Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз с ртутным катодом, восстановление

    Пятивалентный ванадий можно легко восстановить электролитически в (КИСЛЫХ растворах до четырехвалентного состояния, особенно легко при работе с ртутным катодом. Восстановление до низших степеней валентности может быть достигнуто также при помощи металлов с отрицательными значениями нормальных потенциалов. Воостановление же до металла пока еще никому не удавалось—ни цементацией, ни электролизом водных растворов. Этому препятствует, по-видимому, конкуренция со стороны водорода, которая проявляется в данном случае еще резче, чем в случае (рения (см. главу I), так как потенциал восстановления ванадия до металла гораздо отрицательнее, чем соответствующий потенциал рения. [c.115]


    Рассмотрим более подробно явление концентрационной поляризации на капельном ртутном катоде при разряде ионов металла, например кадмия. В отличие от рассмотренного случая восстановления ионов серебра на серебряном электроде, где природа металла в процессе электролиза не меняется, при разряде ионов кадмия на ртутном катоде происходит образование амальгамы кадмия. Потенциал амальгамного электрода [c.644]

    Электролиз можно применять для выделения следовых количеств элементов, стоящих в ряду напряжений дальше, чем элемент матрицы или другие мешающие определению компоненты. При этом можно провести кулонометрическое определение с одновременным электрохимическим отделением или выделить элемент электрохимически или химически, а затем применить другие методы анализа. После выделения следовых количеств элементов на проволоке из инертного тугоплавкого металла их можно определить эмиссионными методами, внося проволоку, например, в пламя. Электролиз можно также применить для отделения матрицы, если металл матрицы стоит в ряду напряжений дальше, чем элемент, содержащийся в следовых количествах. Такие выделения обычно осуществляют, проводя восстановление на ртутном катоде. Преимуществом использования ртутного катода по сравнению с электролитическим осаждением является то, что не происходит адсорбции следовых количеств элемента, т. е. определяемый элемент практически полностью остается в растворе, не содержащем ионов металла матрицы. Но с другой стороны, при этом не достигается концентрирование определяемого элемента. [c.422]

    Потенциал полуволны. Потенциал ртутного катода в тот момент, когда достигнута величина напряжения разложения и начинается электролиз, называется потенциалом выделения (или восстановления) данного иона. Потенциал выделения зависит от природы иона, однако на эту величину оказывает влияние концентрация восстанавливающегося иона и некоторые другие факторы- Поэтому для качественного определения ионов пользуются так называемым потенциалом полуволны, который не зависит от концентрации восстанавливающегося иона. [c.150]

    Применение ртутного катода, обладающего высоким перенапряжением выделения водорода, позволило решить эту проблему. При электролизе на ртутном катоде большое значение имеет обновление за счет перемешивания поверхности катода для его деполяризации и ускорения диффузии галлия в ртуть. Выход галлия по току остается небольшим — порядка нескольких процентов в основном ток расходуется на выделение водорода и натрия, а также на восстановление примесей. В результате получается натриево-галлиевая амальгама, которая далее разлагается. Недостаток процесса — большой расход ртути, которая распыляется и переходит в алюминатный раствор. [c.255]


    Состав раствора. Концентрация исходного хлорида натрия в рассоле, поступающем на электролиз с ртутным катодом, не отличается от концентрации рассола, подаваемого в электролизер с твердым катодом и фильтрующей диафрагмой. Однако коэффициент разложения хлорида при электролизе с ртутным катодом значительно ниже и не превышает 0,17. Это обусловлено зависимостью потенциала разряда нонов натрия и хлора от их активности в растворе, а также растворимостью хлора, которая существенно зависит от концентрации исходной соли. Снижение концентрации хлорида сопровождается увеличением растворимости молекулярного хлора в рассоле и возрастанием скорости его восстановления на катоде. [c.164]

    Температура. Повышение температуры при электролизе с ртутным катодом целесообразно с точки зрения снижения напряжения на электролизере за счет уменьшения перенапряжения выделения хлора, падения напряжения в электролите. С повышением температуры уменьшается растворимость хлора в рассоле и доля тока на его восстановление па катоде. [c.165]

