Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия деструкции

    Таким образом, общее выражение для энергии деструкции кристаллической решетки, найденное указанным путем, имеет вид [c.180]

    Определение энергии деструкции ионогенов. На основании анализа молекулярных спектров можно определить энергию связи, т. е. энергию, требуемую для разрыва данной молекулы на атомы (или атомные группировки). В то же время анализ атомных спектров позволяет вычислить энергию образования ионов из атомов. Определенная таким образом энергия деструкции молекулы НС с образованием свободных ионов Н+ и С составляет —432 кДж/моль. [c.180]


    В табл. 10.2 приведены значения энергий деструкции и первых теплот растворения в воде разных соединений, а также значения энергий гидратации этих соединений, вычисленные по уравнению (10.35). Учитывая сказанное, точность значений можно оценить в 5%. Как видно, энергия сольватации ионов велика (несколько сот кДж/моль), поэтому она в состоянии компенсировать довольно высокую энергию деструкции ионофора или ионогена. [c.180]

    Характеристики механохимического воздействия на растворы ПИБ энергия деструкции как функция условий эксперимента [72] [c.35]

    Энергия деструкции Дж/моль разорванных связей [c.35]

    Приведены также данные по кинетике и энергии деструкции растворов ПС в бензоле при различных условиях. Характер изменения степени полимеризации со временем при постоянной мощности прилагаемого акустического воздействия существенно зависит от условий поглощения акустической энергии. Кроме того, наблюдали, что деструкция протекает с наибольшей скоростью, когда ультразвуковая энергия фокусируется в параболическом реакторе. Установлено, что при воздействии ультразвука интенсивностью 7—48 Вт/см с частотой 1500 кГц на растворы ПММА в стироле, метилметакрилате и акрилонитриле мономеры полимеризуются, поскольку при деструкции полимера образуются свободные радикалы. Изучали [963, 1277 ] действие акустической энергии различной интенсивности на кинетику процессов. В частности, исследовали деструкцию ПС с молекулярными массами 1,53-10 2,2-10 и 8,23-10 в бензоле при концентрации раствора от 0,1 до 1,0 г/100 мл под действием ультра- [c.397]

Рис. 7.1. Температурная зависимость изменения энергии Гиббса для эндотермических реакций деструкции углеводородов (а) 1— дегидроциклизации н.гептана = Рис. 7.1. <a href="/info/1577011">Температурная зависимость изменения</a> <a href="/info/2437">энергии Гиббса</a> для <a href="/info/2693">эндотермических реакций</a> <a href="/info/878163">деструкции углеводородов</a> (а) 1— дегидроциклизации н.гептана =
    Поэтому радиоактивные изотопы с энергией а-частиц 4—5 МэВ целесообразно использовать для облучения пленок толщиной до 10— 15 мкм. Для увеличения деструкции материала в направлении вдоль трека целесообразно проводить облучение частицами в сочетании с дополнительным облучением ультрафиолетовым светом, рентгеновскими лучами, -лучами или электронами. При облучении ультрафиолетовым светом длина волны должна быть подобрана таким образом, чтобы наиболее сильно воздействовать на радиационно поврежденные места пленки. Например, для пленок из поликарбоната оптимальная длина волны составляет около 280—300 нм (2800—3000 А), большие длины волн практически не дают эффекта, а при меньших начинает происходить сильное разрушение всей поверхности пленки. [c.53]


    Опыты с бутилфенолами также показали, что скорость деструкции определяется энергией наименее прочной связи (в бутил-фенолах р- или 7-связь). В гидрогенизатах о- и ге-бутилфенолов были обнаружены орто- и пара-изомеры крезола, а также этил- и пропил-фенолов. Показано, что с ростом длины алкильного остатка растет тенденция к его полному отрыву  [c.198]

    Энергия активации Е при коксовании масел была 50 000, смол 32 200 и асфальтенов 25 800 кал моль. Снижение значений Е указывает на уменьшение роли реакций деструкции и развитие процессов поликонденсации и глубокого уплотнения при переходе от масел к смолам и асфальтенам. [c.71]

    Для продолжения изложения необходимо, в частности, сделать из этих кинетических рассмотрений следующий вывод когда увеличивают скорость нагрева угля, химические реакции термической деструкции без значительных изменений смещаются к более высоким температурам тем больше, чем меньше их энергия активации. Значение этого результата обусловлено тем, что явления перехода в пластическое состояние и затвердевания зависят от этих химических реакций и смещаются с ними. [c.85]

