поляризации этих металлов было обнаружено новое явление, заключающееся в том, что в определенном, сравнительно узком интервале pH раствора 2,9—3,1, скорость электрохимической реакции резко увеличивается (рис. 7). Дополнительные опыты показали, что в области pH, где происходит облегчение осаждения, также увеличивается и скорость растворения металлов (рис. 8, а). В области же низких pH затрудняются как разряд, так и ионизация металлов (рис. 8, б). Таким образом установлено, что условия электролиза, способствующие разряду ионов металла группы железа, также ускоряют ионизацию атомов металлов. [c.400]

    Однако уже давно было замечено, что скорость электроосаждения, а также электрорастворения металлов группы железа зависит от pH раствора и присутствия в нем примесей. Р. X. Бурштейн, Б. Н. Кабанов и А. Н. Фрумкин (1947) высказали предположение о непосредственном участии ионов 0Н в кинетике этих процессов. По их мнению, ионы 0Н играют роль своеобразных катализаторов. Механизм реакций катодного осаждения и анодного растворения железа, кобальта и никеля с образованием промежуточных частиц типа РеОН, РеОН+ или Ре-Ре0Н+ рассматривался затем Хейслером, Бокрисом, Фишером и Лоренцом и многими другими авторами. Было предложено несколько схем, объясняющих такие экспериментальные данные, как характер зависимости скорости реакции от pH, небольшой наклон тгфелевской прямой в чистых растворах серной кислоты, его повыщение при переходе к растворам соляной кислоты и при введении добавок поверхностно-активных веществ и т. д. В качестве иллюстрации можно привести схему Бокриса [c.473]

    Салицилальдоксимом пользуются для определения меди в мед-ио-ннкелевых штейнах и в анодном никеле, т. е. в присутствии больших количеств железа и никеля. Медь образует с салицилальдоксимом ( 7H7O2N) в уксуснокислом растворе светлый зеленовато-желтый осадок состава Си(С7НбОгН)2 реактив специфичен для меди — никель, кобальт и железо им не осаждаются. Однако железо мешает титрованию тем, что восстанавливается при тех же потенциалах, что и медь, по току восстановления которой проводится титрование поэтому железо связывают фторидом, добавляя его в количестве, достаточном для выпадения осадков фторида железа. [c.252]

    Повидимому, и другие металлы VIII группы периодической системы требуют определенного перенапряжения для выделения их с заметной скоростью, но точные данные подобного рода отсутствуют. Можно упомянуть о том, что растворению анодов из железа, кобальта и никеля также сопутствует заметная поляризация. Она достаточно велика при обычных температурах, но быстро уменьшается по мере повышения температуры. Аноды из этих металлов легко становятся пассивными, и тогда растворение их почти совсем прекращается эта сторона поведения металлов при анодной Поляризации более полно разбирается в гл. XIV. [c.588]

    Электрохимическая пассивность. При рассмотрении в гл. XIII вопроса об анодных потенциалах считалось, что растворение анода обычно начинается, как только ему сообщили пот-енциал, немного более положительный, чем обратимый потенциал в данном электролите. При увеличении плотности тока потенциал в результате концентрационной поляризации несколько возрастает, но веЛичина этого изменения потенциала обычно невелика. На стр. 576 было отмечено, что при обычных температурах анодное растворение металлов группы железа не начинается до тех пор, пока потенциал электрода не превысит теоретический обратимый потенциал на сравнительно большую величину, например на 0,3—0,4 е эта заметная поляризация или необратимость объясняется тем, что одна из стадий процесса ионизации является медленной и требует высокой энергии активации. Тем не менее, несмотря на большую поляризацию, анод из железа, кобальта или никеля может растворяться количественно в согласии с требованиями законов Фарадея. Однако при увеличении плотности тока достигается точка, в которой потенциал анода резко возрастает и одновременно происходит уменьшение силы тока в то же самое время анод практически перестает растворяться, оставаясь в других отношениях на вид неизменным. Металл, как говорят, переходит в пассивное состояние, явление же это называется пассивацией-, так как в рассматриваемом случае пассивно ть возникает в результате анодной, т. е. электрохимической обработки, то одно из этих прилагательных часто употребляется для обозначения рассматриваемого типа пассивности [9]. [c.649]

