Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходное состояние свободная энергия

    Согласно Бендеру, роль катализатора сводится к обеспечению нового пути реакции, в котором стадия, определяющая скорость процесса (самая медленная), имеет более низкую свободную энергию активации, чем стадия, определяющая скорость некатализируемого процесса. Далее, энергия для каждого переходного состояния катализируемой реакции ниже, чем самая высокая энергия переходного состояния некатализируемой реакции (рис. 4.1). [c.190]


    Полученные соотношения позволяют выразить скорость процесса через термодинамические характеристики переходного состояния. Свободная энергия процесса активации определяется уравнением [c.341]

    Химическая реакция представляет собой непрерывный процесс, заключающийся в постепенном переходе от исходных веществ к конечным. Расположение атомов в промежуточной структуре рассматривают так, как если бы это была реальная молекула. Такая промежуточная структура называется переходным состоянием свободная энергия переходного состояния соответствует вершине энергетического барьера на диаграмме (рис. 2.12). [c.64]

    Для расчета скорости реакции (3.33) с помощью теории абсолютных скоростей [8] следует знать величины стандартных свободных энергий активации реакций окисления и восстановления. Для реакции восстановления эта энергия выражается разностью свободной энергии переходного состояния и энергии начального состояния [c.78]

    В этом примере заполненные и свободные МО имеют одну и ту же симметрию. Они могут без труда смешиваться с образованием МО переходного состояния. Свободные и заполненные уровни не пересекаются, не обнаружено и существование высокого энергетического барьера. Это не означает, что энергия активации равна нулю, поскольку система Не явно неустойчива по сравнению с ЗНд. Однако мы можем с уверенностью ожидать, что энергия активации будет намного ниже тех больших величин, которые были обнаружены для бимолекулярных реакций На [45]. На относительную устойчивость симметричной конфигурации Не указывает также сравнительно высокая разность энергий заполненных уровней и свободных уровней Необходимо, чтобы координата реакции в переходном состоянии имела тип симметрии Вщ, что согласуется с возбуждением (е и) ( 2g)  [c.63]

    При обработке экспериментальных данных но скорости методом теории переходного состояния удобно определить некоторые термодинамические функции, связанные с реагентами и активированным состоянием. Свободная энергия активации А +, энтальпия активации А//+ и энтропия актива- [c.495]

    Использование квантовомеханической модели расширило детализированную теорию [см. ур. (XI.8.3) и (XI.8.За)] так,что оказалось возможным рассматривать влияние структурных изменений на внутренние частоты. В уравнении (XI.8.3) V представляет собой средневзвешенную величину внутрен них частот частицы, которая имеет конфигурацию переходного комплекса, а представляет собой константу равновесия между этим переходным состоянием и нормальными молекулами. Величины/ , и 8 являются соответственно стандартным изменением свободной энергии, энтальпии и энтропии при образовании переходного комплекса. В уравнении (XI.8.За) выражение для скорости имеет форму, удобную для статистического расчета. [c.225]


    Аналогичное рассмотрение обычно используется для реакции рекомбинации метильных радикалов. Здесь большая величина 6 = — избыток энтропии в переходном состоянии — ведет к увеличению характеристического давления. Для того чтобы объяснить экспериментальные данные, необходимо принять допуш ение о почти совершенно свободном враш ении групп СНз в переходном состоянии. Учитывая большую энергию связи (85 ккал/моль ), такое допущение возможно. Кистяковский и Робертс нашли, что скорость рекомбинации радикалов СНз при 165° С возрастает приблизительно втрое при переходе от суммарного давления ацетона от 1 до 10 мм рт. ст. Далее они установили довольно удивительный факт — ацетон приблизительно в 40 раз более эффективно дезактивирует комплекс, чем СОг- Эти результаты объясняют отрицательный температурный коэффициент реакции рекомбинации, полученный этими авторами, отрицательной температурной зависимостью скорости реакции от давления. [c.269]