    Амальгаму натрия можно также получить в виде хлопьев, выливая ее в расплавленном виде в холодный ксилол при энергичном перемешивании. Этим методом можно получить значительно более чистую амальгаму натрия, если применять перегнанную в вакууме ртуть и натрий, который хранился в ире (а не в керосине) и очищен от поверхностного слоя при помощи стеклянного ножа. При этом всю операцию следует выполнять в атмосфере азота. Наилучшие результаты при восстановлении дает электролитическая амальгама натрия, которая образуется при электролизе натриевых солей, чаще всего хлористого натрия. Электролиз ведут с ртутным катодом и обычно с платиновым анодом. Электролит должен быть очень чистым. Этот процесс требует высокой плотности тока . .  [c.491]

    Чистый марганец получают из очень чистой МпОг восстановлением водородом под высоким давлением. Слитки марганца получают зонной плавкой, при этом достигается эффективная очистка от примесей [191]. Относительно чистый марганец может быть получен при электролизе водного раствора соли марганца с использованием ртутного катода [567]. Полученный таким способом марганец представляет собой тонкий порошок, который легко окисляется и часто бывает пирофорным. Для повышения степени очистки и упрощения технологического процесса марганцевые растворы очищают от примесей Ре, Со, N1, Си экстракцией марганцевыми солями жирных кислот фракций С7—С1в [48]. Примеси переходят в органический слой, а очищенный марганцевый раствор подвергают электролизу. Степень чистоты марганцевых растворов составляет 99,99%. [c.10]

    Многочисленность патентных заявок на различные воспроизведения процесса щелочного восстановления не доказывает, что все патентованные способы практиковались и практикуются в технике. В настоящее время производственное значение осталось за методами восстановления посредством цинка, железа и более недавним методом работы с амальгамой натрия, какой она получается при электролизе хлористого натрия с ртутным катодом. Последний способ восстановления, входящий в цикл процесса получения щелочи, представляет большие технические преимущества ). [c.142]

    Ртуть из иодида может быть восстановлена 3%-ной амальгамой цинка в сернокислой среде [333]. Труднорастворимые соединения ртути могут быть разложены электролизом их взвесей с ртутным катодом [81]. На рис. 26 показаны поляризационные кривые восстановления ртути из некоторых ее труднорастворимых соединений. [c.140]

    При проведении электролиза с разными по величине электродами по мере роста разности потенциалов увеличивается сила тока, протекающего через раствор, и плотность тока у электрода с малой поверхностью. Это объясняется большой силой тока, приходящегося на единицу поверхности малого электрода. По мере увеличения разности потенциалов увеличивается плотность тока на малом электроде. В этом случае скорость обеднения раствора в непосредственной близости у поверхности малого электрода возрастает и наступает явление концентрационной поляризации дальнейшее повышение разности потенциалов не вызывает возрастания силы тока, протекающего через раствор. При этом увеличивается сопротивление прохождению тока на границе малый электрод — раствор. При равновесии, когда количество восстановленных иоиов становится равным количеству ионов, продиффундировавших к ртутному катоду, сила тока становится постоянной. Сила тока, при которой достигается полный разряд всех ионов, поступающих в электродное пространство вследствие диффузии, называется Предельным или диффузионным током. Кривая зависимости силы тока от напрял ения приведена на рис. 55. По оси абсцисс находят разность потенциалов мел ду электродами, ро оси ординат — силы тока, протекающего через раствор. Па участке кривой от нуля до точки А электролиз не происходит по мере возрастания напряжения сила тока весь- [c.264]


    Поверхность капельного ртутного катода по составу и размерам остается постоянной. Ртуть непрерывно обновляется. Вследствие этого потенциал восстановления каждого иона сохраняется на определенном уровне. Образование амальгамы при выделении катионов металла на поверхности ртутного капельного катода и стекание ее на дно электролизе- ра, а также постоянное обновление поверхности [c.336]

