Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород хемосорбция на металлах при низких

    Те поверхностные примеси, которые образуют дипольный слой того же знака, что и слой, образованный самими адсорбированными атомами, уменьшают теплоту хемосорбции и вызывают увеличение энергии активации. Именно поэтому хемосорбция водорода на металлах, недостаточно восстановленных или загрязненных примесями, образующими отрицательные диполи, либо, наконец, частично окисленных, всегда протекает с энергией активации (разделы V, 9 и IX, 9). Одновременно теплоты хемосорбции будут иметь более низкие значения. Если бы никелевый порошок, применявшийся в опытах Эйкена, описанных в разделе IX, 1 (рис. 28, кривая 2), был загрязнен таким количеством ионов кислорода (вследствие недостаточного восстановления), которое вызвало бы появление эффекта поверхностного потенциала такой же величины, как и эффект, создаваемый адсорбцией са.мого водорода при О =0,3, то кривую 2 на рис. 28 следовало бы сместить вправо па расстояние и = 0,3. В результате этого она практически совпала бы с кривой 4, полученной Шуи и де Буром. [c.165]


    В настоящее время исследования хемосорбции обычно проводятся на сконденсированных пленках, так как их поверхность настолько велика, что адсорбцию можно измерять с большой степенью точности. К тому л<е при изучении хемосорбции металлов с низкой температурой плавления можно использовать пленки, а не нити накала. В результате этих исследований было установлено, что хемосорбция таких газов, как водород, азот, окись и двуокись углерода и этилена, быстро протекает на многих металлах (но не на всех). Например, хемосорбция водорода на марганце и окиси углерода на алюминии при комнатной температуре протекает медленно, а при взаимодействии окиси углерода (или этилена) с цинком [67] при комнатной температуре хемосорбция не была обнаружена. [c.287]

    Металл, находясь в среде водорода, приводит к его частичной диссоциации на атомы. Атомный водород в определенных условиях в толще металла рекомбинирует в молекулярный, что приводит к повышению давления и возможному разрушению металла. При низких температурах происходит адсорбция водорода на металлах образуются связи между водородом и металлом. Теплоты адсорбции водорода на металлах убывают в следующей последовательности Та > > Сг > Ре > М1 > РЬ > Си > Аи. При хемосорбции наибольшую активность имеют переходные металлы, а в пределах одного ряда активность переходного металла уменьшается с увеличением порядкового номера элемента. [c.498]

    Объяснение очевидной связи между каталитической активностью и электронным сродством металлов не может быть таким же простым, как в случае гомогенных катализаторов. Это связано с тем, что хемосорбция водорода в отличие от расщепления водорода ионами металлов в растворе является экзотермическим процессом и, следовательно, как показано ранее, проявление каталитической активности зависит не только от низкой энергии активации адсорбции, но и от малой теплоты адсорбции. Интерпретация, предложенная для гомогенных катализаторов, может объяснить обратную зависимость Еа от работы выхода электрона, но она не в состоянии объяснить, почему для Q должна иметь место аналогичная зависимость. [c.368]

    Вопрос О природе каталитической активности и связи ее с положением соответствующего элемента в периодической системе имеет существенное значение не только для развития общей теории катализа, но также и с точки зрения более общей проблемы взаимодействия твердых поверхностей с окружающей средой. Имеются определенные указания на то, что при хемосорбции водорода на металлах переходных групп при низких температурах важную роль играет наличие у этих металлов незаполненной -зоны [1]. [c.806]