    Следовало бы ожидать, что уравнение (XVI.3.4) будет удовлетворяться, если процесс ионизации будет идти строго параллельно процессу образования активированного комплекса. Так как первый процесс сводится к переносу протона от НА к растворителю, в то время как последний представляет собой частичный перенос протона от НА к реагенту, совершенно неудивительно, что изменение свободной энергии в этих двух процессах может быть связано. Из того факта, что переходное состояние представляет собой только частичный перенос протона и, следовательно, обусловливает только часть общего изменения свободной энергии ионизации, можно заключить, что величина показателя а должна лежать в интервале от О до 1. Однако точного линейного соотношения следовало бы ожидать только в том случае, если бы не было специфических взаимодействий между субстратом и НА или по крайней мере таких взаимодействий, которые отличались бы от взаимодействия между растворителем и НА. На то, что такие взаимодействия все н е существуют, указывают наблюдаемые иногда отклонения от уравнения Бренстеда. [c.485]

    В состоянии, соответствующем этой точке, молекулы ХУ или У2 отдельно уже не существуют. В момент прохождения максимума потенциальной энергии система из трех атомов представляет нечто целое, по своим свойствам похожее на нестойкую трехатомную молекулу. Это состояние получило название активного комплекса, или переходного состояния. При дальнейшем сближении атомов 2 и У связь 2—У усиливается, атом X отделяется от атома У, потенциальная энергия системы начинает убывать, и наконец, система переходит в конечное состояние — образуется устойчивая молекула У2, потенциальная энергия которой изображена кривой, показанной на диаграмме справа, и свободный атом X. [c.141]

    Как известно из термодинамики, константа равновесня связана со свободной энергией процесса. Эту связь можно использовать и для нахождения величины Л , вводя понятие свободная энергия активации, характеризующее изменение свободной энергии при переходе системы из исходного состояния в переходное и учитывающей все степени свободы, кроме координаты реакции. Если вещества находятся в стандартном состоянии, то для процесса, протекающего при постоянном объеме [c.148]

    Почему при участии основания скорость реакции возрастает Можно указать много причин. В основном это происходит благодаря тому, что основание (имидазол) связывает в переходном состоянии (ПС) протон атакующей молекулы воды, так что на атоме кислорода в составе последней сосредоточена повышенная электронная плотность. Таким образом, этот атом кислорода воды становится более отрицательно заряженным и возрастает его способность передавать электронную пару карбонильной группе. Суммарный результат — понижение свободной энергии активации в присутствии основания. В отсутствие катализатора протон акцептирует вторая молекула воды, которая обладает меньшей основностью и, следовательно, является менее эффективным катализатором. [c.196]

    Энергия активации перегруппировки будет определяться разностью энергий соединения А и промежуточного комплекса В. Трехатомной структуре соответствуют три орбитали, одна из которых связывающая, а две другие вырожденные, разрыхляющие. В случае иона карбония, тенденция которого к перегруппировкам хорошо известна, имеются только два электрона, и они могут быть отнесены к самой низшей связывающей орбитали (рис. 23,1а). Свободный электрон радикала должен идти на одну из разрыхляющих орбиталей (рис. 23, 1 б), что увеличивает энергию радикала. Стабилизация и снижение энергии переходного состояния В достигается за счет перераспределения электронной плотности при движении мигрирующей группы. Это перераспределение в свою очередь определяется строением группы [336]. В то же время довольно легко протекающая 1,2-миграция атомов галогенов 293] не может быть объяснена на основании сказанного выше. [c.197]

    Теория переходных состояний связывает скорость реакции с изменением свободной энергии Гиббса ДО при образовании переходного состояния из основного состояния. Эту теорию можно использовать для количественной оценки реакционной способно- [c.190]


    Ряс. 4.1. Гипотетическая диаграмма изменения свободной энергии реакции. ПС — переходное состояние. [c.190]

