Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перекись водорода применение для определения

    В случаях, когда ЭХГ применяются в условиях отсутствия или недостатка воздуха, целесообразно в качестве окислителя использовать жидкий кислород или перекись водорода. Перекись водорода имеет определенные достоинства малую массу тары для хранения, легкость транспортировки я возможность применения более простых электродов по сравнению с газовыми электродами. Поэтому ведутся исследовательские и опытно-конструкторские работы по созданию гидразино-перекись-водородных ЭХГ. [c.143]


    Применение окислителей. Существует большой выбор соединений, применяемых в качестве окислителей перманганат калия, хромовый ангидрид и хромовая смесь, азотная кислота, двуокись свинца и двуокись селена, тетраацетат свинца, перекись водорода, хлорное железо и многие другие. Направление и интенсивность действия окислителя на органические соединения зависят от характера окисляемого вещества, природы окислителя, температуры, pH среды и т. д. Так, например, при окислении анилина хромовой кислотой образуется хинон, перманганатом калия в кислой среде — анилиновый черный, перманганатом калия в нейтральной или щелочной среде — азобензол и нитробензол. Окисление проводится в большинстве случаев в водной или уксуснокислой среде. При определении коэффициентов в уравнениях окислительно-восстановительных реакций удобно пользоваться расчетной схемой, основанной на формальном представлении о степени окисления атомов, входящих в состав соединения. [c.129]

    Соли таллня применяются для обнаружения и количественного определения многих ионов. Гидроокись одновалентного таллия рекомендуется в качестве реактива на озон [552, 614] и перекись водорода [801]. Нитрат одновалентного таллия позволяет обнаруживать едкую щелочь в присутствии растворимых сульфидов [229], иодиды в присутствии бромидов [550]. Растворимые соли одновалентного таллия находят широкое применение в качестве реактивов в микрокристаллоскопии [103]. В последнее время для этой же цели рекомендуются соли трехвалентного таллия [793]. Соли одновалентного таллия предлагаются для идентификации органических [c.8]

    Недавно предложено титровать бихромат раствором перекиси водорода, очищенной от примесей металлов на колонке с катионитом КУ-2 титрование выполняют по току окисления перекиси водорода с платиновым электродом при -f 1,0 в на фоне 0,7 и. азотной кислоты в присутствии катализатора — сульфата железа (III). По данным авторов определению хрома не мешает ряд элементов, кроме церия (IV) и перманганата, которые, естественно, окисляют перекись водорода. Некоторое сомнение вызывает устойчивость растворов перекиси водорода во времени. Однако авторы сообщают, что метод применен ими для определения хрома в феррохроме и легированной стали. [c.341]


    Перекись водорода, а также избыток хлорной кислоты мешают вследствие окисления ионов йодида до йода. Умеренные количества хромата не мешают определению, однако применение хромата бария в качестве носителя сульфата бария при выделении хлоридом бария не рекомендуется, так как он может содержать примеси сульфата. В приборе для восстановления сульфатов и дистилляции сероводорода целесообразно провести предварительные опыты. [c.323]

    Общие замечания. Колориметрический метод определения титана основан на сравнении интенсивности окраски, появляющейся при добавлении перекиси водорода к разбавленному сернокислому раствору анализируемой пробы, с интенсивностью окраски стандартного раствора сульфата титана, в который также введена перекись водорода. При анализе горных пород это определение обычно проводят после определения железа в сернокислом растворе, полученном после сплавления прокаленного и взвешенного осадка от аммиаках пиросульфатом калия и растворения плава в разбавленной серной кислоте (см. гл. ЬП1, стр. 955). Испытание на титан, естественно, можно провести идо этой операции. При применении колориметрического метода необходимо соблюдать следующие условия. [c.655]