    Как известно [12, 13], каталитическая активность переходных металлов связана с наличием у них вакантных мест в й -оболочках. При хемосорбции водорода на металле происходит образование ковалентной связи водород—металл, сопровождающееся заполнением этих вакантных мест. Чем больше незаполненных мест в с -слоях, тем более активен переходный металл. На основании этого наибольшую активность должны бы были иметь металлы Рб, Р1, N1, а золото и серебро должны бы давать более низкие выходы. Мы же, напротив, получили для палладия и никеля активность более низкую, чем для золота и серебра. Этот факт, вероятно, можно объяснить способностью Р(1 и N1 образовывать с водородом прочные связи. Водород входит в кристаллическую решетку этих металлов в виде протонов, а его электроны заполняют вакантные места в -оболочках, понижая активность металлов. С повышением температуры металлы отдают водород. Уже при 300°С [14, 15] палладий практически лишен водорода, для никеля эта температура выше 700°С [14]. Этим, возможно, и объясняется изменение относительной активности, наблюдавшееся при переходе от силы тока 1 к И ма. Активность палладия возросла, он перешел на второе место после платины, что касается никеля, то повышение температуры стенки, связанное с повышением силы тока в указанном пределе, еще недостаточно для удаления из него водорода, поэтому активность его по-прежнему низкая. [c.233]

    Вывод об адсорбции нейтральных органических веществ при высоких положительных потенциалах, сформулированный впервые в работе [3], представляется принципиально важным. По термодинамической теории Фрумкина (см. [1]), посадка водорода и кислорода препятствует адсорбции органики на металлах группы платины. Эксперимент действительно подтверждает наличие области максимальной адсорбции при минимальных [н дс] и 0[Оадс] ( о) в диапазоне низких потенциалов. Распространено негативное отношение к возможности хемосорбции органик при ф>фо, широко используется и рекомендуется анодная очистка платинового электрода от адсорбированных примесей поляризацией при ф>1,2 в. [c.122]

    Вероятно, было уделено недостаточное внимание интерпретации слабой полосы при 3020 см . Возможно, что эта полоса принадлежит основному поверхностному соединению. Литтл, Шеппард и Иейтс (1960) установили, что весьма большое увеличение ее интенсивности происходило при гидрировании олефиновых соединений, возникших при хемосорбции ацетилена (см. ниже и рис. 4). В этой последней системе не обязательно прибегать к предположению о существовании насыщенных углеводородных структур, связанных с несколькими поверхностными атомами металла (структура IV) и имеющих низкое содержание водорода. Сообщалось также о случаях очень большого изменения интенсивности при гидрировании ненасыщенного углеводорода в объеме (см. гл. 15). Однако Эйшенс (1965) предпочитает не придавать слишком большого значения олефиновым поверхностным соединениям, поскольку при проведении 200 отдельных опытов с добавлением этилена к никелю во многих случаях не было найдено вообще никаких доказательств появления полос, обусловленных олефиновыми структурами. [c.143]

    Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Кислород на металлах или водород на никеле адсорбируется при низких температурах физически, ввиду малой скорости химической реакции при этих температурах, но при повышении температуры начинает протекать адсорбция с заметной энергией активации активированная адсорбция) по типу химических реакций. В определенном интервале повышения температур прирост химической адсорбции (или хемосорбции) перекрывает падение физической адсорбции и на кривой температурной зависимости адсорбции возникает промежуточный максимум (рис. 42), характерный для наличия активированной адсорбции. [c.87]

    Орр измерил изменения теплот адсорбции аргона, азота и кислорода на кристаллических галогенидах щелочных металлов. Расчеты, проведенные на основе полученных им значений Д(3 при 6 = 0,5, показывают уменьшение энтропии примерно на 16 энтр. ед., что точно соответствует значениям, предсказываемым для двумерного газа. Большие изменения энтропии, связанные с сильной адсорбцией на фиксированных центрах, отмечены при хемосорбции азота на железе и воды на окиси цинка, а также при низкотемпературной физической адсорбции водорода на стекле и на шабазите. Если водород адсорбируется на металлах, то при низких температурах адсорбированные атомы неподвижны, но подвижность возрастает как с увеличением степени заполнения поверхности, так и с повышением температуры. Неоднородность центров поверхности можно обнаружить даже при низкотемпературной физической адсорбции благородных газов на металлах. Так, было установлено, что при 77—90° К теплоты адсорбции ксенона и криптона на никеле уменьшаются с 5,4 до 4,5 ккал-моль- для криптона и с 4,75 до 4,60 ккал-моль для ксенона. Эти расчеты были проведены по уравнению Клаузиуса —Клайперона [c.103]