    Рассуждая с термодинамических позиций, можно сказать, что энергия переходного состояния комплекса металл — аминокислота благодаря стабилизации зарядов значительно понижена по сравнению с энергией переходного состояния при гидролизе свободной аминокислоты. Кроме того, на стадии катализа металлом составляющая связанная с перегруппировкой растворителя, по-видимому, небольшая величина. Следовательно, важна именно матричная роль иона металла при связывании с субстратом. Ионы металла ускоряют также гидролиз ряда амидов, но каталитический эффект не столь велик, как для соответствующим образом связанных эфиров. Причина этого — различия в природе уходящей группы. Худшая уходящая группа, амидная, нарушает контроль скорости реакции тетраэдрическим промежуточным соединением. [c.353]

    Как видно, свободная энергия переноса молекулы реагента из воды в мицеллярную фазу может практически полностью компенсировать предполагаемую потерю энтропии при включении молекулы общеосновного или общекислотного катализатора в переходное состояние реакции. Эта компенсация и обусловливает некоторое подобие механизмов ферментативного и мицеллярного катализа. В отличие от реакций высокого кинетического порядка, протекающих в результате взаимодействия низкомолекулярных реагентов непосредственно в растворе, в том и другом случае катализа почти отсутствует неблагоприятный инкремент свободной энергии активации, связанный с потерей поступательного и вращательного движений при включении в переходное состояние реакции дополнительной частицы. Разумеется, конкретный механизм этого явления в каждом из видов катализа несколько иной. В мицеллярном катализе имеет место рассмотренная выше компенсация энтропийных потерь за счет свободной энергии термодинамически выгодных ионных и гидрофобных взаимодействий реагента с мицеллой. В ферментативном катализе компоненты активного центра (злектрофильные и нуклеофильные группы) заранее связаны с белковой глобулой (как правило, химически) и обладают до- [c.122]

    Чтобы выявить, какой вклад в скорость ферментативного процесса (1-й путь) вносит дополнительное комплексообразование реагентов Е-Н, нужно учесть, что свободная энергия — это термодинамический потенциал, величина которого не зависит от пути перехода (в случае обратимых процессов), а определяется лишь разницей в уровнях исходного и конечного состояний. Следовательно, для перехода из исходного состояния реакции (ЕХ + КУ) в активированное (переходное) состояние ферментативного пути [c.39]

    Примем далее, что образование переходного состояния бимолекулярной реакции (2.2) условно происходит в две стадии на первой из них молекулы реагентов необходимо сблизить в положение с тесно примыкающими реагирующими центрами X и Y. Лишь затем может идти собственно химическое взаимодействие. Поэтому условно свободную энергию активации можно разделить на два члена  [c.50]

    Поскольку переходные состояния имеют практически нулевое время жизни, их невозможно наблюдать непосредственно и об их геометрии можно только делать заключения на основании косвенных данных. Часто такие заключения бывают вполне основательны. Например, в реакции типа 5к2 (разд. 10.1) между СНз1 и 1 (реакция, при которой продукт идентичен исходному соединению) переходное состояние должно быть совершенно симметричным. Однако во многих случаях невозможно прийти к таким легким выводам, и тогда на помощь приходит постулат Хэммонда [10], который гласит геометрия переходного состояния похожа на геометрию тех веществ, к которым оно ближе по свободной энергии, и это относится к каждой стадии реакции. Так, в случае экзотермической реакции, подобной изображенной на рис. 6.1, переходное состояние больше похоже на реагенты, чем на продукты, хотя здесь разница не слишком велика, так как величина АС с обеих сторон значительна. Этот постулат очень полезен при рассмотрении реакций, в ходе которых образуются интермедиаты. В реакции, показанной на рис. 6.2,а, первое переходное состояние по энергии намного ближе к интермедиату, чем к реагентам, поэтому можно предполагать, что и геометрия его больше похожа на геометрию интермедиата, а не на геометрию реагентов. Точно так же второе переходное состояние по величине свободной энергии намного ближе к интермедиату, чем к продуктам, и потому по геометрии больше похоже на интермедиат, а не на продукты. О структуре интермедиатов обычно известно больше, чем о структуре переходных состоя- [c.282]