    При комнатной температуре трудно добиться распространения детонации даже в 100%-ной перекиси. В одной серии опытов [10] с применением сосудов диаметром 25—30 мм оказалось необходимым в качестве сосуда применять прочные трубки из нержавеющей стали и 30 г тетранитропентаэритрита в качестве инициатора, обеспечивающего полную детонацию в каждом опыте. При менее жестких условиях перекись водорода, находящаяся в непосредственном соседстве с инициатором, по-видимому, детонирует, но детонационная волна затухает после пробега определенного расстояния, зависящего от условий. Так, могут оказаться нетронутыми отрезки трубы различной длины, содержащие еще более или менее значительные количества неразложенной перекиси. Ниже приведены некоторые примеры полученных в разных условиях результатов с целью характеристики взрывоопасных областей. Все описанные в дальнейшем опыты проведены с перекисью водорода при комнатной температуре. 100%-ная перекись не детонирует при механическом ударе, например от падающего молота или при простреле. Она не детонирует даже в наиболее жестких условиях инициирования с применением взрыва капсюля-детонатора № 8, "если находится в алюминиевой трубке диаметром 21 мм, зарытой в рыхлый влажный [c.154]

    Перекись водорода оказывает заметное, но не длительное действие на органолептические свойства молока. Почти все авторы, изучавшие этот вопрос, считают, что и запах и вкус молока заметно ухудшаются при добавке перекиси водорода в эффективных концентрациях, если только не разложить ее избыток до потребления молока. По этой причине в различных предложениях, касающихся применения перекиси водорода, рекомендуется сочетать эту добавку с термической обработкой, введением катализатора или длительной выдержкой или же использовать перекись только для консервирования молока в период между выдаиванием и пастеризацией. Такого рода комбинация может даже представлять определенный интерес в ряде новейших патентов [261] подчеркивается, что при добавке перекиси водорода с последующим нагреванием возможна [c.519]

    Определение проводится с применением стартовой пипетки (см. стр. 67). В пробирки вводится вода, люцигенин, перекись водорода и растворы четырехокиси осмия различной концентра ции. В одну или несколько пробирок вместо раствора осмия вводят анализируемый раствор. Измеряют время, за которое достигнута определенная интенсивность свечения, и по графику находят содержание осмия.  [c.127]

    При определении общего содержания фосфора в природных нодах наиболее продолжительной операцией является сожжение органических веществ пробы серной кислотой. Время сожжения колеблется обычно от нескольких часов до нескольких десятков часов, что не только делает определение фосфора одним из самых продолжительных при анализе природных вод, но и увеличивает вероятность частичной его потери при сожжении. Для ускорения сожжения рядом исследователей было предложено применение различных веществ — катализаторов и окислителей, таких как азотная кислота, перекись водорода, хлорная кислота и других, а также комбинации этих веществ [1—4]. [c.112]

    Для титрования церия(IV) по методу восстановления предложены аскорбиновая кислота [8—10] (см. также Ванадий ), щавелевая кислота [И, 12], соль Мора [11, 13], (см. также Ванадий ), перхлорат и нитрат ртути(1) [14, 15], арсенит натрия [16], перекись водорода [17], нафтиламин [18], цИстеин [19], метиленовая голубая [20], гидрохинон [21]. В разделе Марганец упоминается титрование церия(IV) нитритом натрия. Купферон, применяемый для осаждения церия (III), также является восстанови-теле.м по отношению к церию (IV) и может быть применен для его определения,[ 11 ]. В водно-органической среде церий (IV) может быть оттитрован ферроценом [22]. [c.295]


    Бромид можно окислить до бромата с помощью гипохлорита при рН = 5,5—7,0. Для поддержания соответствующего pH применяют буферные растворы. Для последующего разрушения гипохлорита используют формиат натрия или перекись водорода. При окислении бромида до бромата гипохлоритом иод окисляется до иодата, который мешает дальнейшему определению брома. Поэтому в случае применения такого варианта определения бромидов необходимо. предварительно отделить иодиды. Определение бромида после его окисления до бромата заканчивают путем выделения свободного брома и действия его на метиловый оранжевый или розанилин. Для выделения брома к подкисленному раствору бромата прибавляют бромид. Необходимо, чтобы кислотность рас- [c.320]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]