    Значительная часть фотоэлектрических измерений, проведенных при более высоких температурах, указывает на то, что хемосорбированный водород образует диполи с положительными концами, направленными от поверхности однако некоторые более поздние измерения контактных потенциалов, выполненные при низких температурах (при температуре жидкого воздуха), указывают на наличие противоположно направленных диполей. Поэтому нельзя исключить возможность того, что на одних и тех же поверхностях металлов могут протекать оба типа хемосорбционных процессов. При этом можно предположить, что хемосорбция последнего типа, которая в случае железного адсорбента была названа хемосорбцией Л-типа и может быть изображена схемой [c.76]

    Оба описанных типа адсорбционных процессов оказывают отравляющее действие на обмен водорода и дейтерия на железных катализаторах при очень низких температурах (—196°С). Наблюдаемые в этом случае зависимости имеют тот же характер, что и при адсорбции водорода на угле. При столь низких температурах, по-видимому, происходит хемосорбция того типа, который сопровождается значительно более низкими теплотами адсорбции и десорбции, чем хемосорбционные процессы, преобладающие при более высоких температурах [123]. Хотя окончательно это решить нельзя, можно предположить, что низкотемпературная хемосорбция относится к диссоциативному типу, поскольку в этих условиях происходит обмен водорода с дейтерием. Так или иначе связь между двумя атомами водорода должна быть сильно ослаблена. Можно считать, что при температуре жидкого воздуха в хемосорбционных процессах участвуют иные электроны металла, чем при более высоких температурах, когда связи, по-видимому, образуются за счет -электронов. [c.78]

    Теплота хемосорбции имеет довольно высокое значение, на что указывает низкое положение минимума О. Молекулярный водород может (проникать внутрь железа (в атомарной форме) при условии, что его кинетическая энергия достаточно высока для достижения уровня Е, с которого он может продолжать движение внутрь металла (уровень Р). На подобной схематической потенциальной кривой трудно указать точное положение поверхности. Она находится где-то в области вертикальных пунктирных линий. Атомарный водород, приближающийся с уровня С, обладает достаточной энергией для того, чтобы проникнуть [c.163]

    Причина этих различий заключается, по-видимому, в особенностях активации окисляющейся молекулы Нз на указанных двух типах катализаторов, поскольку хемосорбция Ог протекает достаточно быстро на всех металлах [38]. Известно, что переходные металлы уже при низких температурах быстро адсорбируют молекулярный водород, который при этом диссоциирует на атомы, обладающие высокой реакционной способностью [c.29]

    Обычно считается, что каталитическая активность обусловлена наличием незаполненных уровней в -зоне, что делает возможной хемосорбцию водорода на этих металлах. Некоторые доводы в пользу такого представления будут приведены ниже. При этом следует принять во внимание, что те переходные элементы, для которых степень заполнения -зоны низка (металлы в ряду 5с—Мп), адсорбируют водород слишком сильно и образуют с ним химические соединения и поэтому не могут катализировать реакции с участием водорода. [c.129]

    Хемосорбция водорода на металлах и оксидах может протекать в двух атомарных формах. Хемосорбция водорода в прочно связанной атомарной форме (Н -форма с Гд > 480 °С) осуществляется на электроннодефицитных металлических частицах и на оксидах в низкой степени окисления. Слабо связанная атомарная форма водорода (Н -форма с > 300 °С) характерна для алюмо-металлических катализаторов с высокой концентрацией металла и биметаллических систем, содержащих объемные фазы восстановленного металла (например, Pt-Sn/AljOa). Различная дисперсность восстановленных частиц в свою очередь создает набор энергетически разных центров хемосорбции на поверхности. Например, монодисперсные частицы Pt на AI2O3 (2,3 4,5 или 9,0 нм) хемосорбируют водород с различными энергиями связи = 204 113,4 или 96,6 кДж/моль). [c.697]