    Затрата свободной энергии на разрыв прочной связи А—В компенсируется (хотя бы частично) образованием новых связей между субстратом и катализатором (в переходном состоянии реакции). Подобного рода эффекты определяют, в общем, и пути протекания многих некаталитических реакций, когда разрыв связи облегчается путем образования промежуточных соединений [521. При этом чем больше энергия образующейся связи, тем больше понижается энергия активации (табл. И). [c.63]

    Важная роль в ферментативном катализе отведена сорбции на активном центре боковых фрагментов субстратной молекулы, не претерпевающих в ходе реакции никаких химических изменений. Теоретический анализ двухцентровой модели химического взаимодействия, проведенный в гл. II, показал, что кинетическая роль подобного комплексообразования реагентов сводится фактически к стабилизации переходного состояния реакции и, тем самым, к понижению свободной энергии активации катализируемой реакции. В этом параграфе будут рассмотрены кинетические показатели некоторых неферментативных моделей, на примере которых удобно проиллюстрировать то, что реализация дополнительных взаимодействий реагентов за счет их боковых химически инертных групп действительно приводит к ускорению реакции. Это взаимодействие (типа E-R, см. схему 2.10) может быть электростатическим или гидрофобным, а также протекать с образова- [c.72]

    Реакционная способность длительное время была главным критерием ароматичности. Уже через год после публикации Кекуле о структуре бензола и об ароматических соединениях как структурно подобных бензолу Эйленмейером было выдвинуто представление о химическом подобии ароматических соединений [12]. Поскольку для бензола характерны реакции электрофильного замещения, именно способность к этим реакциям считалась, а в ряде работ и до сих пор считается, признаком ароматичности. Склонность ароматических соединений к реакциям замещения, а не присоединения, Т ендендия сохранять тип обусловлена их повышенной термодинамической устойчивостью, т. е. пониженным уровнем свободной энергии. Однако реакционная способность зависит не только от уровня свободной энергии основного состояния субстрата, но определяется разностью уровней основного и переходного состояний — свободной энергией активации. Энергия же переходйого состояния в общем случае может изменяться в столь широких пределах, что изменение верхней границы барьера активации полностью перекроет влияние изменения нижней границы, зависящей от степени ароматичности. [c.41]

    Проследить связь между окраской комплекса иона переходного ме-тал.та, обусловленной d — -переходом, и Dq проще всего на примере -комплекса, например комплекса Ti " в октаэдрическом поле. Основное состояние свободного иона описывается термом О, и, как указывалось ранее, вырожденные -уровни расщепляются октаэдрическим полем на совокупность из трехкратно вырожденного -состояния и двукратно вырожденного Е -состояния. Расщеп.тение составляет 10 Dq (рис. 10.7). С увеличением Dq возрастает и энергия АЕ (а следовательно, и частота) перехода. Тангенс угла наклона линий п Е составляет соответственно -ADq и + 6Dq. Величину А (см ) можно получить непосредственно из частоты полосы поглощения. Например,. максимум полосы поглощения Ti(H,0)g лежит при 5000 А (20000 см ). Величина А для воды, связанной с Ti , составляет око.ю 20000 см (Dq равно 2000 см ). Поскольку этот переход происходит с поглощением желто-зеленой компоненты видимого света, пропущенный свет пурпурный (голубой + + красный). При изменении лиганда меняется и окраска комплекса. Цвет раствора дополнителен к поглощенному (или поглощенным) цвету, поскольку окраску определяют линии пропускания. Визуально на- [c.89]