    Анодная масса на основе гидрата закиси никеля смешивается с раствором сернокислого кобальта из расчета 3% металлическо-гд кобальта к никелю масса высушивается и из нее на таблети-ровочной машине ТМ-1 отпрессовываются брикеты весом 0,45 г и толщиной 1,4 —0,1 мм. [c.381]

    Относительная медленность анодного растворения (и катодного осаждения) железа, кобальта и никеля по сравнению с соответствующими процессами для большинства других металлов известна давно. Ранее предположение [59], что это явление объясняется особой прочностью связи между катионами и электронами в решетке (этому соответствует малый или нулевой вклад электронов данных металлов в распределение электронов по энергиям в их сплавах, а также более высокая твердость и электрическое сопротивление, нежели можно было ожидать), использовалось неоднократно и в разных вариантах, хотя до сих пор высказанное предположение еще не доказано. Опыт показывает, что во многих случаях медленное анодное растворение железа ускоряется в присутствии небольших количеств сульфидов [60, 61], а растворение никеля — в присутствии сульфидов или хлоридов [56]. По-видимому, адсорбция этих ионов или других, образовавшихся из них частиц таким образом изменяет форму кривых Морзе для катионов, что энергетический барьер снижается. С другой стороны, замедление анодного растворения железа, стали и никеля при адсорбции аминов, Ы-циклических молекул, тиомочевии, сульфокислот и многих других органических веществ [62] легче объяснить, исходя из стерических, а не энергетических соображений. Так, Хор и Холлидей [51], показали, что замедление анодного растворения стали в серной кислоте при добавлении 2,6-диметилхинолина можно количественно связать с адсорбцией молекул ингибитора в виде локализованного монослоя Лэнгмюра на активных центрах. решетки А на рис. 48, а). В отсутствие такой адсорбции эти центры работают в качестве анодов. Более глубокому пониманию причин ускорения и замедления анодного растворения под влиянием адсорбции на поверхности раздела металл/раствор препятствует отсутствие данных о детальном механизме реакций в простейших условиях. [c.299]

    В анодном никеле всегда содержится некоторое количество серы (обычно до 1 %) в виде сульфидов N1382 и 028. Равновесные потенциалы сульфидов намного электроположительнее равновесных потенциалов металлов, поэтому при потенциале металлического анода сульфиды остаются в неизменном виде и переходят в шлам. Количество шлама, в основном, определяется содержанием серы, в анодах — с его увеличением выход шлама резко возрастает. Помимо сульфидов, в шлам переходят содержащиеся в анодах окислы металлов и шлаковые включения. Основная часть металлов группы платины, являясь значительно более электроположительными, чем никель, также остается в шламе. Последний является поэтому коллектором драгоценных металлов. При содержании серы в анодах около 1 % в шлам переходят — от их содержания в анодах — порядка 1% никеля, кобальта и железа и 5—15% меди. [c.73]

    Возможность образования таких неустойчивых соединений, которые существуют на поверхности электрода при отрицательных потенциалах, согласуется со способностью азот- и серусодержащих комплексных соединений кобальта и никеля к каталитическому действию в процессе выделения водорода в слабощелочных буферных средах на ртутных электродах [111]. Появление анодного пика наблюдается только в тех случаях, когда на вольтам-перограммах с р. к. э. возникает каталитическая волна выделения водорода. [c.48]

    В случае железа, никеля и кобальта анодная поляризация обычно значительна, однако она часто сравнительно мало ыеняется в зависимости от плотности тока, так что ее можно считать при желании частью [c.58]

    Наполнение анодных покрытий. Когда анодированная или обработанная поверхность алюминия должна быть покрыта лаком или окрашена, поры могут и не играть пагубной роли, и более крупные из них могут даже улучшить адгезию очевидно, что пористость благоприятна, если поверхность покрывается красителем. Однако, по-видимому, лучше для многих целей заполнять поры и для этого известны многие химические процессы. Растворы ацетатов кобальта и никеля имеют своих приверженцев, но Уайтби установил, что для этих целей силикат натрия вполне пригоден, хотя бихромат лучше. Для многих целей кипящая вода дает прекрасные результаты найдено, что деминерализованная вода лучше, чем водопроводная, которая содержит растворенные соли [101]. [c.232]