    Реакции окисления — экзотермические. Тепловой эффект возрастает по мере увеличения глубины окислительной деструкции исходного реагента и в пределе равен теплоте сгорания данного вещества (см. гл. 8, т. 1). Большинство реакций окисления характеризуется высокими значениями энергии активации, т. е. скорость их резко возрастает при повышении температуры. Общей для большинства технических процессов окисления является проблема отвода, теплоты реакции. [c.174]

    Энергия диссоциации связей С—С меньше, чем связей С—Н, Однако, в случае низших метановых углеводородов, (этан, пропан) преобладающим является распад ио С—Н связи, что объясняется более высокой вероятностью разрыва этих связей вследствие их большего числа и доступности атомов водорода атаке свободных радикалов. Наиболее термически устойчив метан. Как мы уже установили, термическая деструкция метана термодинамически возможна при температуре выше 560°. [c.118]

    Лучшим способом очистки нафталина от тионафтена и других сернистых соединений является гидроочистка [5, с. 280—305]. Связь сера —углерод менее прочна, чем связь углерод— углерод (соответственно 227,35 и 332,03 кДж/моль) если же оценивать прочность связи с учетом компенсации энергии, идущей на ее разрыв, энергией образования новой связи с катализатором в переходном комплексе, то энергии разрыва составят соответственно 20,94 и 204,33 кДж/моль. Поэтому при гидрогенизационной очистке как нафталина, так и бензола обеспечивается почти количественная деструкция связей углерод — сера практически без деструкции сырья. При выборе условий гидрогенизационной очистки следует считаться с опасностью частичной гидрогенизации нафталина, ведущей к увеличению потерь основного продукта. [c.282]

    Единственным приемлемым аппаратом для этой цели является, очевидно, реактор с холодной стенкой , т. е. с внутренней жароупорной футеровкой. Поскольку жароупорная футеровка может снизить температуру стенки реактора до 200—250 С, для изготовления его можно использовать обычные конструкционные стали [8, 85]. Накапливающиеся в циркуляционном газе продукты деструкции (метан этан и др.) удаляют путем низкотемпературного разделения Указывается [90], что для этого метода не требуется больших энер— гетических затрат. Так, для повышения концентрации водорода в циркулирующем газе с 70 до 90 объемн. % энергии расходуется 22 кВт-ч на 1000 концентрируемого водородсодержащего. газа. [c.265]

    Реакции термического разложения нефтяного сырья, как правило, сопровождаются суммарным эндотермическим эффектом (протекают с поглощением тепла), т. е. требуют подвода энергии извне. При этом реакции деструкции, дегидрирования и деполимеризации, протекающие с образованием из исходной молекулы двух и более молекул продуктов разложения, эндотермичны. Реакции полимеризации, конденсации, присоединения [c.181]

    Еще большие напряжения вызывают деструкцию надмолекулярной организации, включая переориентацию сегментов цепи и ламеллярных кристаллов (поворот кристаллов, наклон и проскальзывание цепей), раскрытие пустот и первые разрывы цепей. Эти процессы соответствуют пластической деформации. Как будет показано в последних главах, именно на этой стадии большая часть подведенной энергии переходит в тепло. Поскольку деформирование возобновляется почти с постоянного [c.41]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]


    Однако при нагружении ориентированных пленок ПП Журков, Веттегрень и др. [6—16 получили возрастание исходной концентрации (1 —10) 10 см- карбонильных групп [24]. Они установили, что этот рост и образование других концевых групп (см. ниже) связаны с уменьшением числа перегруженных цепей [16]. Исходя из равенства энергии активации тепловой и механической деструкции пленок ПП (121,4 кДж/моль) энергии активации накопления концевых групп (125,6 кДж/моль), советские авторы пришли к выводу, что кинетика всех трех процессов определяется одним и тем же молекулярным процессом — термомеханическим разрывом сегментов цепей. Согласно расчетам Вула, разрыв цепи практически никогда не должен происходить в ПП, если гУо= 121,4 кДж/моль. Однако эти [c.238]

    Это уравнение используют для расчета теплоты сольватации электролита. Теплоту растворения можно измерить калориметрически с большой точностью (погрешность -< 0,1%). Она сравнительно невел жа и колеблется от —100 до +40 кДж/моль. Существуют разные способы приближенного расчета энергий деструкции на основе косвенных опытных данных или модельных представлений, К сожалению, точность этих способов значительно ниже и не превыигает 5%, [c.178]