    Изучая окисление СО на uHY при температурах 300 50° С, Боресков и сотр, [75] установили, что активность цеолитов резко увеличивалась после введения более 5% Си кинетика реакции описывается уравнением первого порядка по окиси углерода и нулевого —по кислороду. В результате авторы работы [75] пришли к выводу, что активными центрами являются либо доступные катионы меди, расположенные в больших полостях, либо центры, содержащие больше одного катиона меди. Кубо и сотр. [72] опубликовали данные по окислению СО на ряде катализаторов, в том числе на цеолитах X и Y с низкозарядными катионами. Образцы готовили ионным обменом в токе окиси углерода, а затем восстанавливали в водороде при 400° С. Однако и в таких условиях, в частности при отмывке образцов на воздухе, могло происходить частичное окисление катионов. Хемосорбция кислорода на Со(П)-, Мп(П)- и Т1(1)-формах была мала (< 0,1 атома кислорода на атом металла), низкой была и каталитическая активность этих цеолитов. Цеолиты в Ре(П)-Си(1)-формах хемо-сорбировали до 0,5 атома кислорода на атом металла. Эти же образцы проявляли наиболее высокую активность, причем цеолиты X оказались активнее, чем Y. Значительные количества кислорода хемосорбирует и Сг(11)-форма, но ее активность была низкой. На цеолитах, содержащих катионы Fe(II), реакция имеет первый порядок по СО и дробный по кислороду. Кубо и сотр. [72] предполагают, что окисление протекает в соответствии с механизмом Ридйла и что этот процесс можно схематически представить реакциями (23) и (24). [c.145]

    Близкие значения удельной каталитической активности для платины и никеля, а также резкое падение активности нри переходе от никеля к меди и от платины к золоту свидетельствуют о зависимости каталитической актх вности от числа неспаренных электронов в -зоне металла. Число неснаренпых электронов в -зоне влияет на энергию связи хемо-сорбированного водорода с металлом. На металлах с незаполненной -зоной (железо [21], никель [22]) адсорбция водорода протекает с большой скоростью и даже при низких давлениях отвечает покрытию большей части поверхности. При адсорбционно-десорбционном механизме обмена максимальная скорость реакции соответствует заполнению поверхности хемосорбированным водородом приблизительно наполовину. Поэтому падение энергии связи водорода с поверхностью металла, соответствующее уменьшению числа неспаренных электронов в -зоне в ряду Ге—Со—N1, приводит к увеличению удельной каталитической активности. При переходе к следующему металлу — меди — с заполненной -зоной энергия связи водорода с поверхностью металла и скорость хемосорбции резко уменьшаются. [c.74]

    На металлах с незаполненной -зоной адсорбция водорода протекает с большой скоростью и даже при низких давлениях равновесное заполнение поверхности значительно. При адсорбционно-десорбцион-ном механизме обмена максимальная скорость реакции достигается при заполнении поверхности катализатора хемосор-бированным водородом приблизительно наполовину. Поэтому падение энергии связи водорода с металлом при хемосорбции в ряду железо, кобальт никель с уменьшением числа неспаренных элект- [c.233]