    Из уравнения (2.21) видно, что термодинамически эффективность ферментативного катализа определяется разницей свободных энергий межмолекулярного (при образовании комплекса Михаэлиса) и внутримолекулярного (в переходном состоянии реакции) образования связи Е-Я. Следовательно, в количественном отношении кинетическая роль комплексообразования Е Н в ускорении ферментативной реакции представляется несколько иной, чем в кинетическом режиме второго порядка (уравнение 2.19). Однако и здесь движущей силой катализа остается свободная энергия взаимодействия Е-Н именно в переходном состоянии реакции (а не в промежуточном комплексе). Действительно, чем более термодинамически выгодным будет внутримолекулярное взаимодействие Е-К в активированном состоянии (чем более отрицательные значения примет величина АОз внутр). тем более благоприятным должно быть отношение VI/ии для ферментативной реакции [см. (2.21)]. Это связано с тем (см. рис. 12), что барьер свободной энергии активации ферментативной реакции (ДО/. внутр) в этом случае уменьшается (по сравнению с ДОи) и, следовательно, скорость процесса [уравнение (2.20)] возрастает. Наоборот, при заданном значении ДО .ппутр термодинамически более благоприятное взаимодействиеЕ -Н в исходном состоянии реакции (фермент-субстратный комплекс ХЕ-КУ) будет тормозить ее протекание. Так, более отрицательные значения Д(3 приводят к неблагоприятным значениям VI /иц в отношении ферментативного процесса [уравнение (2.21)]. Это связано с тем, что активационный барьер Д01% утр (см. рис. 12), определяющий скорость превращения фермент-субстратного комплекса [уравнение (2.20)], при этом возрастает. [c.41]

    Это означает, что свободная энергия внутримолекулярного (в переходном состоянии) гидрофобного взаимодействия Е-Н (т. е., величина Д <55%нутр. которая и определяет эффективность катализа) фактически пропорциональна свободной энергии переноса (экстракции) группы Н из воды в органический растворитель (АОэкстр)- [c.44]

    Из сказанного можно сделать вывод, что при гидрофобном фермент-субстратном взаимодействии типа Е-Н (схема 2,10) величина Д 5,ВНУ1Р (уравнение 2.19) принимает существенные значения даже при не слишком больших гидрофобных фрагментах Н. Так, для весьма распространенной в живой природе бензильной группы (встречающейся в молекулах производных фенилаланина) понижение свободной энергии активации, обусловленное погружением ее (переносом из воды) в гидрофобную среду активного центра (при образовании переходного состояния химической реакции), может составить величину вплоть до —7 ккал/моль (—29,4 кДж/моль) в зависимости от значения а с 2, которое реализуется в данной энзиматической системе. Это соответствует ускорениям реакции вплоть до 10 раз. [c.45]

    Стабилизация переходного состояния реакции за счет образования водородных связей. Энтальпия образования водородной связи ДН составляет —(4—8) ккал/моль, т. е. —(16,8—33,6) кДж/моль (см. б в гл. 1). Если строение переходного состояния X...Y такое, что не требует замораживания дополнительных связей при сближении групп Е и R (и тем самым обеспечивает образование внутримолекулярной водородной связи без потери энтропии), то величина AGs в утр (уравнение 2.19) определится указанным значением АЯ. Следовательно ускорение реакции в этом случае может достигать значений (уг/уц) in 10 —10 В противном случае, когда образование дополнительной водородной связи в переходном состоянии требует дальнейшего замораживания его структуры, термодинамически невыгодное изменение энтропии на каждую замороженную связь составит —(5—7) кал/моль/град (для модели с подвижными боковыми группами аминокислотных остатков, включенных в жесткую полипептиднук> цепь) [18]. Это соответствует увеличению свободной энергии актР1  [c.46]

