Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стирол распределение по молекулярным

    Этот принцип очень широко используется, особенно в радикальной полимеризации, и с его помощью на основе приближенного решения дифференциальных уравнений получены распределения молекулярных масс для ряда различных механизмов при полимеризации стирола [122] и других мономеров  [c.228]

    На физико-механические свойства термоэластопластов влияют количество связанного стирола (а-метилстирола), распределение его в полимере, молекулярная масса блоков и их молекулярномассовое распределение, микроструктура полидиенового блока. На примере ДСТ-30 показано, что оптимальными свойствами обладают полимеры с узким ММР центрального и конечных блоков [22]. Наличие примеси двухблочного полимера резко уменьшает сопротивление разрыву термоэластопластов. [c.287]


    В предыдущей лекции уже приводились данные по влиянию внешнего магнитного поля на средний молекулярный вес полимерных молекул, полученных в реакции эмульсионной полимеризации стирола [7]. Сейчас рассмотрим интересный МИЭ в этой реакции. Когда в качестве инициатора цепной реакции была выбрана смесь молекул дибензилкетона с двумя разными изотопными составами, было получено бимодальное распределение по молекулярным весам синтезированных полимеров (см. рис. 5). [c.56]

    В области гель-проникающей хроматографии пористые сополимеры стирола и дивинилбензола с успехом использовались для фракционирования гидрофобных молекул и определения молекулярно-весового распределения полимеров, растворимых в органических растворителях [32—40]. [c.9]

    Методом блок-сополимеризации можно сочетать в одной макромолекуле стирол с винилацетатом, а-хлоракрилаты с винилацетатом, что не удается сделать при непосредственной сополимеризации этих мономеров. Вследствие различного характера распределения мономерных остатков в молекулярной цепи свойства блок-п привитых сополимеров отличаются от свойств обычных сополимеров с таким же химическим составом. Благодаря наличию в [c.265]

    Скорость агрегации зависит от природы использованного растворителя. Если примененный низкомолекулярный компонент является осадителем для одного типа блоков и если эти блоки охватывают большую часть макромолекулы, их агрегация происходит уже в разбавленных растворах. Блоксополимер 15% стирола с бутадиеном (мол. вес 8,3-10 ) в и-гексане при 60 °С образует истинный раствор с приведенной вязкостью 0,56 дл/г. Значение молекулярного веса, полученное по данным светорассеяния, равно 8,2-10 . При быстром охлаждении такого раствора (с концентрацией 0,08 г/дл) он сильно мутнеет в течение долей секунды и после этого остается неизменным. Кажущийся молекулярный вес в таком растворе составляет 2,55-10 по светорассеянию и 1,6-10 по осмометрическим данным (при характеристической вязкости 0,53 дл/г). Таким образом, в разбавленном растворе образование агрегатов происходит очень быстро, причем они характеризуются широким распределением по размерам. Данные светорассеяния указывают, что диаметры сфер при с = = 0,03 г/дл составляют 720 А. Это хорошо согласуется с удвоенной толщиной единичного макромолекулярного клубка в гексане (/ в = [c.188]

    По этому методу растворимый компонент стабилизатора, а именно, поли(т/7е/п-бутилстирол), для получения узкого молекулярно-массового распределения синтезировали с использованием бутиллития в качестве инициатора в гептане при 25 °С среднюю молекулярную массу полимера рассчитывали из относительных концентраций мономера и инициатора. Каждая из цепей имела один живущий конец, на котором в дальнейшем начинался рост нерастворимого в гептане полистирольного компонента. Образующаяся устойчивая дисперсия состояла из частиц-агрегатов блоксонолимер а. Проведен анализ ряда образцов, отобранных в ходе полимеризации стирола и обладающих различными соотношениями полистирола и растворимого компонента. Измерения диаметра частиц этих образцов и значения молекулярной массы и соотношения масс растворимого и нерастворимого компонентов позволили рассчитать молекулярную площадь, приходящуюся на одну растворимую цепь, и ее изменение в ходе дисперсионной полимеризации. [c.70]