    В подавляющем большинстве случаев электролиз с контролируемым потенциалом проводится с использованием ртутного или платинового рабочего электрода. Высокое перенапряжение водорода на ртути является важным преимуществом при использовании ее в качестве катода, однако анодное растворение ртути ограничивает ее применение в качестве электрода в анодной области для кулонометрии точно так же, как и для полярографии. Ртутные катоды, кроме того, обладают такими полезными характеристиками, как легко определяемая истинная площадь, обновляющаяся поверхность и относительная легкость очистки. Однако самое большое значение для химика-аналитика имеет тот факт, что полярографические данные о потенциалах полуволн, о продуктах восстановления и т. п. могут во многих простых случаях непосредственно применяться для выбора условий электролиза при кулонометрии на ртутных катодах. Однако здесь необходима известная осторожность многие процессы, которые кажутся простыми на микроэлектродах ввиду пренебрежимо малого накопления продуктов электролиза, оказываются гораздо более сложными, когда проводятся на больших ртутных катодах. Следует также иметь в виду, что сама ртуть может действовать как химический восстановитель следовательно, легко восстанавливаемые вещества должны приводиться в контакт с ртутными катодами только в том случае, когда к ячейке приложен нужный потенциал электролиза для предупреждения возможности предварительного химического восстановления. [c.36]

    Козловский и Цыб [32] предпочли определять висмут методом анодного окисления его амальгамы, образующейся после предварительного восстановления на ртутном катоде. Температура, состав электролита и скорость перемешивания амальгамы и раствора могут иметь большое влияние на выбор правильного потенциала окисления, особенно в тех случаях, когда вязкость амальгамы существенно изменяется в ходе электролиза. Коше [33] указал на решающее влияние, которое оказывают на ход процесса природа и состояние поверх- [c.46]

    III), вступает с растворителем во вторичную химическую реакцию, снова переводящую часть иридия в окисленное состояние с более высокими валентностями. Данные, подтверждающие эту гипотезу, представлены на рис. 8, изображающем кривые ток—время для восстановления иридия (IV) на ртутных катодах при потенциале —0,35 в [99]. Из совпадения начальных участков двух кривых видно, что число электронов, участвующих в первой стадии электрохимического восстановления, в обоих случаях одинаково (и равно единице) однако, в растворе хлорной кислоты получается относительно высокий ток стабильного состояния. Химические пробы показали, что ион хлорида образуется при таких обстоятельствах, которые подтверждают, что электроактивное вещество регенерирует благодаря химическому взаимодействию между первичным продуктом электролиза и растворителем. Эта проблема еще более усложняется в связи с протекающим одновременно гидролизом и возможной полимеризацией имеющихся комплексов иридия, [c.55]

    Приготовление амальгамы натрия можно обойти, если подвергнуть коричную кислоту электролизу в щелочном растворе с ртутным катодом. Восстановление не является в с0бственном смысле электролитическим, но оно идет точно так, как описано выше с амальгамой натрия. Описание метода см. в Синтезах органических препаратов , сборник 1, стр. 161 (1949). [c.15]

    Иногда процесс электролиза сопровождается химическим превращением реагирующих веществ или продуктов реакции н приэлектродном слое раствора электролита. Так, например, при электрохимическом восстановлении пировиноградной кислоты на ртутном катоде в определенных условиях в электродной реакции участвуют только недиссоциированные молекулы этой кислоты, тогда как в растворе присутствуют в основном ионы НаО+ и СНзСОСОО . Поэтому электродной реакции предшествует гомогенная химическая реакция [c.61]

    Этот процесс может быть осуществлен с практически количественным выходом по току и по веществу непосредственно при электролизе достаточно концентрированных растворов акрилонитрила (более 10%) в водном растворе тетраэтиламмоний-п-толуол-сульфоната на свинцовом или ртутном катоде при плотности тока 600 а/м . Выбор столь сложного электролита связан также с низкой растворимостью акрилонитрила в обычных водных средах. Динитрил адипиновой кислоты является важнейшим полупродуктом синтеза полиамидного синтетического волокна. По предварительным оценкам этот метод может оказаться весьма эффективным и достаточно конкурентноспособным с используемыми в настоящее время химическими методами. Электрохимическое восстановление динитрила адипиновой кислоты до гексаметилендиа-мина также является перспективным процессом  [c.449]

    Таким образом, на ртутном катоде при электролизе протекают полезная реакция выделения щелочного металла и побочные реакции выделения водорода и восстановления растворенного хлора и хлороксидных соединений. Выход по току щелочного металла может быть представлен в виде [c.85]

    Плотность тока восстановления восст определяется скоростью доставки разряжающихся частиц к катоду (диффузионная кинетика) и зависит от концентрации хлора и хлороксидных соединений в растворе, температуры и условий перемешивания, т. е. скоростей протока через электролизер раствора и ртутного катода. При обычных условиях электролиза раствора хлорида натрия, когда концентрация раствора в электролизере составляет 280 кг/м , температура 80—85°С, концентрация получаемой амальгамы натрия 0,3—0,4% (масс.), плотность тока восстановления составляет 100—150 А/м . [c.86]