    Концентрированная перекись водорода обладает тем же общим окислительным действием, которое было отмечено для более слабых ее растворов. Однако переход от свойств водных растворов перекиси водорода к свойствам чистой перекиси водорода, содержащей относительно небольшое количество воды, связан с проявлением специфических свойств мощного окислительного агента. Такие свойства ее, как большая растворимость в органических жидкостях, высокая концентрация окислителя и относительно небольшое содержание воды, приводят к тому, что в уже известных процессах, проводимых с перекисью водорода, применение концентрированной перекиси ведет к увеличению эффективности и открывает, кроме того, новые возможности ее применения. Важными факторами, регулирующими реакцию перекиси водорода и дающими ей определенное направление, являются концентрация водородных ионов, наличие и природа катализатора, а также температура. Путем надлежащего выбора растворителя имеется возможность видоизменять действие концентрированной перекиси водорода. Так, применяя алифатические кислоты в качестве растворителей, можно получить характерные реакции надкислот. [c.167]

    Осаждение гидроокиси магния избытком едкого натра в присутствии алюминия, олова, цинка и других амфотерных металлов более пригодно для повышения концентрации магния в растворе, чем для отделения его от этих металлов, поскольку они соосаждаются вместе с гидроокисью магния. Метод отделения магния от таких металлов, как железо, марганец, медь, цинк, свинец и никель, основан на осаждении гидроокиси магния едким натром в присутствии тартрата или цианида, которые предотвращают осаждение указанных металлов . Этот метод выделения магния был применен для определения его в сплавах алюминия. Для отделения магния от больших количеств титана применяют осаждение магния в виде гидроокиси из растворов, содержащих перекись водорода . [c.528]

    Ко второй группе принадлежат теории, основанные на предположении, чтопри медленном сгорании окисляемых веществ кислород не расщепляется на две активные части, а вступает в реакцию как отчасти вскрытая молекула, т. е. как группа — О — О —. Впервые эго предположение было сформулировано М. Траубе, который вполне правильно сводил активирование кислорода к образованию определенного химического соединения — перекиси водорода. К сожалению, Траубе переоценил значение воды в окислительных процессах и сделал ее основным фактором всякого окисления. Согласно Траубе в процессах медленного сгорания окисляемые вещества соединяются не со свободным кислородом, а с кислородом воды, тогда как водород последней присоединяет к себе молекулу кислорода, образуя перекись водорода. Для определенных случаев эта схема верна, но обобщать ее никоим образом нельзя. В частности, в применении к медленному сгоранию водорода in statu nas endi она приводит к очевидному абсурду, что в конце кохщов должен был признать и сам Траубе. [c.62]

    Если применяется продажная олеиновая кислота, то йодное число следует определить заранее и в соответствии с этим вычислить необходимое количество перекиси водорода. Последнюю непосредственно перед применением следует подвергнуть анализу 100%-ная по объему перекись водорода обычно содержит около 30 вес. % Н2О2. Анализ удобно проводить следующим образом навеску 0,2—0,3 г раствора перекиси водорода помещают в коническую колбу с притертой пробкой и приливают 20 мл смеси (3 2 по объему) ледяной уксусной кислоты и хлороформа. Затем прибавляют 2 мл насыщенного водного раствора йодистого калия и смесь оставляют стоять 5 мин. После этого приливают 75 мл дистиллированной воды и выделившийся йод титруют 0,1 н. раствором тиосульфата натрия. Конец реакции определяют при помощи раствора крахмала. Эта методика вполне пригодна и для определения содержания перекиси в окислительной смеси, но в этом случае берут навеску [c.21]

    Типичный пример влияния вспомогательного лиганда показан [57] на рис. 105. Фторид- и оксалат-ионы, образующие прочные комплексы с ниобием, сильно повышают способность ниобия образовывать окрашенные комплексы с ксиленоловым оранжевым. Однако уже при небольших концентрациях избытка NaF или Н2С2О4 (порядка 0,01—0,02 М) окрашенное соединение разрушается. Наоборот, перекись водорода и винная кислота повышают реакционную способность ниобия только после того, как в растворе создается более высокая концентрация этих вспомогательных лигандов (компонентов). Однако применение их делает определение более надежным, так как при значительном избытке перекиси водорода или винной кислоты они не ослабляют окраски. [c.356]