    Ограниченность применения пиролиза для аналитических целей связана, по-видимому, с общей неполнотой наших знаний о деталях процессов разложения полимеров. В последние годы выполнено большое число экспериментальных исследований [10, 20, 26, 41] и теоретических работ [5, 29, 30, 40, 45, 51—65], дающих основу для выяснения механизма процессов, однако только о двух полимерах — полиметилметакрилате и поли-а-метил-стироле — можно сказать, что кинетика и механизм их разложения достаточно хорошо изучены. Полное исследование механизма должно включать определение продуктов разложения, а также молекулярных весов и скорости выделения летучих веществ в зависимости от времени и степени превращения. Кроме того, следует выяснить влияние метода получения исследуемого полимера, начального молекулярного веса, распределения по молекулярным весам и разбавления полимера относительно инертным веществом. Все это, конечно, требует больших усилий. В результате проводимых исследований мы лучше понимаем изучаемые процессы, и вместе с тем при этом выявляются многие новые возможности использования пиролиза для аналитических целей. [c.152]

    Для полимеров, находящихся при данной температуре в аморфном состоянии, близость этой температуры к Tg является одним из наиболее важных показателей физических свойств. Температура стеклования бутадиенстирольных сополимеров зависит как от структуры блока полибутадиена, так и от количества и характера распределения стирола в полимере. В блок-сополимерах наблюдаются два перехода из стеклообразного состояния в высокоэластическое, характерных для блоков каждого типа. Влияние молекулярного веса на Tg проявляется через длину блоков в молекуле сополимера. [c.227]

    Для кинетич. описания П. в м. в реальных реакторах необходимо для каждой конкретной системы определить константы скорости элементарных актов полимеризации (инициирования, роста, передачи и обрыва цепи) и установить корреляцию вязкости системы и глубины превращения мономера при расчетных темп-рах процесса. Для упрощения часто принимают, что константы скорости роста Ар и передачи цепи на мономер Ап не зависят от вязкости. Тогда значения А д и / можно определить по данным о скорости полимеризации и среднечисловой степени полимеризации при данной глубине превращения. На примере полимеризации стирола в массе при вязкости до 10 н-сек м (100 пз) показано, что данный метод дает хорошее совпадение с экспериментом при расчете молекулярно-массового распределения (ММР) полимера. Для исследования кинетики П. в м. используют дилатометры (для гомогенных систем) или гравиметрич. метод (для гетерогенных). [c.445]

    При одинаковом содержании исходного каучука объем микрогеля в ударопрочном П. можно изменять, варьируя условия получения материала. При увеличении содержания микрогеля ударная вязкость и относительное удлинение достигают максимума (при содержании 20—30%), прочность при растяжении снижается, модуль упругости возрастает. Прочностные свойства зависят также от мол. массы и молекулярно-массового распределения (ММР) матричного П., от размера частиц микрогеля, степени прививки и степени сшивания частиц микрогеля. Молекулярные характеристики матрицы влияют на свойства материала так же, как и на свойства П. (см. Стирола полимеры). При синтезе ударопрочного П. молекулярная масса матрицы должна быть меньше молекулярной массы П. общего назначения, получаемого в массе (для этой цели вводят регу  [c.271]

    Изучение молекулярно-весового распределения (МВР) при быстрых реакциях, протекающих без обрыва цепи, для полимеризации стирола в тетрагидрофуране под действием Ыа-нафта-лина показало, что константа роста цепи при —78° лежит между 10 и л моль-сек. Авторы пришли к выводу о том, что полидисперсность живущих полимеров в случае больших концентраций инициатора объясняется главным образом небольшой скоростью смешения катализатора и мономера и лишь в меньшей степени малой скоростью реакции инициирования по сравнению с реакцией роста цепи юзз-юзб [c.127]