    Следует отметить, что плотность тока выделения водорода в существенной степени зависит от условий электролиза, главным образом от наличия загрязнений на поверхности ртутного катода. Содержащиеся в растворе примеси, например ионы железа и других металлов, разряжаются на катоде, что приводит к увеличению вязкости ртутного катода, снижению линейной скорости его протекания и, в некоторых случаях, появлению на поверхности ртутного катода островков выделившихся металлов, на которых перенапряжение водорода существенно ниже, чем на ртути. Все это способствует ускорению выделения водорода, подщелачиванию раствора электролита, повышению концентрации в растворе хлороксидных соединений и снижению выхода по току щелочного металла как за счет ускорения выделения водорода на катоде, так и за счет увеличения плотности восстановления растворенного хлора и хлороксидных соединений. Поэтому основными условиями достижения высоких выходов по току щелочного металла являются хорошее перемешивание ртутного катода, что достигается при высокой линейной скорости его движения, и высокая чистота поступающего на электролиз раствора хлорида металла, а также достаточно высокая плотность тока электролиза, существенно превышающая скорость побочных реакций. [c.87]

    Рибоза [72, 73]. О-рибоио- -лактон восстанавливают BD-рибозу амальгамой натрия. Амальгаму получают электролизом раствора едкого натра на ртутном катоде. Процесс восстановления протекает по следующей схеме  [c.127]

    С. Суздальцева и В. Красюк, Е. Григорашвили, Н. Золотарев, Г. За-рецкий [73] предложили непрерывный процесс восстановления О-рибоно-у-лактона в О-рибозу, который осуществляют на установке, состоящей из следующих аппаратов [73] электролизера с ртутным катодом и никелевым или стальным никелированным анодом для получения амальгамы натрия электролизом раствора едкого натра, реактора для восстановления, разделителя фаз (газ, раствор, амальгама), холодильника для поддержания температуры реакционного раствора и вспомогательных аппаратов. Установка работает следующим образом (рис. 15). В электролизер 43 через промыватель 44 поступает отработанная амальгама с содержанием натрия [c.128]

    Получеине металлов. Мишметалл получают электролизом расплава безводных хлоридов РЗЭ в присут. х.чоридов щелочных металлов при 800-900 °С в стальных аппаратах, стенки к-рых служат катодом, а графитовые стержни-анодом. Разработан электролиз смеси фторндов РЗЭ, расплавов соед. РЗЭ с жидким металлич. катодом (Zn, d), водных р-ров с ртутным катодом. Индивидуальные РЗЭ получают металлотер . ич. восстановлением их фторидов (кроме Sm, Eu, Tm и Yb, к-рые производят восстановлением оксидов) или хлоридов. Восстановители-Са, реже Li или Mg, а также мишметалл, Na, Се и др. РЗЭ. Металлы рафинируют вакуумной переплавкой. [c.222]

    Сульфат европия (2 ) получают катодным восстаиовле-нкем сульфата трехвалентного европия, восстановлением амальгамой щелочных металлов или стронция, а также восстановлением хлорида европия (3+) в редукторе Джонса амальгамированным цинком с взаимодействием вытекающего раствора ЕиОг с серной кислотой [1, 2, 5, 6]. Описан способ получения европия сернокислого закисного путем электролиза ацетата европия и цитрата калия на ртутном катоде с после.а ующим разложением нолучеиной амальгамы европия горячей разбавленной сериой кислотой [3]. [c.112]

    Поскольку в ходе восстановления в неводных средах образуются относительно стабильные анион-радикалы и анионы, возможно улавливание этих интермедиатов при проведении электролиза в присутствии СО2. Так, восстановление бензил иденацетофенона на ртутном катоде в ДМФА с К1 (что ограничивает восстановление потенциалами первой волны) при барботирова-нии СО2 [6] приводит к двум карбоксилатам, (10) и (11). Предполагают, что соединение (10) образуется путем одно-электронного восстановления, за которым следуют стадии карбоиилирования, одноэлектронного восстановления и вновь карбонилировання ( С С-механизм), как и в случае стильбена (см. гл. 6). Подкисление приводит к отщеплению карбоксильной группы в а-положении к карбонильной группе и превращению (10) в р-бензоил-а-фенилпропионовую кислоту (12), которую можно выделить. Прн объяснении пути образования (11) предполагают, что радикал (13), возникающий после первых стадий ЕС, до нли после восстановления присоединяется к молекуле исходного соедипения с образованием интермедиата [c.362]