    Расчет электростатической энергии деструкции кристаллической решетки предложен М. Борном в 1900 г. Рассмотрим пару ионов с зарядами z+Qo и z Qo (Qo — элементарный заряд), находящихся в вакуу.ме на расстоянии г друг от друга. Между ионами действуют электростатические силы притяжения —2+ ,2-] <3о /4лео (направление действия этих сил условно считаем отрицательным). Чрезмерному сближению ионов препятствуют силы отталкивания, действующие на очень малых расстояниях. Они. могут быть представлены в виде где [c.179]

    Обычно наблюдаемая степень удаления арота не превышает 30%, даже при высоких показателях по удалению серы. Прямая деструкция азотсодержащих соединений невозможна из-за высокой термической стабильности. Энергия разрыва связи С-КНг составляет 335,2 Дж/моль, т. е. практически равна энергии разрьта связи С-С. Удаление азота обязательно должно включать стадию насыщения кольца [36,40]. В результате расход водорода высок — 6-7 моль водорода на моль аммиака [37]. Для ускорения реакции деазотирования в катализаторе необходимы обе функции - гидрирования и гидрообессеривания [47], но они сильно зависят от типа соединений. Азотсодержащие соединения оказывают ингибирующее влияние на активные центры катализаторов гидрообессеривания, природа которых пока полностью не выяснена. В целом гидродеазотирование гетероциклических соединений азота изучено хуже, чем гидрообессеривание. Ясно, однако, что тип связи азота, так же как и связи серы, играет большую роль и определяет скорость деструктивного гидрирования азотсодержащих соединений. Например, алифатические амины значительно более реакционноспособны, чем ароматические. [c.56]

    Гор и Уолш [27] наблюдали, что покрытие поверхности чистого или обработанного кислотой кварцевого сосуда окисью свинца мало влияет на длительность индукционного периода, но сильно уменьшает скорость возрастания давления во время быстрой реакции и значительно увеличивает энергию активации последней. Так как существуют доказательства, что в некоторых других реакциях окись свинца разрушает радикалы НО , авторы объяснили свои результаты исходя из предположения о деструкции активного центра, радикала НОо, образующегося в соответствии с приведенной выше реакцией (г), поэтому данная реакция не ведет к разветвлению цепи, и любое разветвление должно происходить в результате следующей реакции метана с кислородом  [c.322]

    Рассчитанная по энергиям связей теплота реакции (17) состалляет —104 ккал [27J, а для реакций (15) и (16) были найдены значения —58 и —46 ккал соответственно [1]. Поскольку экзотермичность реакции (16) почти вдвое меньше, чем (17), вполне логично ожидать нрн использовании oFg лучших выходов и меньшей деструкции исходного вещества. [c.72]

    Эластомеры можно разделить на две группы — пластицирую-щиеся и непластицирующиеся. В процессе переработки возможна как сдвиговая, так и термоокислительная пластикация полимеров. Большинство эластомеров при температуре переработки в течение коротких промежутков времени, соответствующих длительности технологических циклов , практически не изменяют своих основных показателей таким образом, пластикация обусловлена в основном возникновением высоких сдвиговых напряжений, приводящих к деформации валентных углов и гомолитическому распаду связей [8]. Этот механизм подтверждается тем, что в большинстве случаев интенсивность механодеструкции увеличивается при понижении температуры. Считается также, что следствием деформации может быть накопление потенциальной энергии и перевод цепи в активированное состояние, в котором повышается реакционная способность различных групп, в частности, скорость термоокислительной деструкции [9]. [c.76]

    При гидроочистке дистиллятных почти количественную деструкцию затрагивая связей С—С, т. е. без заметной деструкции сырья Удаление азота протекает много труднее. В работе с модельными соединениями — дибензтиофеном и 3-метплхинолином, добавляемыми к лигроину, — показано, что в обычных условиях гидроочистки (Со Мо на AI2O3, 380 °С, 114 кгс/см ) энергия активации реакций обессеривания составляла только 3,8 ккал/моль, а энергия активации реакции удаления азота 20,0 ккал/моль. При удалении 90% серы, удалялось только 40% азота, при удалении 99,5% серы — 75% азота В другой работе показано, что азот удалялся не только труднее серы, но и труднее кислорода, диенов и олефинов [c.280]

