Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

когезия молекул воды

    Прн растекании пленки на достаточно большой поверхности образуется м о и о м о л е к у л я р н ы й слой, поскольку с ростом площади пленки свободная поверхностная энергия системы непрерывно уменьшается. Образующийся монослой является плотным, так как боковая когезия между молекулами в пленке (Ц7с) стягивает его и препятствует разбеганию молекул. Если покрыть поверхность воды мелкой пылью (иапример, частицами талька), а затем нанести каплю масла , то пленка, растекаясь, сдвигает частицы на периферию. Таким путем, измеряя площадь пятна, можно найти 5 пленки. Известно также число молей (молекул) вещества в пленке я , поскольку вещество нерастворимо и нелетуче, а следовательно, целиком находится в пленке. [c.90]


    Выделение гетерофазных примесей из воды может быть осуществлено с использованием явления избирательного смачивания, лежащего в основе процесса флотации. Сущность этого процесса заключается в действ ии молекулярных сил, способствующих слипанию взвешенных веществ с пузырьками тонкодиспергированного в воде воздуха, и образовании на поверхности воды пенного слоя, насыщенного извлекаемым веществом. Элементарный акт пенной флотации состоит в том, что при сближении в воде газового пузырька с гидрофобной поверхностью частицы, адгезия которой к воде менее когезии молекул воды, разделяющий их тонкий слой становится неустойчивым и разрывается при достижении некоторого критического значения. Прилипание пузырька к поверхности сопровождается образованием краевого угла смачивания. Вследствие кратковременности соприкосновения пузырька и частицы при их столкновении (0,001— [c.145]

    Явление мицеллообразования характеризуется рядом особенностей. Подобно адсорбции мицеллообразование протекает самопроизвольно, т. е. с уменьшением энергии Гиббса системы. Действительно, силы когезии между полярными молекулами воды значительно выше, чем силы взаимодействия между углеводородными цепями и водой. Поэтому любые процессы, связанные с переходом углеводородных радикалов из воды в близкую по полярности фазу, энергетически выгод-ны В очень разбавленных (ниже ККМ) растворах стремление системы к убыли свободной энергии удовлетворяется за счет перехода молекул ПАВ в поверхностный слой и выталкивания углеводородных радикалов из воды в неполярную фазу. При полном насыщении адсорбционного слоя такая возможность исчерпывается. С дальнейшим повышением концентрации ПАВ минимизация энергии Гиббса может быть реализована лишь за счет структурных изменений в объеме раствора, т. е. путем образования мицелл. При этом гидрофоб- [c.38]

    Примем для простоты площадь сечения каждого цилиндра 1 м . Разрезав столб воды перпендикулярно оси цилиндра, получим 2 м поверхности раздела вода—воздух. Затраченная работа будет израсходована на преодоление сил сцепления между молекулами воды. Работу, затрачиваемую на преодоление сил сцепления между молекулами однородной жидкости и приводящую к возникновению двух новых поверхностей раздела фаз жидкость — газ с площадью каждой из них 1 м , называют работой когезии. Работа когезии для воды и масла равна соответственно [c.38]

    У целлюлозы в твердом состоянии возникают регулярная система Н-связей и вследствие этого кристаллическая решетка, образуются микрофибриллы, фибриллы, ламеллы и клеточная стенка в целом. Из-за высокой энергии когезии, обусловленной Н-связями и превышающей прочность ковалентных связей в макромолекулах, у целлюлозы невозможно плавление и при нагревании происходит деструкция. Высокая энергия когезии затрудняет подбор растворителей. Выделенную из древесины целлюлозу растворяют лишь немногие растворители, которые способны преодолевать энергию ее межмолекулярного взаимодействия. Образование Н-связей между цепями целлюлозы и молекулами воды имеет важное значение при поглощении целлюлозой и древесиной гигроскопической влаги (см. 10.2). Высокая энергия Н-связей, особенно в кристаллических участках, понижает химическую реакционную способность целлюлозы, оказывая решающее влияние на скорость диффузии реагентов в целлюлозное волокно. Механические свойства технической целлюлозы и бумажного листа определяются межволоконными связями, возникающими в частности в результате образования Н-связей между макромолекулами целлюлозы на поверхностях фибрилл и волокон. [c.235]