    Буманом с сотрудниками [383] разработано кулонометрическое определение урана, основанное на электролитическом восстановлении U(VI) до и (IV) на ртутном катоде при контролируемом потенциале. Точный контроль потенциала ртутного катода осуществлялся применением специальной аппаратуры, включающей электронные приборы. Количество электричества, израсходованное на восстановление и (VI), определялось прецизионным интегратором тока. Подробное описание аппаратуры для выполнения электролиза при контролируемом потенциале и устройства интегратора тока приведено в статье Бумана [381]. [c.225]

    Феррар, Томсон и Келли [497] применили метод кулонометрии при контролируемом потенциале для определения урана в этом же. объекте. Метод основан на восстановлении урана (VI) на ртутном катоде при потенциале —0,30 в в 1 М растворе Н25 04, Применяемая авторами аппаратура для кулонометрического определения рана очень мало отличается от аппаратуры, использованной Буманом [381]. Количество электричества, израсходованное на восстановление урана (VI), определяется также с помощью специального прецизионного интегратора тока. Электролиз заканчивают, когда ток в ячейке достигает определенного значения (0,05 ма — ток фона). [c.226]

    Для определения урана в концентратах может быть использован метод, который основан на том, что после восстановления урана и отделения некоторых примесей с помощью электролиза на ртутном катоде четырехвалентный уран количественно осаждают в виде сульфата прибавлением двух объемов 72%-ного раствора H IO4. Осадок сульфата отфильтровывают, промывают 47%-ным раствором H IO4, растворяют в воде и титруют четырехвалентный уран раствором перманганата калия [184]. Точностьметода достигает 0,1 о (отн.). [c.348]

    Особенно, часто осадок бывает загрязнен Ре(П1) [327]. Осаждение сульфата бария в присутствии ионов Fe(HI) приводит к образованию соли Ba[Fe(304)2] 12НзО возможно соосаждение Fe(lll) в виде сульфата железа(1П), что приводит к занижению результатов анализа. Рекомендуется удаление Fe(III) осаждением его аммиаком, восстановлением до Fe(II) гидроксиламином, металлическим алюминием (цинком) или электролизом с ртутным катодом из солянокислой среды (1—2 а в течение 1—3 час.). Алюминий в умеренных количествах не влияет. [c.30]

    Электролиз С ртутным катодом. Хром практически не растворяется в ртути [196]. Однако при электролизе с ртутным катодом образуется амальгама хрома, которая, очевидно, является коллоид-ным раствором. Хром, для которого потенциал восстановления Сг(П1) — Сг(металл.) более отрицателен, чем потенциал выделения водорода на ртути, выделяется на ртутном катоде только из слабокислых растворов (0,05 М H2SO4) [626, 889]. Однако даже из 0,05 Af H2SO4 не достигается полное выделение хрома [504]. С увеличением концентрации H2SO4 степень выделения хрома резко уменьшается [626], очевидно, вследствие образования инертных комплексов. Установлено, что высокая плотность тока, повышение температуры и концентрации хрома способствуют увеличению полноты его выделения [670]. Обычно электролиз проводят при 40° С дальнейшее повышение температуры нежелательно из-за изменения структуры и вязкости амальгамы, что влечет за собой изменение величины поверхности ртутного катода, а следовательно, плотности тока и величины катодного потенциала [196]. [c.154]

    Как уже упоминалось, очень важным фактором резкого увеличения каталитической активности серусодержащих соединений является присутствие в растворе ионов кобальта. Волна восстановления Со(П) предшествует каталитическому выделению водорода, поэтому некоторые исследователи [732, 734] предполагали, что каталитически активные центры образуются при адсорбции органического катализатора на металлическом кобальте, выделившемся на ртутной поверхности. М. Бржезина [806] опроверг этот взгляд, показав, что предварительный электролиз раствора на неподвижном ртутном катоде при потенциале, при котором разряжается Со(П), но еще нет каталитического выделе- ния водорода, т. е. накопление металлического кобальта на электроде, не влияет на снимаемую затем каталитическую волну. Следовательно, катализатором служит комплекс иона кобальта с органической молекулой. [c.234]

