Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сравнение металлов и неметаллов

    Сравнение металлов и неметаллов [c.281]

    Галоген. Фиолетово-черный с металлическим блеском, летучий. Плохо растворяется в воде, в ничтожно малой степени (по сравнению с С1г и Вп) подвергается дисмутации. Хорошо растворяется в органических растворителях (с фиолетовым или коричневым окрашиванием), в водных растворах иодидов металлов (за счет комплексообразования, йодная вода ), жидком 80 . Слабый восстановитель и окислитель реагирует с концентрированными серной и азотной кислотами, царской водкой , металлами, неметаллами, щелочами, сероводородной водой. Образует соединения с другими галогенами. Получение см. 38 " , 59 - - . 483 52Г , 524, 525 , 560.  [c.270]


    В зависимости от природы материала формы (металл, неметалл) и характера загрязнений выполняют различные этапы подготовки поверхности травление, обезжиривание, декапирование, нанесение разделительного или электропроводного слоев, промывание водой и т. д. После этих операций изменяется характер поверхности по сравнению с исходной, т. е. происходит ее модифицирование. [c.33]

    В авиакосмической технике широко используют новые материалы (композиционные, сотовые, структуры металл-неметалл), включая силовые элементы и покрытия, характеризующиеся более высокими значениями отношения прочностных и других характеристик к массе по сравнению с металлами и сплавами. Из таких материалов изготавливают панели космических ракет и самолетов, лопасти вертолетных винтов, компоненты двигателей и т.п. Срок службы изделий, в том числе в агрессивной среде, может быть весьма велик, по крайней мере, если в них отсутствуют дефекты. Дефекты в новых материалах существенно отличаются от дефектов в металлах, будучи связанными с поверхностями раздела между слоями, наличием воды в пористых и сотовых слоях, нарушениями сцепления матрицы и наполнителя и т.п. [c.313]

    Карбиды и нитриды переходных металлов имеют аналогичные структуры, химические и физические свойства [42]. Из-за небольшого размера атомов С и N по сравнению с атомами переходных металлов неметалл занимает промежуточные участки, образующиеся при плотной упаковке атомов переходных металлов, и значительно модифицирует свойства исходного переходного металла. Некоторые из этих изменений обсуждаются в данном разделе. [c.121]

    Большинство элементов (до 80%) — металлы. По сравнению с неметаллами их атомы значительно слабее удерживают электроны наружного квантового слоя. Для атомов подавляющего большинства металлов характерно содержание в этом слое 1, 2 или 3 электронов, [c.75]

    Интересно обсудить причины возрастания величин и О у карбидов в сравнении с соответствующими переходными элементами. Мы уже отмечали, что модули упругости косвенно характеризуют межатомные связи и что присутствие углерода в решетке способствует возникновению сильных связей металл — неметалл и металл — металл. Поэтому сравнительно высокие значения И5 в [c.145]

    В других теориях связям металл—неметалл уделяется значительно меньше внимания, а основной упор делается на взаимодействия металл—металл атомы неметалла рассматриваются лишь как доноры электронов. Подобные теории можно использовать для объяснения металлической проводимости фаз внедрения, широких концентрационных областей их гомогенности, а также относительно небольшого изменения положений атомов металла в фазах внедрения по сравнению с чистыми элементами. [c.235]


    Характеристика элементов. Мышьяк занимает в V группе положение, которое в IV группе занимает германий. Эти элементы расположены на границе металл — неметалл и поэтому способны проявлять в одних случаях свойства металла, а в других — неметалла. Свойства элементов 4-го и 5-го периодов в V группе сближены по сравнению с IVA группой. Это сближение еще сильнее будет проявляться в VI группе и достигает своего наиболее полного выражения в практически полном сходстве химического поведения брома и иода. Степени окисления у As и Sb одни и те же, а их устойчивость одинакова. Для обоих элементов имеются состояния —3, +3 и +5. В связи с возрастающей ролью -орбиталей значение устойчивых координационных чисел возрастает. У элементов имеется возможность образования кратных дативных связей, при которых As и Sb играют роль акцепторов, в возникающих da—рл-связях. Элементам в степени окисления -f3 и 4-5 соответствуют кислоты, но природа кислот мышьяка и сурьмы установлена не твердо. О них судят лишь по структуре солей. [c.338]