    Образование мицелл НПАВ в водных растворах определяется, в основном, силами когезии углеводородных цепей молекул и сродством гидрофильных групп к молекулам воды в случае ионных ПАВ — когезией гидрофобных групп и балансом электрических сил ионизированных групп молекулы. В водных растворах молекулы ПАВ находятся в строго ориентированном состоянии таким образом, что гидрофобные части молекул располагаются центрально друг к другу, а гидрофильные — по отношению к полярному растворителю. В этом случае возникают возможности к образованию ассоциированных соединений. Как правило, мицеллы ПАВ и других ВВ имеют большие коллоидные размеры (40-500 А°), состоят из большого числа молекул (до 200) и обладают большой объемной емкостью, т.е. имеют пустоты. Кроме того, относительно небольшие промежуточные пространства могут возникать при набухании в воде плохо растворимых макромолекул ВВ. В эти пустоты мицелл или промежуточные пространства скоплений макромолекул под влиянием сил межмолекулярного притяжения могут проникать относительно небольшие молекулы ЛВ, образуя соединения, которые очень часто стабилизируются дополнительными побочными валентными силами. Количество включаемого ЛВ зависит от размеров полого пространства мицеллы и молекулы действующего вещества. [c.393]

    Мицеллообразование, подобно адсорбции, протекает самопроизвольно, так как уменьшает свободную энергию системы. Действительно, силы когезии между полярными молекулами воды значительно выше, чем силы взаимодействия между углеводородными цепями и водой. Поэтому любой процесс, связанный с переходом углеводородных радикалов молекул ПАВ в близкую по полярности фазу, энергетически выгоден. В очень разбавленных растворах [c.109]

    Как говорилось, ПАВ характеризуются двойственностью свойств, связанной с асимметрией структуры их молекул, причем влияние этих противоположных асимметрично локализованных в молекуле свойств может проявиться как раздельно, так и одновременно [2]. Так, ПАВ обладают большой способностью к адсорбции, сопровождающейся ориентацией на поверхности водного раствора в результате уменьшения свободной энергии системы. Адсорбция углеводородных цепей на поверхности раздела вода — воздух вызывается большими силами когезии между молекулами воды, на поверхности же раздела углеводород — воздух адсорбция ПАВ отрицательна, за исключением случая фторуглеродных соединений, которые обладают меньшими межмолекулярными силами взаимодействия, чем углеводороды. С этими же свойствами связана способность ПАВ понижать поверхностное и межфазное натяжение растворов и вызывать эффективное эмульгирование, смачивание, диспергирование и пенообразование [2]. [c.13]

    Примыкающие друг к другу цепи тесно связаны межмолекулярными водородными связями. Действительно, плотность нативного маннана обычно превышает плотность нативной целлюлозы. Вследствие такой высокой когезии маннан I нерастворим в воде и не гидратирован. Заместители в главной цепи полисахарида повышают растворимость в воде, так как такие объемистые группы нарушают правильную систему водородных связей между соседними молекулами и таким образом увеличивают доступность гидроксильных групп полисахарида для молекул воды. [c.266]

    Если считать, что цепи в плёнках нормальны к поверхности, то меньшая плотность упаковки должна обусловливаться влиянием молекул воды, которое, естественно, должно сводиться к увеличению площади, занимаемой цепью в плёнке. Молекулы воды находятся в непрерывном движении вдоль поверхности, что должно создавать некоторую разрывающую силу, противодействующую тангенциальной когезии между цепями. К тому же вполне вероятно, что некоторое количество молекул воды зажато между молекулами плёнки, что также может повысить величину площади, приходящуюся на молекулу Плёнки по сравнению с площадью в сухих кристаллах. [c.75]