    Л, Ф. Верещагин, А, Д. Снегова и Е, Ф, Литвин [363] исследовали влияние высокого давления нри полимеризации стирола на функцию распределения молекулярных весов полистирола. Эти авторы установили сдвиг интегральных кривых распределения в сторону больших молекулярных весов. Одновременно была обнаружена неоднородность молекулярного веса полимера по радиусу реакционного сосуда, которая маскирует влияние давления — в середине реактора средний молекулярный вес (а также степень превращения мономера) меньше, чем у стенки, В реакторах меньшего внутреннего диаметра были получены более монодисперсные и более высокомолекулярные полимеры. [c.205]


    Статистические сополимеры бутадиена и стирола с молекулярными весами в интервале от 1,2-10 до 2-10 образуют многофазные смеси в тех случаях, когда они различаются по составу более чем на 20% . Точные границы совместимости установлены не были, но очевидно они лежат значительно ниже указанного значения. На многофазную структуру исследованных полимерных смесей указывают результаты измерений динамических характеристик смесей, а также данные по зависимости двойного лучепреломления от напряжения. Следствием многофазности структуры полимерных смесей с широким распределением но составу является обратная температурная зависимость их механических характеристик по сравнению с сополимерами того же самого среднего состава с узким рас- [c.96]

    Реакции в гетерогенных условиях и полимеризация в массе при более высоких степенях превращения могут привести к кинетическим осложнениям, хотя причины для последних не должны быть одинаковыми в обоих случаях. Как впервые наблюдалось в случае полимеризации метилметакрилата, а затем и для других виниловых мономеров, особенно метилакрилата, увеличение скорости нри упомянутых превращениях происходит одновременно с увеличением среднего молекулярного веса, который изменяется с изменением природы полимера [45]. Этот эффект означает уменьшение скорости обрыва по сравнению со скоростью роста цепи его приписали уменьшению доступности концов радикалов по отношению друг к другу вследствие осаждения радикалов или образования сшитых структур и (или) снижению, подвижности радикалов, вызванному высокой вязкостью среды. В случаях полимеризации стирола, метилметакрилата, метилакрилата и дека-метиленгликольдиметакрилата [46—48] действительно наблюдалось уменьшение величин двух констант скорости. Эти измене-нЕся, естественно, влияют также на распределение молекулярного веса. Остается выяснить, могут ли многочисленные ники, наблюдаемые на седиментационных диаграммах [49], произойти от влияния геля. Необходимые кинетические уравнения можно получить при допущении разумных эмпирических выражений для изменения параметров скорости со степенью превращения и размером реагирующего радикала [50]. Однако до сих пор не получено никаких числовых результатов. [c.178]

    Основной проблемой при производстве синтетического каучука явля- [ ется высокое качество продукта и его однородность. Как известно, про- [ изводство бутадиен-стирольного каучука заключается в смешивании I и определенном соотношении бутадиена, стирола, эмульгатора, воды, инициатора, активатора и регулятора молекулярного веса. Латекс обра- зуется при непрерывной полимеризации в линии, состоящей из 10—20 последовательно установленных реакторов. При достижении заданной степени конверсии для прекращения полимеризации, вводится прерыва- тель. Конечной целью является получение 60%-ной конверсии мономера , и заданного значения пластичности и вязкости, определяемого средним молекулярным весом и распределением молекулярных весов. [c.560]

    Проведенные исследования позволили установить характер влияния условий проведения процесса полимеризации на молекулярно-массовое распределение и содержание разветвленных макромолекул и сшитых структур для основных типов каучуков, получаемых методом эмульсионной полимеризации (сополимеры бутадиена со стиролом и сс-метилстиролом) и полимеризацией в растворе под действием комплексных катализаторов (цыс-поли-бутадиен и чыс-полиигопрен) и предложить рациональные пути получения этих каучуков с оптимальными молекулярными параметрами (см. гл. 3, 4). [c.15]