    Был описан ряд приборов, предназначенных для потенциостатического анализа меди [47, 69—72]. Муша и 0га-ва [73] исключили применение потенциостата они осаждали медь на медный катод, замкнутый накоротко с насыщенным кадмиевым амальгамным анодом в растворе сульфата. Количество меди (II), первоначально имевшейся в растворе, подсчитывалось с удовлетворительной точностью из снятой кривой ток—время. Мейтес [74] рассмотрел погрешности, связанные с методикой определения положения конечной точки при потенциостатической кулонометрии, и предложил формулу, сводящую к минимуму погрешности экстраполяции. Процесс восстановления меди (II) до. металлической меди на ртутных катодах в цитратном электролите был использован для создания кулометра [75], измеряющего количества электричества до 150 к. Измерения производили по поглощающей способности комплекса, содержащего медь (II), до и после электролиза. [c.52]

    Бадо-Ламблинг [86] построил кривые поляризации для окисления церия (III) на платиновых анодах 100%-ная эффективность тока достигается только в том случае, когда концентрация окисляемого вещества достаточно велика, так что сопутствующее окисление воды остается пренебрежимо малым. По данным Шульца [140], потенциостатическая кулонометрия может использоваться для определения европия в 0,1 н. растворе НС1. Восстановление европия (III) до европия (II) на ртутном катоде ни в одном из испытанных Шульцем электролитов не проходило при 100%-ной эффективности тока. Когда европий восстанавливается при —0,8 в относительно AgjAg l и затем снова окисляется при —0,1 в и при прочих равных условиях, электролиз является почти точным. Шульц определил, что малые количества галлия, иттрия, иттербия, лантана, церия, кальция, алюминия, кремния или железа не являются помехой при этом определении. Используя катод из амальгамы лития, Онстотт [141] отделял европий от самария и самарий от гадолиния [142] в среде цитрата. [c.63]

    Заслуживает внимания и дальнейшего развития интересное предложение Никелли и Кука об использовании большого ртутного катода для определения очень малых количеств вещества. В этом случае уже применяется не капельный ртутный катод, а неподвижный, занимающий дно электролизера. Поверхность такого катода составляет около 2 см -, при фльшей поверхности катода (3 см ) потери определяемого вещества в результате электролиза достигают 0,1% в 1 мин. Перемешивание проводится током азота, одновременно удаляющим и растворенный кислород. Никелли и Кук определяли с таким электродом медь и кадмий в концентрации порядка 10 М. Выбор титрующего раствора имеет в данном случае особенно большое значение, так как столь малые количества вещества можно успешно определять только в том случае, если оно образует очень мало растворимый осадок, очень прочное комплексное соединение или, что лучше всего, если оно способно к реакциям окисления — восстановления. Титрование меди и кадмия проводилось комплексоном на фоне нитрата калия. [c.37]

    Как было показано Лингейном [И], значение ртутного катода для электролиза с управляемым потенциалом в основном определяется его тесной связью с полярографией. Так как для определения оптимального потенциала для электролиза целесообразно снять полярограмму в том же самом фоновом электролите. Обычно величина потенциала для электролиза выбирается в самом начале плато диффузионного тока, т. е. на 0,15 в более отрицательной, чем потенциал полуволны. Прибор для электролиза изображен на рис. 12.4. Наибольшая трудность заключается в проведении точного взвешивания большой массы ртути с целью определения количества металла, восстановленного на ее поверхности. Как мы увидим дальше, эта проблема разрешается кулонометрическим, а не весовым способом. [c.189]

    Катианы металлов ПА группы бесцветны в кристаллах и в водном растворе (окраска некоторых солей объясняется цветом аниона). Восстановление катионов М + до металла можно провести электролизом в водном растворе с применением только ртутного катода, в неводной среде или в расплаве. [c.287]


Смотреть страницы где упоминается термин Электролиз с ртутным катодом, восстановление: [c.175]    [c.116]    [c.350]    [c.378]    [c.274]    [c.244]    [c.49]    [c.20]    [c.63]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление на катоде

Катод

Катод ртутный

Ртутный электролиз

ртутный



© 2025 chem21.info Реклама на сайте