    Поверхностное натяжение представляет собой лишь математическое понятие, эквивалентное поверхностной энергии. Конечные результаты взаимодействия частицы с водой зависят-не только от свободной поверхностной энергии частицы, но и от энергии взаимодействия молекул воды между собой. Взаимное притяжение молекул одного и того же вещества, называемое когезией, характеризуется работой когезии. Взаимное притяжение молекул двух фаз дисперсной системы на поверхности раздела называется адгезией. Притяжение, оказываемое одной фазой на другую через поверхность их раздела, требует энергии на разделение этих фаз, характеризуемой работой адгезии. [c.79]

    Чем меньше работа когезии жидкости озж, а, следовательно, и поверхностное натяжение последней и, чем больше работа адгезии жидкости к твердому телу От-ж, тем лучше жидкость смачивает поверхность твердого тела и наоборот. Поэтому в процессе пропитки следует использовать жидкости с низким поверхностным натяжением. Степень смачиваемости различных тел водой зависит от полярности молекул твердого тела. Такие полярные вещества, как карбонаты, силикаты, сульфаты являются гидрофильными. [c.132]


    Способность материала смачиваться водой зависит от соотношения сил взаимодействия молекул воды с материалом (адгезия) и сил взаимодействия молекул воды между собой (когезия). Если силы взаимодействия молекул воды с материалом больше сил взаимодействия молекул воды друг с другом, то вода будет хорошо смачивать такой материал. В этом случае степень смачивания будет существенно зависеть от микрогеометрии поверхности материала (ее дефектности) и наличия открытой пористости в материале. Если на поверхности материала имеются дефекты структуры, соизмеримые с диаметром молекулы воды (0,29 нм), то молекулы воды могут внедриться в объем материала и при наличии такой же по размеру пористости (дефектности) в объеме материала будут диффундировать по механизму активированной диффузии, аналогично диффузии газов. Силикатные стекла способны вполне свободно поглощать пары воды, так как размер дефектов в них находится в пределах от 0,7 до 1,7 нм. [c.26]

    БОЛЬШОЕ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ И КОГЕЗИЯ. Когезия — это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение — результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь ее поверхности бьша минимальной (в идеале — форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды. Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях (гл. 13). Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения оно позволяет им удерживаться на воде или скользить по ее поверхности. [c.111]

    Если помимо сил сцепления между отдельными частицами водяного пара (когезия) появляются более высокие силы сцепления молекул воды с твердой поверхностью (силы адгезии), то увеличивается возможность конденсации молекул водяного пара именно на поверхности такого твердого тела. Адсорбционная конденсация, т. е. образование тончайшего слоя молекул Н2О, связанных с поверхностью металла силами адсорбции, предшествует процессу капельной конденсации и может происходить при относительной влажности ниже 100%. В зависимости от состояния металлической поверхности, ири влажности немного ниже [c.174]

    Прочное сцепление (когезия) между молекулами воды и прилипание (адгезия) их к гидрофильным стенкам клеток ксилемы предотвращает образование полостей (кавитацию) в находящемся в ксилеме растворе почти в любых условиях. Однако при сильном дефиците воды в отдельных трубках [c.138]

    Величина сил когезии зависит от природы (полярности) жидкости. При уменьшении полярности молекул растворителя и соответствующем уменьшении сил сцепления между ними понижается выигрыш энергии, который связан с переносом углеводородного радикала из объема раствора на поверхность раздела фаз, т. е. уменьшается величина ЛШ. Поэтому с переходом от воды неводным растворителям средней полярности наблюдается понижение поверхностной активности ПАВ, а также коэффициента р. Так, для форма-мида р=1,8 и АШ=1,4 кДж/моль, для нитробензола р==1,3 и Д У=0,44 кДж/моль, в связи с чем поверхностная активность одного и того же ПАВ в этих средах оказывается сильно пониженной по сравнению с водой. Из сказанного следует, что величину р можно рассматривать как одну из характеристик молекулярных свойств растворителей. [c.23]