    Сорбционные и хроматографические процессы, основанные на использовании эксклюзионных (молекулярно-ситовых) явлений — одно из важнейших современных средств фракционирования. Применение в анализе нефтяных ГАС твердых молекулярных сит (цеолитов, широкопорнстых силикагелей и стекол с узким распределением пор по размерам) ограничено из-за сильного проявления адсорбционных эффектов, которые часто действуют противоположно ситовым эффектам, что ухудшает результаты чисто эксклюзионного разделения в соответствии с размерами и формой молекул [109]. Наибольшее распространение получили методы эксклюзионного разделения па пористых, набухающих в растворителях органических полимерах (пространственно сшитых сополимерах стирола и дивинилбензола, полидекстранах и т. д.) или неорганических макропористых сорбентах с поверхностью, модифицированной прочно сорбированной или химически связанной неполярной органической стационарной фазой [117]. [c.16]

    В некоторых случаях, например при использовании натрнй-наф-талинового комплекса для полимеризации стирола и а-метилстиро-ла. за счет переноса электрона к молекуле мономера образуются чрезвычайно устойчивые ион-радикалы, способные вести анионную полимеризацию без обрыва цепи. Если реакционная система тщательно очищена от полярных примесей, то протекает живая полимеризация, когда молекулярная масса продукта прямопропорциональна конверсии мономера и не зависит от температуры (в некотором интервале). Молекулярно-массовое распределение (ММР) Полуниных по этому механизму продуктов чрезвычайно узкое (M,j,/Ai = 1,05-г 1,10) и приближается к биополимерам. [c.30]

    Полимеризация в растворе позволяет регулировать молекулярную массу и молекулярно-массовое распределение полимера, получать структурно-однородные продукты. Она находит все более широкое применение в технологии производства многих промышленных полимеров. Для получения стереорегулярных полимеров, блок-сополимеров этот способ часто является единственно возможным для промышленного производства. Полимеризацией в растворе получают все стереорегулярные эластомеры цис-, А-по-лиизопрен и полибутадиен), блок-сополимеры бутадиена и стирола, некоторые виды статистических их сополимеров, полиэтилен высокой плотности, стереорегулярнын полипропилен, сополимеры этилена и пропилена, некоторые виды полистирола, полиметил-метакрилата и другие полимеры. [c.82]

    Этим методом получают поливинилхлорид, полистирол и другие полимеры. Большая часть поливинилхлорида производится суспензионным методом, обеспечивающим об1>азование полимера со сравнительно узким молекулярно-массовым распределением. Отвод теплоты реакции осуществляется через дисперсионную среду - водяную фазу. Например, полимеризацию стирола в суспензии в зависимости от получаемого продукта (гомополимер, сополимер) и природы иншщатора осуществляют при 50-130 °С в течение 9-12 ч и повышенном давлении. [c.287]

    Полимеризация мономеров типа бутадиена, стирола, акрилатов или метакрилатов в присут зтвии меркаптанов в качестве регуляторов молекулярного веса хорошо известна [63, 64J. Сидельковская и Колодкин l65] изучили влияние ряда меркаптанов на средний молекулярный вес и молекулярно-весовое распределение поливинилпирролидона, полученного при блочной полимеризации в присутствии динитрила азоизомасляной кислоты. Исследовано вяияяае прояилмеркаптана, бензилмеркаптана тиофенола, меркаптоуксусной и тиоуксусной кислот на полимеризацию К-вини71Пиррояицона в присутствии различных кол [c.75]

    Полистирол характеризуется высокой химической стойкостью, что является причиной слабо выраженной реакции передачи цепи на цолимер в. процессе полимеризации. Заметное саморазветвле-ние стирола наблюдается лишь выше 130 °С. Однако при инициированной полимеризации природа применяюш,ейся перекиси может существенно влиять на степень разветвленности и молекулярно-массовое распределение полистирола за счет передачи иепи через полимер при участии первичных радикалов инициатора. [c.187]

    На зависимость адсорбции от продолжительности процесса влияет и молекулярно-весовое распределение полимера, так как коэффициент диффузии зависит от концентрации и молекулярного веса. При изучении адсорбции сополимера стирола с бутадиеном наряду с измерением количества адсорбированного вещества определено изменение вязкости раствора [91 ]. Оказалось, что удельная вязкость сначала повышается, а затем снижается, что свидетельствует об адсорбции, протекающей с вытеснением более быстро диффундируюи1,их [c.28]