    При комнатной и более высоких температурах молекулы, связанные с поверхностью вандерваальсовыми силами, постепенно становятся хемосорбированными [51]. Эта особенность кислорода отчетливо обнаруживается в его способности катализировать (благодаря парамагнитным свойствам) реакцию орто-пара превращения водорода. Будучи адсорбированным на угле при низких температурах, кислород ускоряет эту реакцию, но если адсорбция происходит при более высоких температурах, то он оказывает отравляющее действие [132, 133], Следовательно, для протекания реакции кислорода с поверхностью угля требуется энергия активации. В случае адсорбции на металлах энергия активации может быть ничтожно малой или даже равна нулю. Па поверхности цезия при температуре жидкого воздуха кислород самопроизвольно образует хемосорбционный слой молекул поверхностного окисла. Вполне возможно, что этот хемосорбционный процесс не имеет диссоциативного характера (см. далее настоящий раздел). На пленке молибдена, полученной испарением металла в высоком вакууме, переход от физической адсорбции к хемосорбции требует более высоких температур. Этот переход может быть обнаружен по уменьшению электропроводности пленки в результате хемосорбции кислорода [78]. Аналогичная картина наблюдается при адсорбции кислорода на никеле и платине [53]. [c.83]

    В р-циях с участием Н наиб, активны металлы, на пов-сти к-рых происходит его хемосорбция с диссоциацией и низкой энергией связи атомарного водорода. Сплавы u-Ni, Au-Pt, Ag-Pd менее активны, чем чистые металлы VIII группы. На чистых металлах 16 группы не адсорбируется и не активируется. [c.540]

    Выше мы касались вопроса о физической или химической природе сил, определяющих адсорбцию (ср. теории Лангмюра и Поляни). Следует отметить, что это различие далеко не всегда может быть четко проведено. В крайних случаях физическая адсорбция, определяемая лишь Ван-дер-Ваальсовыми силами, характеризуется хорошей обратимостью, отсутствием стехиометрических соотношений, уменьшением адсорбции при повышении температуры, близостью тепловых эффектов адсорбции к теплотам сжижения или испарения такова адсорбция инертных газов или гексана на угле. В других крайних случаях химическая адсорбция осуществляется только путем химического взаимодействия, например, между кислородом и вольфрамом или кислородом и серебром при повышенных температурах здесь адсорбция почти необратима, тепловой эффект близок к энергии образования химических соединений (около 100 ккалЫоль и выше) и др. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Кислород на металлах или водород на никеле адсорбируется при низких температурах физически, ввиду малой скорости химической реакции при этих температурах, но при повышении температуры начинает протекать адсорбция с заметной энергией активации (активированная адсорбция) по типу химических реакций. В определенном интервале повышения температур прирост химической адсорбции (или хемосорбции) перекрывает падение физической адсорбции и на кривой температурной зависимости адсорбции возникает промежуточный максимум (рис. 41), характерный для наличия активированной адсорбции. [c.97]

    Интерпретация теплот адсорбции в отношении связи метал—адсорбат определяется знанием стехиометрии хемосорбцин, которая в свою очередь зависит от условий процесса. При адсорбции на переходных металлах таких молекул, как водород, кислород, азот и насыщенные углеводороды, если температура достаточно высока, преобладает диссоциативная хемосорбция. Однако известно, что при низкой температуре и большом покрытии часть водорода и азота адсорбируется в слабосвязанной молекулярной форме. Кроме того, недиссоциативная хемосорбция важна в случае олефинов или ароматических углеводородов из-за взаимодействия их я-электронов с поверхностными атомами металла. [c.24]

    Если данный образец сплава однофазен и равновесен по составу, в раздельном определении удельной поверхности необходимости нет при этом остается неясным только соотношение состава поверхности образца и объемной фазы, этот вопрос рассматривается в одном из последующих разделов. Однако, если на поверхности находится несколько фаз, при исследовании и массивных, и дисперсных образцов приходится решать, каков вклад каждой фазы в общую удельную поверхность металла. Эту проблему можно решить, используя хемосорбционные данные, только если удастся найти такой адсорбат, который специфичен для разных фаз. Хемосорбционные свойства однокомпонентных фаз, находящихся на поверхности, можно оценить по соответствующим свойствам однокомпонентных образцов. Например, на образце, который, как можно предполагать, содержит на поверхности только никель и медь, долю поверхности никеля мoлiнo измерить по быстрой хемосорбции водорода при комнатной или более низкой температуре [112], поскольку медь в этих условиях не поглощает водорода Однако хемосорбционные свойства двухкомпонентной фазы мо гут значительно зависеть от ее состава, как, например, досто верно установлено для систем N1—Си [114, 115] и Pt—Си [116] Чаще всего только хемосорбция оказывается недостаточно спе цифичной и не позволяет дать полную характеристику биметаллического катализатора, В принципе специфичность [c.329]