    Таким образом, условием хорошего смачивания жидкостью твердого тела является слабое взаимодействие между ее молекулами (слабая когезия). Жидкости с малым поверхностным натяжением обычно хорошо смачивают поверхности. Например, углеводороды, поверхностное натяжение которых невелико и составляет около 20—30 мДж/м , смачивают практически любую поверхность. Вода, поверхностное натяжение которой при 20 °С составляет 72 мДж/м , смачивает лишь гетерополярные вещества (стекло, алюмосиликаты, некоторые минералы, ионные кристаллы). Ртуть (поверхностное натяжение 472 мДж/м ) практически не смачивает твердые тела. Принято называть лиофильными поверхности, хорошо смачиваемые жидкостью ( os 0 > 0), в частности гидрофильными — поверхности, сма- [c.198]

    Рассмотрим подробнее, что из себя представляют адгезия и когезия. Если имеется система, состоящая из молекул однородной жидкости (например, вода), то для создания новых поверхностей раздела (например, вода — воздух) потребуется затрата работы. Эта работа, затраченная на преодоление сил сцепления [c.283]

    В свое время высказывалось мнение, что если бы в таких условиях в водных столбах возникало натяжение, то в них наблюдалась бы кавитация — образование пол<м тей, заполненных только водяными парами и потому блокирующих переме-щеиие воды снизу вверх. Убедительно показано, однако что в чистой стеклянной трубке, заполненной водой, не содержащей никаких растворенных газов, кавитации не происходит даже при натяжении в несколько сотен бар препятствует кавитации когезия — сцепление молекул воды под действием сил притяжения. В сосудах ксилемы молекулы воды связаны не только друг с другом, за счет сил когезии (сцепления), но также и со> стенками сосудов (очень гидрофильными)—за счет адгезии (прилипания) эти силы тоже препятствуют кавитации в сосудах ксилемы при обычно наблюдающемся натяжении. [c.194]

    Вода — жидкость со сравнительно высокой работой когезии в силу полярности ее молекул (й кЛ НО мДж/м ) — хорошо смачивает оксиды и растекается на некоторых силикатах, но не смачивает парафин и фторорганические полимеры. [c.97]

    Расчеты показали, что при сравнительно небольшой ориентации молекул в склеивающей прослойке поляризация достигает значений, которые соизмеримы с электрической составляющей сил адгезии. Даже небольшая ориентация единичных диполей создает заметный эффект поляризации, обеспечивающий высокую когезионную прочность клея, так что порядок величин электрических составляющих сил адгезии и когезии одинаков. Для воды характерный радиус ориентированного взаимодействия молекул соответствует 10 межмолекулярным расстояниям. [c.40]

    Адгезия в значительной степени определяется природой функциональных групп молекул контактирующих веществ. Например, близкие значения работы адгезии к воде имеют соединения с одинаковыми функциональными группами (в двухфазных системах жидкость — жидкость) изовалериановая (94,6 мДж/м ) и гептиловая (94,8 мДж/м ) кислоты, бензол, толуол (66,6 мДж/м ). Это свидетельствует об ориентировании молекул в поверхностном слое при адгезии. На границе раздела фаз в сторону воды обращены гидрофильные группы указанных соединений, и они почти полностью обеспечивают адгезию к воде. Разность между работой адгезии к воде и работой когезии контактирующей с ней жидкости может служить мерой полярности и гидрофильности последней. Например, для неполярных гексана и толуола эта разность соответственно равна [c.86]