    Кобальт можно анодно запассивировать в 0,5 т растворе H2SO4. Для этого необходима минимальная плотность тока 5000 А/м , что в 14 раз больше соответствующей плотности тока для никеля [1 ]. Легирование кобальта хромом приводит к уменьшению плотности тока для пассивации сплава с 10 % Сг требуется плотность тока лишь в Ю А/м (1 мА/см ). Сплав, содержащий 10—12 % Сг, почти не подвергается коррозии в горячем и холодном 10 % растворе HNO3, однако в 10 % растворе H2SO4 ИЛИ НС пассивации не происходит, и скорость коррозии достигает очень высоких значений. Легирование сплавов Со—Сг молибденом или вольфрамом ослабляет воздействие на них серной или соляной кислоты, но не азотной. i [c.369]

    Значительное улучшение защитных свойств анодной пленки может быть достигнуто ее легиропанием, которое может быть достигнуто при формировании пленки из электролита, содержащего ионы других металлов, или при добавке со тей различных металлов — ацетата магния, никеля, кобальта, цинка, сульфата марганца и др. В этом случае ионы электролита входят в структуру пленки, прочно с ней сцеплены и цовышают ее коррозионную стойкость. Особенно положительным оказывается влияние легирования на коррозионную стойкость пленки при образовании в ее структуре оклслов шпинельного типа. [c.65]

    Нерастворимыми остаются сульфиды и селениды металлов, благородные металлы, а также углерод и остатки шлака. Эти вещества в процессе рафинирования никеля и образуют шлам. В шлам, составляющий 3—5% массы анодов, переходит и значительное количество меди, которое зависит от содержания серы в аноде, а также до 1% содержащихся в аноде никеля, кобальта и железа. С другой стороны, высокий катодный потенциал, достигающий при выделении никеля минус 0,65 — минус 0,7 В, приводит к тому, что совместно с никелем на катоде разряжаются пе только Н2, но и почти все примеси. Все это обусловливает необходимость отделения катодного пространства от анодного фильтрующей диафрагмой (см. рис. УПМ2). [c.292]

    Анод из файнштейна. При значительном преобладании в аноде сульфидов (содержание серы 20%) большие количества никеля, меди, кобальта и железа уже находятся в ионизированном виде (N1382 и другие сульфиды). В связи с этим основной анодной реакцией, протекающей при значительных положительных потенциалах (до -Ь1,2 В), становится окисление сульфидов до элементарной серы с одновременным переходом ионов металла из анода в раствор  [c.292]

    Для получения кобальта применяют промежуточный кобальтсодержащий материал других производств, например богатые кобальтом конверторные шлаки, кобальтовый шлам из производства цинка или никеля. Если эти материалы не обладают достаточно хорошей растворимостью в кислом анолите электролизеров, то их предварительноперерабатывают. Так, при применении конверторного шлака его подвергают вначале восстановительной плавке в электрических печах с получением сплава, содержащего 6—7% Со, 60% Ре, 30% Ы и 6% Си. Затем этот сплав анодно растворяют в сернокислых или хлоридных электролитах. В первом случае получают раствор, содержащий 7—8% Со - -, много железа и никеля. Эти растворы после очистки подвергают электроэкстракции. [c.298]

    Если при рассмотрении анодных процессов пренебречь включениями малых количеств таких окислов, как N10, ЗЮг, А Оз, то окажется, что отлитые аноды будут представлять собой сплав, состоящий в основном из трех фаз. Первая фаза—кристаллы твердого раствора никеля с медью, железом, кобальтом, платиноидами и углеродом. Вторая фаза будет состоять из кристаллов N1382, а третья — из кристаллов СигЗ. [c.303]