    Положение о связи активности с d-электронной конфигурацией усиленно отстаивалось Дауденом [78]. Имеется много экспериментальных подтверждений этой точки зрения для области хемосорбции и катализа на металлах, и Дауден попытался распространить ее на окислы переходных металлов. Успешнее всего это можно было сделать для реакций с участием водорода, потому что для этого газа, в отличие от кислорода, хемосорбция не обязательно осуществляется путем простого переноса электрона. Мы уже упоминали (раздел IV, А), что хемосорбция водорода на окиси цинка и закиси никеля ниже 100° не оказывает влияния на электропроводность, и отсюда можно сделать вывод о том, что осуществляется слабая форма хемосорбции, возможно, путем ковалентной связи через ионы металла. Для построения ряда активности наиболее пригодной для исследования является реакция обмена Нг — Ог. Она была изучена Дауденом, Маккензи и Трепнеллом [79], которые указали, что нельзя согласиться с прежними предварительными выводами об rt-характере проводимости (например, в окиси цинка или в восстановленной окиси хрома) как об основном факторе, объясняющем высокую активность в реакциях с участием водорода [80]. Вместо этого, согласно интерпретации названных авторов, их результаты указывают на пример такого изменения свойств в ряду ионов переходных металлов, которое отличается наличием двух максимумов, причем низкая активность окиси железа характеризует устойчивость а -конфигурации. Имеются сомнения в надежности некоторых из их экспериментальных [c.345]

    Рис. 2 дает более наглядную картину этой связи. Хемосорбированный этилен реагирует с хемосорбированньш водородом, образуя этан. Это впервые было установлено при хемосорбции дейтерия на металлическом никеле, последующем добавлении этилена и, наконец, выделении дейтери-рованного этана с поверхности. Сходные процессы происходят с пропиленом и бутеном-1, которые гидрируются, а также показывают наличие размыкания двойной связи под влиянием катализатора при относительно низких температурах. Последнее явление проявляется также в элементарных этапах циклизации октена с образованием смеси 1,3-и 1,4-диметил-цнклогексанов. Во всех этих случаях подтверждается факт хемосорбции молекул олефинов со значением теплот адсорбции порядка 50—100 ккал в зависимости от природы о.лефина и металла. [c.33]

    Чтобы реакция синтеза аммиака могла идти на каком-либо катализаторе, на нем должна происходить хемосорбция либо одного, либо обоих реагирующих веществ. Мнение, что диссоциативная адсорбция азота является самой медленной стадией синтеза аммиака, подтверждается данными из независимых источников и поэтому разумно, но-видимому, сделать вывод, что те металлы, которые слабо хемосорбируют азот (прочная хемосорбция должна ингибировать, а не усиливать реакционную способность) являются наиболее активными для синтеза аммиака. Вероятно, наиболее убедительным доказательством служит тот факт, что хотя большинство металлов способно адсорбировать водород, активными для синтеза аммиака являются только те металлы, которые могут хемосорбировать азот в виде атомов. Наиболее легко хемосорбируют азот переходные металлы, и эта тенденция возрастает при переходе от элементов, расположенных в правой части периодической системы, к элементам, находящимся в ее левой части, что следует из увеличения теплоты адсорбции азота, уменьшения энергии активации адсорбции и повышенной тенденции к образованию нитридов. Экспериментальные данные, полученные с помощью метода вспышки (разд. 3.2.8.1), показывают, что существуют две формы хемосорбированного азота, одна из которых слабее удерживается на поверхности, чем другая [127—129]. Был сделан вывод, что для азота, адсорбированного в виде атомов, наиболее вероятна слабая хемосорбция. Кроме того, теплота адсорбции азота на большинстве металлов велика, а некоторые металлы, особенно железо, требуют энергии активации для адсорбции азота в атомарном состоянии [130]. Вероятно, что кратность связи между металлом и атомарным азотом равна 3, и поэтому не является неожиданным тот факт, что наблюдаются высокие теплоты адсорбции и низкие степени заполнения поверхности. Поскольку металлы VIII группы, расположенные после осмия, обладают меньшим числом вакантных -орбиталей, чем Fe, Ru или Os, становится понятным их неспособность как хемосорбировать азот в виде атомов, так и воздействовать на реакцию синтеза аммиака. [c.354]