    Водные дисперсии. Гидрофильная группа в растворе гидратируется поляризованными молекулами воды. Гидрофобная группа вытесняется из раствора силами когезии молекул воды. Согласно Мак-Бэну , Хартли и другим авторам 20-129 образование коллоида начинается уже при концентрации моющего вещества примерно 0,3—0,5 г/л. При достаточном разбавлении в растворе находятся только диссоциированные ионы, как это схематически показано на рис. 4  [c.31]

    Ксилемные сосуды заполняет сплошной столб воды по мере того как вода вьгходит из сосудов, в этом столбе создается натяжение оно передается вниз по стеблю до самого корня благодаря сцеплению (когезии) молекул воды. Эти молекулы стремятся прилипнуть друг к другу, потому что они полярны и притягиваются друг к другу электричесвсими силами, а затем удерживаются вместе водородными связями (разд. [c.123]

    Кроме того, они притягиваются к стенкам ксилемных сосудов, т. е. происходит их адгезия (прилипание) к ним. Сильная когезия молекул воды означает, что ее столб трудно разорвать — у него высокий предел прочности при растяжении. Растягиваюшее напряжение в клетках ксилемы приводит к генерированию силы, способной сдвигать весь водяной столб вверх по механизму объемного потока. Снизу вода поступает в ксилему из соседних клеток корня. При этом очень важно, что стенки ксилемных элементов жесткие и не спадаются при падении давления внутри, как это бывает, когда сосешь коктейль через мягкую соломинку. Жесткость стенок обеспечивается лигнином. Доказательством того, что жидкость внутри ксилемных сосудов сильно напряжена (растянута), служат суточные колебания диаметра древесных стволов, измеряемые инструментом под названием дендрограф. Минимальный диаметр отмечен днем, когда интенсивность транспирации наивысшая. Натяжение столба воды в ксилемном сосуде немного втягивает внутрь его стенки (из-за адгезии), и сочетание этих микроскопических сжатий дает фиксируемую прибором обш ую усадку ствола. [c.123]

    Таким образом, молекулы типичных ПАВ, сочетая в себе одновременно полярные и неполярные свойства, являются д и ф и л ь и ы м и, т. е. проявляют сродство к воде (гид-рофильность) и к маслам (олеофильность, или липофиль-ность). Другими словами, в молекулах типичных ПАВ сочетаются две противоположные тенденции. Нерастворимый в воде углеводородный радикал стремится выйти в близкую по полярности фазу, выталкивается из воды. Этому способствует интенсивное взаимное притяжение полярных молекул воды друг к другу (силы когезии воды). Эти силы значительно больше, чем силы взаимодействия между углеводородными радикалами и молекулами воды. Полярная же группа определяет обратную тенденцию — растворимость ПАВ в воде. [c.6]

    Мономолекулярная природа поверхностных пленок. Поверхностное давление [1—4]. Нерастворимое и нелетучее вещество, помещенное в небольшом количестве на поверхность жидкости с большим поверхностным натяжением (например воды), может оставаться в виде нерастекающейся капли, либо растекаться по поверхности. Необходимое и достаточное условие растекания вещества — более сильное притяжение его молекул к растворителю (воде), чем друг к другу. Иными словами, работа адгезии между веш,еством и жидкостью в этом случае превышает работу когезии самого вещества. Если это условие соблюдено, то молекулы растекающегося вещества стремятся прийти в непосредственное соприкосновение с жидкостью, обычно называемой подкладкой . Если позволяет площадь подкладки, растекающаяся жидкость образует мономолекулярный слой. Особое состояние вещества в этих пленках представляет большой интерес. [c.51]

    Агрегация алканов в водном растворе обусловлена главным образом тем, что она вызывает минимальное нарушение струк-турообразования молекул воды. Главной причиной низкой растворимости неполярных соединений в воде является наличие внутренней когезии в этом растворителе. Это означает, что именно вода заставляет углеводороды образовывать ассоциаты, а не взаимное их притяжение. Не следует, однако, думать, что диполи полярных углеводородов не оказывают никакого дейст- [c.316]