    Модельные эксперименты по термодеструкции ВМС из атабасского битума в присутствии горных пород показали [1065], что энергия активации реакций отщепления коротких алифатических цепочек от макромолекул очень мала (25—60 кДж/моль). Авторы цитируемой работы объясняют это каталитическим влиянием минеральных веществ. Эти результаты подтверждают реальность протекания процессов такой деструкции в условиях недр. [c.201]

    Темпцжтура. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, но и регулировать соотношение между скоростями распада и уплотнения, а также, что особенно важно, между скоростями реакций поликонденсацни, тем самым меняя свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию в зависимости от целевого назначения процесса. Для получения кокса с лучшей упорядоченностью структуры коксования сырья целесообразно проводить при оптимальной температуре. При пониженных температурах из-за малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые препятствуют дальнейшим реакциям уплотнения и форхшрованию мезофазы. При температурах выше оптимальной скорости реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средних (оптимальных) температурах коксования ( 480 С), когда скорости реакций деструкции и уплотнения соизмеримы со скоростью роста мезофазы. Коксующийся слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.63]

    При этом, в соответствии с рядом термической устойчивости, из продуктов реакции деструктируются далее в первую очередь алканы. Для низших алканов помимо реакции деструкции по связи С-С, энергия которой равна 315—370 кДж/моль, становится возможной и реакция дегидрирования с разрывом связи С-Н, энергия которой составляет 380—410кДж/моль и становится соизмеримой с первой. Поэтому в газе крекинга всегда содержится водород. [c.132]

    Одним 113 основных параметров оценки межмолекулярного взаимодействия компонентов нефти, удобных для практических целей, является плотность энергии когезии, численно равная от-нощению энтальпии испарения жидкого компонента к его мольному объему [36]. Необходимые данные об энтальпиях испарения для расчета плотности энергии когезии и соответственно параметра растворимости жидких компонентов можно определить либо из непосредственных калориметрических данных, либо по температурной зависимости давления насыщенного пара, описываемой известным уравнением Клаузиуса — Клапейрона, либо по эмпирическим формулам через температуру кипения компонента. Однако энтальпию испарения экспериментально можно определить липль для углеводородов, испаряющихся без разложения. Для тех соединений, температура деструкции которых ниже температуры кипения, приемлемы методы расчета параметра растворимости на основе инкрементов плотности когезии отдельных групп атомов (ЛЯ ) [37]  [c.20]

    Видно различие значений иоверх1Юст юго натяжения веществ в жидком и твердом состояниях. Наиболее высокое поверхностное натяжение тугоплавких веществ (в частности, алмаза) обусловлено значительной энергией для преодоления сил ММВ ири формированпи новой иоверхности. Поскольку твердые вещества (Ре, Си, Ад) имеют высокие значения поверхностного натяжения, они используются в качестве каталитических поверхностей, на которых происходит взаимодействие фаз. Любая реакция между фазами (в адсорбционно-сольватном слое, межфазном слое) легче реализуется в структурированном состоянии, где на ])еакционную способность соединений, попадающих в слой, дополнительное влияние оказывают силы поверхностного натяжения. В этом случае процесс деструкции идет легче в слое, нри меиьших значениях энергии активации, чем в объеме дисперсионной среды. [c.147]

    В физико-химических процессах термолиза фо). 1Мнруютс,1 ССЕ с ядрами из пузырька и комплекса, а на поздних стадиях, особенно при использовании в качестве сырья тяжелых остатков,— кристалла и поры. Соединения, иопадающне нз дисперси онной среды (объема) в адсорбционно-сольватный слой ССЕ (поверхностный слой), находятся в нем в течение определенного времени и подвергаются суммарному действию температурного и адсорбционного полей, приводящих к деструкции соединени при более мягких условиях, чем в объеме дисперсионной среды, в результате снижения энергии активации процесса. Продукты деструкции, имея меньшую молекулярную массу, покидают адсорбционно-сольватный слой, рекомбинируясь в объеме н их место поступают новые соединения из дисперсионной среды, и процесс повторяется. Влияя на соотношение объемной и поверхностной энергий в НДС, можно регулировать энергию активации процесса и таким образом влиять иа ход термических процессов. [c.199]