    Исследования, проведенные на фракционированных полимер-гомологах стирола и этилена с узким молекулярно-массовым распределением показали, что увеличение молекулярной массы М в 1000—10 000 раз сопровождается возрастанием электрической прочности в 2,0 —2,5 раза [4, с. ПО 131]. Необходимо учитывать, что зависимость S np = (M) может быть связана с изменением размеров надмолекулярных образований вследствие возрастания длины и степени разветвленпости молекулярных цепей, а также с увеличением числа дефектов в образцах, изготовленных из полимер-гомологов с низкой молекулярной массой [12, с. 516]. Значения электрической прочносги образцов полиэтилена высокого давления с разной средней молекулярной массой, полученные в широком интервале температур, представлены ниже [4, с. 109]  [c.144]

    В табл. 3 представлены данные по молекулярной структуре, а в табл. 4 — по надмолекулярным структурам полимеров, полученные различными способами. Как это ни странно, но каждый полимер обладает несколькими конечными структурами. При рассмотрении 50 образцов диблочного сополимера 17% стирола с бутадиеном оказывается, что частота появления пятнистой и полосатой структур одинакова. Разность энергий этих двух форм, по-видимому, не очень велика. Таким образом, в общем случае для конкретного блоксополимера может существовать более чем одна характерная структура. Сравнительно легко определить диаметры, а следовательно, и расстояния между доменами для структур каждого типа, поскольку они хорошо воспроизводимы. Для обоих структур обнаруживается узкое распределение по размерам составляющих ее элементов со средним отклонением 13% (для рассматриваемых диблочных сополимеров). Толщины же агрегатов зависят от молекулярного веса различным образом. Интерпретация данных по размерам агрегатов оказалась не столь простой, как это считали до настоящего времени [4, 6, 7, 9, 21, 22, 31, 32, 39, 47, 49-51, 54, 63, 64, 68]. [c.194]

    Математическая обработка данных, полученных при изучении сшивания в этих системах довольно сложна, если не пользоваться упрощающими допущениями. Фокс и Греч [35] дали примерный анализ кинетики привитой иолимеризации и сделали вывод, что, наиболее вероятно, гелеобразование при привитой сополимеризации происходит в случае применения стирола. (Этот вывод основан только на известных кинетических константах во всех случаях принимается обрыв в результате соединения радикалов.) Предполагалось также, что возможно гелеобразование путем передачи цепи при гомополимеризации в массе метилакрилата и винилацетата этот вывод, конечно, неверен, если обрыв происходит только путем диспропорционирования. Бемфорд и Томпа [14] предприняли тщательное изучение простой привитой по,тимеризации. Схема реакций такая же, как (7.1) (при 8 = 0) и (7.11) с обрывом в результате соединения радикалов было принято, что концентрация мономера остается постоянной и что в начале реакции полимера нет. Описанным методом были рассчитаны некоторые моменты молекулярно-весового распределения. По-видимому, Qo и QJ остаются конечными при всех условиях, а моменты высшего порядка содержат множитель [c.343]

    Этот новый вид каучука, сокращенно названный ЭПБ, появился недавно и известен под торговыми марками синпол Е-ВР и др. [7]. Каучук получается эмульсионной полимеризацией бутадиена (без стирола) в присутствии эффективных инициаторов и активаторов. Эмульсионный полибутадиеновый каучук был известен в начале 50-х годов, но нашел техническое применение в последнее время, после того как были улучшены его технологические свойства путем строгого контроля молекулярно-весового распределения и структуры образующегося полимера. Одним из преимуществ этого каучука является высокая морозостойкость (—70°С), сравнимая с натуральным каучуком и превышающая морозостойкость блочного натрийбутадиенового и бутадиен-стирольного каучуков. [c.160]