    Адсорбционные плёнки между двумя несмешивающимися жидкостями . При обработке данных Гаркинса и Кинга Шофилд и Райдил не обнаружили признаков заметной боковой когезии между молекулами масляной кислоты, адсорбированными на поверхности раздела вода—бензол. Единственная поправка к уравнению идеального газового состояния этих плёнок относилась к пространству, занимаемому молекулами. На границе вода—воздух та же кислота обнаруживает некоторую боковую когезию. С другой стороны Г аркинс и МакЛофлин считают, что молекулы уксусной кислоты плотнее упакованы между водой и бензолом, чем между водой и воздухом но это не значит, что боковая когезия в первом случае должна быть обязательно выше, так как на адсорбцию может влиять притяжение метильных групп уксусной кислоты к бензолу, благодаря которому при данном поверхностном авлении на поверхность выводится больше молекул. Данные по этому вопросу пока слишком скудны. Из соображений, аналогичных приведённым в 32 гл. II, напрашивается заключение, что боковая когезия между несмешивающимися жидкостями должна быть меньше, чем на границе вода—воздух, но разница должна быть меньше для кислот с более короткими цепями, так как их молекулы лежат на поверхности раздела вода — воздух плашмя и, таким образом, обладают большей свободой передвижения вместе с молекулами воды, чем молекулы с более длинными цепями, образующие плотный частокол. [c.184]

    Если взять вещество с дифильными молекулами, например октиловый спирт, то для него работа когезии равна 55 эрг1см , т. е. мало отличается от бензола. Поэтому октиловый спирт, подобно бензолу, не растворяется в воде. Однако октиловый спирт, растекаясь по поверхности воды на границе раздела, ориентируется в сторону воды полярными гидроксильными группами. Поэтому, чтобы отделить молекулы октилового спирта от воды, необходимо затратить значительно большую энергию (92 эрг1см ), чем для отделения бензола. Различие можно объяснить сильным взаимодействием с водой гидроксильных групп спирта, Таким образом, величина когезий и величина адгезии дают возможность определить асимметрию силового поля молекул. Она определяется разностью между энергией адгезии по отношению к воде и энергией когезии данного вещества, определяемой неполярными группами. [c.33]

    Энергия связи хемосорбированной фазы с ювенильным металлом значительно вьиие энергии связи с ним адсорбированной фазы. При хемосорбции отсутствует процесс миграции молекул ПАВ по поверхности и наблюдается эффект последействия. Маслорастворимые ингибиторы хемосорбционного действия вытесняют воду в связи с тем, что энергия связи ПАВ и металла больше или равна свяэи металла и воды. При разрьше пленки воды происходит адсорбция ПАВ на металле. Процессы хемосорбции развиваются во времени. Применительно к пластическим смазкам и ингибированным тонкопленочным покрытиям закономерности адгезии и когезии обусловлены кинетикой испарения летучих растворителей и явлениями, связанными с формированием защитной пленки. [c.173]

    В последние годы все больше внимания уделяется пленкам на поверхностях раздела типа жидкость — жидкость (чаще всего типа вода—жидкость). Некоторые работы в этой интересной области были рассмотрены в предыдущих разделах, посвященных белковым и полимерным пленкам. Хатчинсон [201] описывает ряд опытов на пленках кислот с неразветвленными цепями и спиртов на поверхностях раздела вода — бензол, вода — циклогексан и вода — СнНзо. Во всех случаях спирты (гексиловый, октиловый, децнловый и додециловый) давали более конденсированные пленки, чем кислоты (масляная, капроновая, канриловая и лауриловая), с экстраполированной площадью молекулы в плотном монослое 20 А . Правило Траубе (разд. 1П-7Г) к этим системам не применимо, что указывает а непараллельную ориентацию молекул на поверхности раздела. Данные по адсорбции спиртов на поверхности раздела вода — октан описываются уравнением (П-67) или (П-133), при этом, однако, с увеличением длины цепи площадь молекулы в плотном монослое возрастает, поэтому можно предположить, что ориентация не является строго вертикальной [202]. Как правило, при данном поверхностном давлении площадь пленок спиртов и кислот на исследованных поверхностях раздела больще, чем на границе вода — воздух. (Этого, собственно, можно было ожидать, поскольку неполярный растворитель стремится уменьшить когезию между углеводородными цепями.) Однако давление, при котором происходит переход газообразной пленки в конденсированную фазу, более низкое, возможно потому, что значительная боковая адгезия между полярными группами при высоком сжатии с избытком компенсирует уменьшение когезии между углеводородными хвостами. Исследования заряженных монослоев на поверхностях раздела масло— вода вкратце обсуждаются в следующем разделе. [c.144]