    При анализе значений наблюдаемых констант скорости второго порядка 2 следует иметь в виду в принципе два возможных эффекта, вызываемых увеличением длины (п) алифатических групп в молекулах реагентов возрастание стерических препятствий, тормозящих реакцию, и, с другой стороны, возрастание свободной энергии гидрофобного взаимодействия реагентов, приводящего к стабилизации переходного состояния реакции и тем самым к ее ускорению. В нуклеофиле (VI) алкильный заместитель отделен от реакционного центра ими-дазольным кольцом. Поэтому при увеличении п в имидазолах (VI) стерические эффекты должны быть выражены в гораздо меньшей степени, чем для сложных эфиров (V), где заместитель расположен непосредственно у атакуемого карбонильного атома углерода. Следовательно, можно допустить в первом приближении, что стерические эффекты зависят только от свойств эфира. И если принять, наконец, что стерический эффект торможения реакции алкильным заместителем в ацильной группе вносит одинаковый вклад как в щелочной, так и в катализируемый имидазолами (VI) гидролиз, то необходимая поправка может быть внесена простым делением величин на соответствующее для данного сложного эфира (V) значение константы скорости щелочного гидролиза н. [c.75]

    Зависимость 1й( 2/ он) от числа углеродных атомов п в ацильной части сложного эфира (V) [при различных значениях числа углеродных атомов в алкильном заместителе в имидазолах (VI)) представлена на рис. 19. При значениях п < 5—6 величина слабо зависит отп при изменении длины углеводородных цепей как в том, так и другом реагенте. Это может быть связано с тем, что при образовании переходного состояния реакции имидазольное кольцо и сложноэфирная группа должны быть взаимно расположены таким образом, что короткие алкильные цепи реагентов просто не могут дотянуться друг до друга. При больших значениях п контакт цепей становится возможным и их взаимодействие приводит к значительному ускорению реакции. Система симметрична в том смысле, что увеличение п как в сложном эфире, так и в нуклеофиле (VI) приводит к одинаковому возрастанию скорости. В среднем введение каждой метиленовой группы (свыше первых 5—6) приводит к ускорению реакции в 2,5 раза. Это отвечает понижению свободной энергии активации реакции на 550 кал/моль (2,3 кДж/моль) на каждую метиленовую группу, что представляет собой величину, типичную для гидрофобных взаимодействий углеводородов [5, 9, 13]. [c.76]

    Совсем по-другому обстоит дело с реакциями, протекающими на мицеллах. Если реагент способен сорбироваться на мицелле, то увеличение кинетического порядка реакции приводит к большей эффективности мицеллярного катализа [см. уравнение (3.22)]. Иными словами, при включении в реакцию дополнительного реагента (например, общеосновного или общекислотного катализатора) следует ожидать, что эффективное значение свободной энергии активации реакции, протекающей при оптимальной Концентрации детергента, понизится по сравнению со свободной энергией реакции, идущей в воде (в отсутствие ПАВ), примерно на величину ЯТХпР, т. е. на величину 3—5 ккал/моль (12,6—21 кДж/моль) (при Р 10 —10 и Т 300 К). Это понижение эффективного значения свободной энергии активации обусловлено тем, что переход молекулы реагента из воды (исходное состояние) в переходное состояние, находящееся в мицеллярной фазе, термодинамически более выгоден, чем переход этой же молекулы в тождественное переходное состояние реакции, идущей в воде. [c.122]

    Прежде чем дать объяснение кинетической специфичности химотрипсина, обратим внимание на следствие, которое вытекает из (4.29) и (4.37) и заключается в том, что образование переходного состояния любой из химических стадий сопровождается выигрышем свободной Энергии, равным. 2А0экстр (в бимолекулярном процессе из исходных реагентов) [16, 122]. Это положение весьма наглядно иллюстрирует диаграмма, приведенная на рис. 44. Так, например, в процессе ацилирования фермента, протекающем в кинетическом режиме реакции второго порядка  [c.154]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]


Смотреть страницы где упоминается термин Переходное состояние свободная энергия: [c.418]    [c.43]    [c.345]    [c.93]    [c.368]    [c.148]    [c.217]    [c.149]    [c.276]    [c.37]    [c.25]    [c.43]    [c.46]    [c.50]    [c.59]    [c.113]    [c.122]   
Химия протеолиза Изд.2 (1991) -- [ c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Переходное энергия

Свободная энергия

Свободная энергия состояния

Состояние переходное

Энергия переходного состояния

Энергия состояния



© 2025 chem21.info Реклама на сайте