    Часто трудно определить, представляют ли собой перекиси, выделенные из реакционной смеси, перекись водорода или же они являются органическими перекисями до самого последнего времени было предпринято лишь немного попыток определить строение этих перекисей. Выводы относительно характера перекисей могут быть сделаны на основании следующих доказательств 1) состава газа и жидкости, образующихся при разложении перекиси (например, перекись водорода дает при этом кислород и воду гидроперекись оксиалкила при щелочном разложении дает водород и кислоту гидроперекись метила при разложении па платиновой черни [145] дает двуокись углерода) 2) разных цветных реакций, например реакции с применением титановой соли, которую считают весьма специфичной для перекиси водорода (см. гл. 10) 3) характеристики реакции с кислым раствором йодистого калия (гидроперекись метила, например, реагирует лишь в присутствии сернокислого закисного железа как катализатора, но не реагирует в присутствии молибдата аммония [146] кроме того, скорость окисления йодида до йода заметно зависит от характера перекиси [147, 148]) 4) образования нерастворимых неорганических перекисей, например перекиси кальция или пероксобората натрия, при введении соответствующих добавок к продукту, что доказывает наличие перекиси водорода или гидроперекисей оксиалкилов 5) сравнения спектров поглощения с этими спектрами для известных перекисей [149, 150] 6) определения коэффициентов распределения с эфиром [151] 7) методов хроматографического разделения [146, 152] 8) определения скорости термического разложения различных перекисей при температуре реакционной зоны и 9) методов полярографии [152—1541 (см. гл. 10). [c.76]

    Поскольку при работе с высококонцентрированными растворами перекиси требуется соблюдение более строгих требований, чем при работе с разбавленными растворами, сначала следует рассмотреть материалы, которые могут найти применение для 90%-ного раствора, причем для некоторых из них будет дана более подробная характеристика. В прошлом допускалось применение материалов, оказывавших слабое разлагающее действие на перекись водорода, особенно когда по экономическим соображениям выбор можно было сделать лишь из ограниченного их числа. Поэтому в литературе можно найти высказывания, противоречащие приводимым ниже, особенно в отношении работ с разбавленными растворами. Кроме того, как и следовало ожидать, опыты по определению скорости разложения в контакте с большинством поверхностей трудно воспроизводимы даже при тщательном соблюдении условий испытания, и весьма часто наблюдается, что скорости разложения, тщательно измеренные в различных лабораториях в совершенно одинаковых условиях, отличаются одна от другой в несколько раз. Поэтому, чтобы получить общее представление об условиях, в которых разные материалы могут применяться для работы с концентрированной перекисью водорода, мы здесь будем пользоваться качественным методом, используемым фирмой Buffalo Ele tro- hemi al Со. [27], в соответствии с сообщением Дэвиса и Кифа [26], Материалы делятся на 4 общих класса, [c.141]

    Молекулы целлюлозы обладают линейной полимерной структурой, которую можно рассматривать как состоящую из большого числа звеньев глюкозы, соедине1шых своими концами при помощи кислородных эфирных мостиков. Средний молекулярный вес обычно определяют путем измерения вязкости пробы, растворенной в водном медноаммиачном или каком-либо другом аналогичном растворе молекулярный вес почти пропорционален вязкости. Длина цепи, или молекулярный вес, обычно выражается как степень полимеризации, представляющая собой среднее число звеньев глюкозы в молекуле целлюлозы. Целлюлоза, используемая для производства вискозного волокна, обычно представляет химическую древесную целлюлозу специальной очистки с начальной степенью полимеризации от 800 до 1000. Степень полимеризации должна быть понижена примерно до 350, чтобы при последующем растворении целлюлозы в смеси сероуглерода и едкого натра с образованием ксантогената целлюлозы раствор обладал такой низкой вязкостью, при которой е1 о можно было бы продавливать через отверстия фильеры. В США для снижения длины цепи целлюлозу замачивают в растворе едкого натра и оставляют ее созревать в течение 20—40 час. в строго определенных, условиях. В щелочной среде кислород воздуха вступает во взаимодействие с цепями целлюлозы и снижает степень полимеризации (если тщательно защитить целлюлозу от доступа воздуха, то такой деполимеризации не наблюдается). Скорость деполимеризации увеличивается при действии небольших количеств ионов многовалентных металлов, например марганца, железа и гп келя, которые действуют в качестве активаторов. Поэтому во избежание неконтролируемых колебаний деполимеризации содержание таких примесей должно быть доведено до минимума. Время, требующееся для деполимеризации, может быть значительно снижено путем добавки к смеси целлюлозы и щелочи таких окислителей, как гипохлориты или перекись водорода. Действительно, перекись водорода используется для этой цели в производстве вискозного волокна в некоторых европейских странах, но, очевидно, не в США. Дальнейшие подробности по этому виду применения и по использованию перекиси для деполимеризации целлюлозы вообще можно найти в сообщении Маргулиса [37] и в одном техническом бюллетене, где приводится обширная библиография [38.  [c.488]