    Схема электрохимической обработки металла представлена на рис. XVI.7. Обрабатываемое изделие служит анодом и растворяется цри прохождении тока. К отрицательному полюсу источника тока подключается катод (инструмент), обычно изготавливаемый из стали. На катоде выделяется водород. Между электродами сохраняется небольшой зазор, по мере растворения анода передвигают катод, чтобы сохранить малое расстояние между анодом и катодом. В зазор между электродами подается под давлением раствор электролита, в данной установке через полость в центре катода. Раствор электролита выносит из межэлектродного пространства продукты анодного растворения и газообразные продукты катодной реакции. Последние затем удаляются в атмосферу, а продукты растворения тем или иным способом выводятся из раствора электролита. В качестве растворов электролитов для обработки сталей и многих цветных металлов (никель, медь, кобальт, титан) и их сплавов применяется раствор Na l для обработки алюминия, цинка, олова и [c.422]

    Для растворения служат обычные ванны с кислотоупорной облицовкой, в которые завешивают недоработанные анодные остатки. В качестве катодов используют забракованные стальные матрицы. Ванну заполняют раствором H2SO4 (150—200 г/л). На аноде образуются ионы никеля, кобальта, меди, железа, на катоде выделяются осадок губчатой меди и водород. Выделяю- [c.361]

    Н. П. Федотьевым предложен способ получения чистого кобальта из раствора Со804 с применением анодов из нержавеющей стали. Анодное и катодное пространства разделены диафрагмой. Циркуляция раздельная — через катодное и анодное пространство. Католит очищают от никеля осаждением диметилглиоксимом, а анолит от железа — содой. В результате получают металл с содержанием 99,9% Со. [c.404]

    Для электролитичеокого получения никеля высокой чистоты в качестве анода используют катодный никель высшего сорта НОО. Электролиз ведут в хлоридном 2,5-н. растворе никелевой соли и 1,5-н, растворе хлорида натрия при 55° С и плотности тока 150 а м в ваннах той же конструкции, как и обычное рафинирование никеля. Схема электролиза и очистки показана на рис. 269. Стекающий анодный раствор очищают от железа и кобальта газообразным хлором при непрерывной нейтрализации чистым карбонатом никеля. Полученный осадок гидроокисей подвергают двойной фильтрации, после чего раствор поступает в башню с кольцами Рашига, в которую снизу подают сероводород. Образующийся осадок сульфидов тщательно отфильтровывают на фильтр-преюсе. Раствор кипятят с добавкой хлорида бария и с пропусканием углекислого газа, затем после отстаивания его тщательно фильтруют от взвеси элементарной серы и сульфата бария. Очищенный раствор подогревают и направляют в ванну. [c.583]

    Для процессов электроокнсления и электросинтеза, особенно при высоких анодных потенциалах, перспективными оказываются различные оксидные системы, в основном оксиды переходных металлов и их композиции оксиды никеля, кобальта, серебра, меди, оксидные рутениево-титановые аноды (ОРТА). Использование оксидов объясняется тем фактом, что при высоких анодных потенциалах они устойчивы и обладают достаточно высокими электро-каталитическими свойствами. [c.301]

    В зоне столбчатых кристаллов происходит местное обогащение сплава никелем, кобальтом и платиновыми металлами, т. е. наиболее ценными компонентами. В результате неравномерности состава зон анодов, отлитых в горизонтальные изложницы, появляется различие в их электрохимическом поведении. Повышение концентрации платиновых металлов в твердом растворе должно сдвигать потенциал его в положительную сторону. Сульфиды металлов, деполяризующая роль которых хорошо известна, оттесняются в период застывания расплава и роста столбчатых кристаллов в наружную сторону анода и создают впоследствии заметное отличие в электрохимическом поведении анодного сплава, выражающееся в разной величине поляризации электрода с его наружной и внутренней стороны. Этот вывод был подтвержден экспериментально В. М. Габовым. [c.426]


Смотреть страницы где упоминается термин Кобальт в анодном никеле: [c.298]    [c.312]    [c.298]    [c.576]    [c.80]    [c.373]   
Колориметрический анализ (1951) -- [ c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Ток анодный



© 2025 chem21.info Реклама на сайте