    Изучать электрохимическую адсорбцию кислорода практически сложнее, чем водорода, поскольку а) могут образовываться многослойные окисные пленки б) частицы О могут хемосорбироваться либо на поверхности раздела таких пленок с объемными свойствами , либо на самом металле, как это имеет место, например, в случае платины (вероятно, уникальном) и, возможно, родия в) эффекты барьерного слоя [125] могут искажать кривую спада потенциала г) могут наблюдаться изменения валентного состояния в поверхностном окисле или адсорбированном слое [8, 27, 151], что ошибочно может интерпретироваться как изменение степени покрытия частицами более низкой валентности д) в результате поверхностного окисления может изменяться величина истинной поверхности е) при измерении нестационарных анодных и катодных кривых заряжения могут получаться как завышенные, так и заниженные результаты [8, 125]. Несмотря на эти осложнения, ряд важных исследований был выполнен на благородных металлах VIII группы и золоте, а также на окисно-никелевом электроде, где на границе раздела полупроводникового объемного окисла, представляющего собой твердый раствор Ni (II) — Ni (III) — Ni (IV), наблюдается хемосорбция промежуточных частиц, содержащих О. Некоторые из наиболее ранних работ по адсорбции кислорода были выполнены Батлером с сотр. [152], которые нашли, что кривые заряжения для платины имеют линейную форму, но их наклоны (емкости) зависят от предшествующей обработки электрода и от начального потенциала измерения анодной кривой заряжения. Емкость в начальной линейной области заряжения — около 400 мкф на 1 см истинной поверхности и приблизительно постоянна в интервале потенциалов порядка 0,4 е однако если провести повторное заряжение электрода от потенциала вблизи -f l,Oei H и затем спять катодную кривую заряжения до этого потенциала, то величина емкости уменьшится приблизительно в шесть раз это свидетельствует о том, что в предшествующем цикле восстановление прошло не до конца и процесс является необратимым. В этом нет ничего необычного между катодными и анодными кривыми заряжения в большинстве случаев, в том числе при адсорбции водорода, наблюдается гистерезис подобные эффекты Феттер и Берндт [153] наблюдали во всем интервале pH от О до 12. [c.479]