    Комплексы с перекисью водорода. За последние годы в этой области не достигнуто заметного увеличения чувствительности реакций. В основном велись работы по применению методов к анализу различных объектов и по выяснению состава и прочности этих комплексов. Рекомендуется применение перекисноводо-родных комплексов для определения ванадия [31] и титана [32] в различных материалах. Значительно больший интерес представляют, по-видимому, тройные комплексы ванадий — перекись водорода — комплексен III и аналогичный комплекс титана и железа. Для этих комплексов е 500, но здесь возможны поиски новых третьих компонентов, которые резко увеличат светопогло-щение растворов. [c.99]

    Одной из весьма характерных реакций гидразина в водном растворе является его способность действовать в качестве восстановителя. Водные растворы гидразина используются для восстановления различных металлических ионов до металлов, например для выделения из солей таких металлов, как медь, серебро, золото и металлы платиновой группы. Гидразин восстанавливает также сильные окислители, например перманганат, иодат, гипоиодит, иод, церат и т. п. Многие из этих реакций при проведении их в строго определенных условиях могут быть использованы для количественного определения гидразина. Окисление гидразина не всегда происходит с обра--зованием азота при этом могут получаться различные продукты,-а именно азот, аммиак и, в некоторых случаях, азотоводородная кислота. Образование азотоводородной кислоты наиболее легко протекает в сильно кислых растворах, содержащих ион гидразония, при применении таких окислителей, как перекись водорода и пер-оксидисульфат. [c.99]

    Однако из-за отсутствия подходящего индикатора соли церия не нашлп широкого применения. В 1859 г. И. Гсн-теле впервые использовал стандартный раствор железосинеродистого калия для определения восстанавливающих сахаров [377], а также марганца, мышьяка, сурьмы и хрома в щелочной среде обратным титрованием перманганатом калия. Найти восстановители, пригодные в качестве стандартных растворов, оказалось сложно из-за того, что большинство восстановителей окисляется кислородом воздуха. Попытки использовать в этих целях дитионит [378], нитрат одновалентной ртути [379] и перекись водорода [380] к успеху не привели, и ни одно из этих соединений не вошло в практику анализа. [c.166]

    В Наиболее простых случаях для разложения борсодержащих материалов достаточно обработать их водой или разбавленными кислотами. При необходимости длительного кипячения с кислотами применяют обратный холодильник, чтобы избежать потерь борной кислоты. Выбор кислоты для растворения зависит от намеченного метода отделения мешающих компонентов. Для отгонки бора в виде борнометилового эфира следует применять при разложении только серную или фосфорную кислоту. В большинстве случаев недопустимо присутствие азотной кислоты, часто мешает и хлористоводородная кислота поэтому при растворении металлов для определения бора применяют обычно серную кислоту, а в качестве окислителя вводят перекись водорода или перманганат калия и т. п. Только в том случае, если в дальнейшем намечается определять бор с применением куркумина или других реагентов в нейтральном или слабощелочном водном растворе, рекомендуют использовать для разложения материала хлористоводородную кислоту. [c.49]