    Сорастворители с эфирной группой (диоксан и диметил-лизосорбит) и соединения, содержащие кислород с двойной связью (диметилсульфоксид, диметилацетамид, диметилформамид) обеспечивают более высокую растворимость в системах сорастворитель — вода. Это может быть обусловлено их относительно высокой щелочностью, понижением когезии между молекулами сорастворителя и их способностью к разрушению трехмерной структуры водьт. Повышение растворимости таких веществ как бензокаин, фенитоин и диазепам особенно ярко выражено в смесях диметилсульфоксид — вода. [c.650]

    Если допустить, что формула (3.6.2) остается справедливой при минимально возможном расстоянии между телами, равном размеру молекул д, то при к = д эта формула должна дать энергию когезии и адгезии ] для тел одинаковой и разной природы соответственно. Так как они известны из опыта, то это позволяет вычислить константу взаимодействия тел одинаковой и различной природы. Следует, однако, ) итывать, что формула (3.6.1) обоснована для дисперсионной составляющей сил Ван-дер-Ваальса, поэтому в расчет следует принимать только часть энергии адгезии (когезии), пропорциональную доле Ь дисперсионных сил в общем их балансе. Для воды Ь 0,2, = 0,145 Дж/м" при 293 К и точное значение константы Ван-дер-Ваальса — Гамакера А= 5,13 10 " Дж. Из соотношения А / = ЬШ , эффективное расстояние д между двумя частями адгезионно разъединяемого столба воды будет примерно 2,3 10 ° м. Эта величина несколько меньше, чем средняя величина расстояния (К / = 3 10 °м, вычисленная из молярного объема воды У . Учетывая приближенный характер вычислений, для расчетов оценочного характера будет использована формула с1= У / Л0() При взаимодействии веществ разной природы это расстояние является средним арифметическим межмолекулярных расстояний каждого вещества, [c.619]

    Механизм образования межфазных адсорбционных слоев глобулярных белков обсуждался и ранее в ряде работ. Так, Александер и Чогел [127] считают, что в нроцессе адсорбции, протекающей на границе раздела фаз, вначале образуется монослой из белка с гидрофобными участками молекул, обращенными к маслу, и гидрофильными,— к воде. Следующие молекулы, которые подходят к поверхности раздела благодаря давлению адсорбционного слоя, имеют тенденцию вытеснять с поверхности менее поверхностно-активные сегменты молекул, связанные в монослое силами когезии, вследствие чего сегменты молекул адсорбционного слоя образуют свободные петли или складки. Это приводит к тому, что увеличивается число полярных областей молекул белка на границе раздела фаз. Поверхность слоя, обращенного к воде, становится более гидрофильной, что должно приводить к образованию толстых структурированных слоев. [c.202]

    В табл. П-2 приведены работы когезии и адгезии для ряда жидкостей. Эти данные показывают, что для самых разнообразных органических жидкостей работа когезии почти одинакова. Следовательно, можно предполагать, что поверхности этих жидкостей сходны по своей природе и образованы преимущественно углеводородными группировками. Такие же низкие значения характерны для работы адгезии чистых углеводородов к воде. Три последних наиболее высоких значе, ния аУдв относятся к поверхности раздела между водой и полярно-неполярным веществом. Отсюда следует вполне обоснованный вывод, что на таких поверхностях раздела полярные концы органических молекул ориентированы к воде. [c.58]