    На рис. 10 приведена по М. М. Дубинину схема трех типов пор (а — до адсорбции, б — после адсорбции). Переход пар- -— жидкость осуществляется, как и всякий фазовый переход, через стадию дисперсного состояния в виде межфазного слоя. На поверхности поры устанавливается равновесие между адсорбирующимися и десорбирующимися соедипепиями (или продуктами реакции), которое в значительной степени зависит от природы и размера ССЕ, попадающих и уходящих с поверхности адсорбционного слоя. Это равновесие обусловливает определенную толщину адсорбционного слоя, в котором под действием силового поля слоя ири определенных температурах происходит деструкция молекул при энергиях активации значительно меньших, чем энергия активации деструкции молекул в объемной фазе. Толщина адсорбционных и межфазных слоев зависит от размеров адсорбируемых и десорбируемых ССЕ на поверхности катализатора и влияет на выход и качество получаемых продуктов реакции. [c.203]

    При нагревании нефтяных остатков скорости реакций распада и конденсации должны изменяться неодинаково. Для образования коротко- и долгоживущих радикалов энергия разрыва связей должна быть в большинс1Вв случаев намного больше или равна энергии активации [22]. Процесс деструкции происходит при меньшем значении энергии активации, по сравнению с энергией разрыва связей, вследствие образования промежуточных продуктов (газы, бензин, промежуточные фракции). В этих продуктах новые связи начинают образовываться одновременно с разрывом старых. [c.89]

    Исходя из этого, при выборе кинетических уравнений мы приняли предположение, что лимитирующей стадией процесса обессеривания является деструкция термостойких содержащих серу комплексов (З 5у). Таким образом, процесс термообессериваппя лимитируется не теплотехническими и не диффузионными факторами, а кинетическими, поскольку проходит в кинетической области реагирования и описывается уравнением, выведенным для процессов, протекающих иа неоднородных поверхностях с переменной энергией активации. [c.223]

    Если в дополнение к естественному процессу газообразования (за счет световой энергии и кислорода воздуха, возможных анаэробных процессов гниения под покрытием) на локальных участках организовать интенсивную обработку осадка (электрохимически, плазмохимически, погружным горением, электродуговым методом и т.д.), то в дополнение к общему обычному газоотводу понадобятся и автономные для подачи газов на утилизацию. Отсасываемые из-под покрытия газы, в зависимости от их состава, количества, физико-химических характеристик, а также от мест расположения хранилища могут утилизоваться сжиганием, абсорбцией, адсорбцией или любым другим способом. Целью обработки отходов является, применяя различные, уже известные технологии, максимально возможная их деструкция, то есть в данной технологии можно применить методы деструкции органосодержащих отходов различной интенсивности. Учитывая большую площадь иловых карт можно было бы иметь достаточно много превращенного сырья даже при малых скоростях деструкции. Причем деструкцию можно вести на любом участке хранилища, вплоть до всей его площади (зависит от наличия энергоресурсов , [c.29]

    Поскольку традиционный метод сброса отходов в шламохранилища с неясной перспективой их утилизации сегодня не может быть приемлем вследствие вторичного загрязнения окружающей среды, предлагается решение, заключающееся в сооружении над хранилищем эластичной крыши из полимерного материала на плавающих опорах-понтонах из полимерных труб. Герметизация принципиально меняел технологию хранения, создает возможность переработки органической составляющей отхода в общем мягком режиме с локальной концентрацией энергии в зонах деструкции. [c.33]

    Изучены распределения компонентного состава продуктов пиролиза индивидуальных углеводородов найдено, что выполняются закономерности гауссова распределения состава продуктов деструкции по температ> рам кипения и свободной энергии обра ювания. Наряду с образованием низкомолекулярных компонентов при термолизе органических веществ и их смесей ид т процессы термополиконденсации с образованием пластичных полимерных ароматических структур-пеков и сшитых трехмерных структур-карбоидов нефтянся х.) ксжса [27 -29]. Если реактор рассматривать как кг азиизолироваиную систему, то в ходе термолиза она состоит из двух подсистем - подсистемы низкомолекулярных продуктов деструкции и подсистемы псков и коксов. [c.43]


Смотреть страницы где упоминается термин Энергия деструкции: [c.84]    [c.252]    [c.31]    [c.342]    [c.485]    [c.370]    [c.172]    [c.90]    [c.124]    [c.28]    [c.35]    [c.78]   
Высокомолекулярные соединения Издание 2 (1971) -- [ c.485 , c.489 ]




ПОИСК







© 2024 chem21.info Реклама на сайте