    Нами использован ферментативный метод определения глюкозы в мальтозе [1]. Описанный метод аналогичен определению глюкозы в крови. Он имеет ряд преимуществ перед химическим методом благодаря своей высокой специфичности, позволяющей определять глюкоз . в присутствии других сахаров, а также различных редукцирующнх веществ неуглеродной природы. Метод основан на применении глюкозооксидазы. Механизм действия глюкозооксидазы сводится к переносу двух атомов водорода от шестого углеродного атома глюкозы на кислород воздуха, при этом в реакции образуется глюконовая кислота и перекись водорода  [c.71]

    Была изучена возможность применения рекомендованных в литературе растворителей для раздельного определения никеля силикатов, сульфидов и никеля, входящего изоморфно в решетку сульфидов железа (пирротина, пирита) и решетку силикатов (оливина, серпентина, перовскита) [8]. Оказалось, что 30%-ная перекись водорода переводит в раствор никель оливина на 167о. а смесь уксусной кислоты и перекиси водорода — на 87% смесь разбавленной (1 2 или 1 3) серной кислоты с сульфатом меди и фтористоводородной кислотой растворяет никель сульфида в среднем на 4—9%. Возможен перевод в раствор никеля сульфида хлорированием — путем спекания с хлоридом аммония при 300— 350 °С. При этом сульфид никеля превращается в хлорид и затем переходит в раствор при обработке спека водой. Никель силикатов при этом не затрагивается. [c.134]

    Гидразин определяли обратным иодатным методом [44], нитрат-ион — осаждением азотнокислого нитрона [47], аммоний — отгонкой аммиака из щелочного раствора и поглощением его 0.1 н. раствором азотной кислоты, ионы водорода — титрованием 0.05 н. щелочью, а перекись водорода — колориметрическим титрованием с применением солей титана. В случае соли N2H4-HNOa проводилось определение содержания нитрат-иона до и после озонирования, и образовавшийся нитрат рассчитывали по разности. Также по разности рассчитывали и содержание образующихся Н+-ионов. Точ- [c.142]

    В большинстве случаев трудно регулировать реакции окисления с целью получения лишь одного определенного продукта. Так, например, при окислении спирта до кислоты часто получается некоторое количество альдегида и эфира. Далее, каталитическое окисление микроколичеств веществ воздухом или кислородом нельзя проводить такими же способами, как гидрирование. Даже альдегиды не окисляются полностью до карбоновых кислот при пропускании воздуха или кислорода через раствор альдегида в присутствии катализатора в течение достаточно продолжительного времени. Черонис и Коуджешелл изучили окисление небольших количеств (100 мг) некоторых альдегидов путем барботирования воздуха или кислорода через их растворы в интервале температур от 40 до 100°. Было испытано несколько растворителей и целый ряд катализаторов (Р1, Рс1, Со, Мп, N1, Си, Сг и Ре) [1], но пи в одном случае не было получено достаточного количества чистой кислоты. Малая скорость реакции, по-видимому, объясняется, с одной стороны, наличием растворителя, а с другой стороны—трудностью активации молекулярного кислорода. Следует тщательно выбирать условия для окисления веществ, взятых в микро- или полумикроколичествах. Вообще метод, используемый для окисления макроколичеств веществ в жидкой фазе, может быть использован для окисления полумикроколичеств этих же соединений с уменьшением выхода на 15—30%. Однако применение этого метода для окисления 50 мг или еще меньших количеств должно быть проверено в каждом отдельном случае. По-видимому, для окисления миллиграммовых количеств может быть весьма полезной перекись водорода высокой концентрации, которая в последнее время появилась в продаже [2]. [c.216]


Смотреть страницы где упоминается термин Перекись водорода применение для определения: [c.414]    [c.269]    [c.363]    [c.132]    [c.319]    [c.341]    [c.355]    [c.71]    [c.371]    [c.415]    [c.81]    [c.287]    [c.70]    [c.376]    [c.70]    [c.376]   
Колориметрический анализ (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водород определение

Водород применение

Водорода ион перекисью водорода

Водорода перекись



© 2025 chem21.info Реклама на сайте