    Структурные эффекты растворителя приходится учитывать, поскольку взаимодействия между молекулами растворителя включаются в термодинамические функции процесса сольватации. Эти эффекты твердо установлены только для воды, этиленгликоля и глицерина, в которых существует трехмерная сетка водородных связей, определяемая наличием по крайней мере двух Н-донорных и двух Н-акцеп-торных центров в молекуле [267], Однако для формамида подобные эффекты не обнаружены. Здесь не рассматривается вопрос о том, каким образом структурирован растворитель (ср. [35]) последнее обстоятельство влияет на термодинамику раствора через возрастание плозности энергии когезии (см. ниже). Речь идет об уникальной способности структуры этих строго определенных растворителей упорядочиваться в присутствии неполярных растворенных веществ, тогда как введение заряда в частицы растворенного вещества компенсирует это упорядочивание. Информацию о структуре растворителя можно получить путем измерения времен переориентации его молекул [267, 433]. [c.223]

    В полярных апротонных растворителях некоторое упорядочивание расположения ближайших соседей обусловлено диполь-дипольны-ми взаимодействиями, однако обычно время диэлектрической релаксации в 10 — 100 раз меньше, чем в спиртах с молекулами примерно тех же размеров, а энтальпия активации ЛЯ (т ) мала (1 — 2ккал/моль) [677]. Поэтому в них не обнаруживаются структурные эффекты такого типа, как в воде. Апротонные растворители с большими дипольными моментами и с молекулами малого объема характеризуются высокой плотностью энергии когезии, и некоторые их свойства сильно зависят от температуры. Так, считают, что диметилсульфоксид и 1М,М-ди-метилформамид - сильно ассоциированные жидкости, в которых могут существовать цепочечные структуры [650, 730]. Однако время диэлектрической релаксации последнего такое же, как у трихлорэти-лена или циклогексанона, а энтальпия активации ДЯ (TD) равна всего лишь 2,7 ккал/моль [62], так что образование этих ассоциатов нельзя сопоставлять с ассоциацией, обусловленной водородными связями. [c.237]

    Публикаций, посвященных систематическому исследованию этого вопроса применительно к пластмассам, очень мало. Бауэрс, Клинтон и Зисман исследовали трение найлона и трение стали по найлону в присутствии 16 специально подобранных смазочных жидкостей, что позволило им выяснить влияние различных полярных концевых групп и длины углеводородной цепи молекул смазки на этот процесс. Поверхностное натяжение всех использованных для смазки жидкостей было меньше критического поверхностного натяжения смачивания найлона, поэтому каждая жидкость хорошо растекалась на его поверхности. Среди этих жидкостей были нормальные алканы, спирты, кислоты и амины, вода, этиленгликоль, глицерин, несколько фторированных соединений и силиконы. Показано, что механизмы действия граничной смазки на пластмассах и металлах аналогичны. Наиболее эффективны те смазочные вещества, которые образуют особо прочно удерживаемые на поверхности пленки с высокой межмолекулярной когезией составляющих их молекул. Снижение трения между поверхностями найлона затруднено тем, что адсорбционно-активные участки (амидные группы) на его поверхности слишком далеко отстоят друг от друга и образование достаточно плотной смазочной пленки невозможно. При комбинации сталь —найлон действие смазки более эффективно, так как на поверхности стали может образовываться более плотная пленка. [c.320]


Смотреть страницы где упоминается термин когезия молекул воды: [c.201]    [c.12]    [c.82]    [c.72]    [c.281]    [c.97]   
Биология Том3 Изд3 (2004) -- [ c.121 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Когезия



© 2025 chem21.info Реклама на сайте