    Хемосорбция азота в атомарной р-форме легче всего идет на металлах, имеющих в -полосе три или большее число вакансий, т. е. на Та, Мо, Т1, 2г, Ре. Сюда же можно отнести такие элементы, как Са и Ва. Железо адсорбирует азот при низких температурах с выделением тепла в количестве от 10 ккал-моль при 0 = О до 5 ктл-моль при 0=1. Возможна также активированная адсорбция азота, при которой теплоты адсорбции изменяются от 70— 40 ктл-моль" при 0 =0 до 16 ккал-моль при 0=1. Имеются данные, свидетельствующие, что при 6 = 1 на один атом азота приходится пять атомов поверхности железа. Однако это состояние временное, так как азот может растворяться в а-железе до количеств, соответствующих составу РегЫ. При нагревании такого азотированного железа происходит выделение молекулярного азота по бимолекулярной реакции. Кажущееся уменьшение ДЯ с заполнением поверхности скорее может быть обусловлено растворением в объеме, чем поверхностным взаимодействием. Изотопный обмен у азота легко проходит при 250° на осмии и при примерно 450° на молибдене и на промотированных железных катализаторах, но при температурах выше 1100° К обмен следует проводить на вольфраме. Промоти-рованные железные катализаторы, используемые для синтеза аммиака, обычно готовят восстановлением в водороде при 500° смеси 95% Рвз04 с 4—5% А Од и О—1% К2О. [c.164]

    Другое возможное объяснение существования двух типов адсорбции было недавно предложено Цвитерингом [122], который предполагает, что адсорбция Л-типа происходит в результате ориентации диполей атомов водорода отрицательными полюсами в направлении от поверхности, в то время как при адсорбции В-типа они направлены в противоположную сторону. Адсорбция Л-типа сходна с хемосорбцией на поверхности чистых металлов, которые применяются в виде проволочек или пленок, полученных путем возгонки. Знак заряда дипольных слоев, образующихся при хемосорбции водорода в условиях очень низких температур, действительно соответствует ориентации диполей отрицательными концами от поверхности. [c.76]

    Совокупность данных, полученных на металлах, говорит в пользу механизма Бонхеффера — Фаркаша, и на одном окисле — СгзОз — авторы получили результаты о зависимости к от давления, которые, по-видимому, наилучшим образом объясняются с точки зрения того же механизма. Условием проявления высокой каталитической активности, с точки зрения механизма Бонхеффера—Фаркаша, является слабая, но быстрая хемосорбция водорода. Если в адсорбции участвуют -электроны иона металла, то отсутствие таких электронов у окислов, находящихся в начале изученной авторами серии, может обусловливать очень медленную хемосорбцию и, следовательно, низкую каталитическую активность. Окислы, находящиеся в середине периода МпО и РсгОз, обладают стабильной структурой , которая опять-таки может обусловить медленную адсорбцию, [c.83]

    Для сравнения методов очистки и их техноэкономических показателей рассмотрим извлечение из газов сероводорода. Для очистки от этой токсичной примеси применяются абсорбционный, адсорбционный и каталитический способы. Абсорбционный способ очистки от H2S растворами этаноламинов или мышьяково-содовым раствором применяют в производстве водорода для синтеза аммиака. Для очистки выхлопных газов от H2S применяют иногда более дешевые растворы карбонатов щелочны металлов, аммиака, суспензии гидроокиси кальция, гидроокиси железа (III) в содовом растворе (железосодовый раствор) и др. Во всех методах в жидкой фазе протекают реакции, повышающие скорость процесса и степень извлечения H2S. Отработанные поглотительные растворы необходимо регенерировать во избежание новых источников загрязнения водоемов. Все абсорбционные очистительные установки, состоящие из башен с насадкой, работают при низких температурах 20—30° С и атмосферном или повышенном давлении (до 30 ат). Хемосорбция сопровождается десорбционными стадиями регенерации поглотительных растворов (при нагреве или перегонке в вакууме с выделением более концентрированного сероводорода, идущего на производство серной кислоты). При содово-мышьяковом способе продукты регенерации — сера и тиосульфат натрия. Принципиальная схема мышьяково-содовой очистки газов от сероводорода представлена на рис. 116. [c.268]


Смотреть страницы где упоминается термин Водород хемосорбция на металлах при низких: [c.238]    [c.29]    [c.76]    [c.163]    [c.520]    [c.324]    [c.198]    [c.82]    [c.31]    [c.96]    [c.238]    [c.436]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы водородом

Хемосорбция



© 2025 chem21.info Реклама на сайте