    Форма релаксационного спектра ПММА оказывается несколько отличной от формы спектра для ПВА.н цоли.-стирола (о последнем см. в [9]) Это различие может быть объяснено разницей в молекулярно-весовых распределениях указанных материалов. Фракции ПММА [c.301]

    Квин и Моулер [1642] исследовали масс-спектры пяти дейтерированных стиролов. Рассматривая основные направления диссоциации, они установили, что распределение дейтерия в стироле является случайным, и высказали предположение, что имеет место перегруппировка молекулярного иона в цикло-октатетраеновую структуру. Эта гипотеза подтверждается большим сходством масс-спектров циклооктатетраена и стирола. [c.273]

    При к < к2 процесс протекает нестационарно и ур-ние (И) соблюдается лишь после завершения инициирования. В таких случаях образуются полимеры с широким молекулярно-массовым распределением. Ассоциация обычно обусловливает дробный порядок реакции по инициатору и растущим цепям, т. к. ассоциированные формы, как правило, обладают низкой реакционной способностью и в равновесных системах (МеК) пМеВ (12а) развитие процесса практически целиком обеспечивается мономерной (МеК) или менее ассоциированной формой. В частности, известны факты, в соответствии с к-рыми кинетически эффективными частицами при реакциях литийалкилов являются их димерные формы (взаимодействие литийбутила с бутилброми-дом в присутствии оснований Льюиса, полимеризация винилхлорида под действием литийбутила и др.). В этих условиях кажущиеся константы скоростей элементарных актов включают в себя соответствующие константы равновесия. Подобные черты свойственны многим процессам полимеризации, протекающим в неполярных средах под действием литийалкилов, где растущие цепи различных полимеров (стирола, бутадиена, изопрена) обычно существуют в виде ассоциатов, содержащих 2 молекулы. Дополнительные осложнения возникают из-за образования перекрестных ассоциатов растущих цепей с инициатором. Образование ассоциатов обнаружено и при полимеризации с использованием в качестве катализаторов калийорганических соединений в углеводородной среде. [c.74]

    Основными проблемами при полимеризации стирола являются контроль температуры реакции, молекулярного веса и молекулярно-весового распределения полимера. Полимеризацию проводят в присутствии катализаторов сво боднорадикального типа — органических перекисей и гидроперекисей, которые используют в количестве 0,2 вес. %. Полимеризация стирола может протекать в массе, эмульсии, суспензии или растворе, причем выбор метода прежде всего определяется экономическими соображениями. Основные количества полистирола ( 73% в 1968 г.) полу- [c.190]

    Разработана аппаратура и метод измерения силы во времени-при кратковременном разрыве пластмасс от детонации взрывчатых веществ. Получены данные об изменении напряжения во времени и зависимости разрывной прочности от времени испытаний [1965]. Бейкером, Вильямсом [1966] и Е Си-жуаном [1967] описан новый метод хроматографирования и его применение к высокополимеоам. Разделение компонентов происходит за счет изменения их растворимости и выпадения осадков при совместном воздействии растворителя переменного состава и непрерывно изменяющейся температуры по мере продвижения вдоль колонки. Авторы называют этот процесс кристаллизационной хроматографией и рекомендуют его для фракционирования полистирола при температурном градиенте от 60 до 10° растворителем, изменяющим состав от 100% этанола до 100% метилэтилкетона. Полученные в этом случае кривые распределения фракций по молекулярным весам хорошо согласуются с результатами теоретического анализа на основе измерения кинетики полимеризации стирола. Описана конструкция аппарата, снабженного автоматическим пообоотборником. [c.299]


Смотреть страницы где упоминается термин Стирол распределение по молекулярным: [c.404]    [c.64]    [c.36]    [c.97]    [c.312]    [c.128]    [c.5]    [c.106]    [c.106]    [c.106]    [c.571]    [c.78]    [c.236]    [c.467]    [c.468]    [c.324]   
Катионная полимеризация (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярный вес распределение

Стирол дифференциальная кривая распределения по молекулярным весам



© 2025 chem21.info Реклама на сайте