    Достоинство другого, относительно широко используемого метода — метода нейтронного активационного анализа в применении к определению элементов в нефтях подробно рассмотрены в [271]. Помимо основ метода приведены данные по содержанию 20 металлов и неметаллов в различных фракциях нефти. Сравнение двух разновидностей метода — на долго- и короткоживущих изотопах — дано в [272]. Применению Метода к анализу элементов в нефтяных смолах и закономерностям распределения элементов при хроматографировании посвящено сообщение [273]. Применение абсолютного нейтронного активационного анализа к одновременному определению 21 элемента в угле [274] может быть применено и для анализа этих элементов в нефтях. [c.146]

    Десять / -элементов, начиная со скандия и кончая цинком, принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов по сравнению с предшествующими (з- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не на внешней (п = 4), а на второй снаружи (тг = 3) электронной оболочке. У атомов всех переходных элементов внешняя электронная оболочка образована двумя з-электронами. Существуют -элементы (например, хром, молибден, элементы подгруппы меди), у атомов которых во внешнем электронном слое имеется только один 5-электрон. Причины этих отклонений от типичного порядка заполнения электронных энергетических подуровней рассмотрены в конце раздела. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешней электронной оболочки их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) электронных оболочек. Поэтому химические свойства -элементов с увеличением атомного номера изменяются не так резко, как свойства в- и р-элементов. Все -элементы принадлежат к металлам, тогда как заполнение внешнего р-подуровня приводит к переходу от металла к типичному неметаллу [c.68]

    СПЛАВЫ — системы, состоящие из двух или нескольких металлов, а также из металлов и неметаллов, обладающие по сравнению с чистыми металлами как общими металлическими, так и новыми ценными свойствами. Получают С. кристаллизацией расплавов, методом спекания (порошковая металлургия) и другими методами. С. представляют собой кристаллически неоднородные смеси, кристаллически однородные химические соединения или твердые растворы. В общем понимании С. не являются обыкновенными смесями компонентов, из которых они состоят. На свойства сплавов значительно влияют условия их образования, особенно температура и последующая термическая обработка. С. металлов широко используются в технике. [c.235]

    Помимо обычно применяемых способов акустического контакта применяют воздушно-акустическую связь (см. п. 1.5.2.) Волновое сопротивление неметаллов типа пластиков, резины на порядок меньше, чем металлов. В связи с этим коэффициент прозрачности границы воздух — ОК увеличивается в 10...100 раз по сравнению с наблюдаемым при контроле металлов. [c.221]

    Если необходимо показать некоторые физические свойства металлов (блеск, цвет), можно продемонстрировать образцы (по возможности, крупные) различных металлов Ре, А1, Мд, 2п, Сг, Т1, Си, 8п, РЬ и др. Для сравнения можно показать и образцы неметаллов. [c.165]

    Присоединение брома к металлам или неметаллам идет с выделением меньшего количества теплоты по сравнению с хлором, ио реакции бромирования при назревании протекают быстро. [c.37]

    Характерным свойством неметаллов является большее (по сравнению с металлами) число электронов на внешней электронной оболочке их атомов, а следовательно, большая способность к присоединению электронов (окислительная способность), передаваемая высокими значениями их электроотрицательности. [c.109]


    Для демонстрации некоторых физических свойств металлов — цвета, блеска, твердости — на лекционном столе целесообразно разместить образцы различных металлов. Можно для сравнения поставить несколько образцов неметаллов. [c.96]

    Склонность К образованию изополикислот проявляют некоторые неметаллы (В, Р, Аз и особенно 81). Из металлических элементов в наибольшей степени эту способность проявляют металлы 5В и 6В подгрупп Периодической системы. В гетерополикислотах сочетаются кислотные остатки металлических и неметаллических элементов. Несмотря на громадное разнообразие состава поликислот, для подавляющего их большинства характерен ряд общих свойств. Почти все они являются более сильными кислотами по сравнению с теми кислотами, из которых они образованы. Так, двухромовая кислота значительно сильнее хромовой. Состав и строение поликислот очень сложны и изучены недостаточно. Твердо установлено, что все они представляют собой многоядерные комплексы, в которых связь между ядрами осуществляется посредством кислородных мостиков. Простейшие изополикислоты могут содержать цепочечные или циклические группировки. Например, СггОу , 5120 7 образова- [c.148]

    Полагая, что свойства неметаллов известны из курса химии средней школы, в этой главе рассматриваются лишь те элементы и их соединения, которые используются в машино- и приборостроении. Однако в связи с тем, что в современной технике металлы начинают заменяться неметаллическими материалами, некоторый обзор таких материалов расширен по сравнению с предыдущими изданиями (стекло, керамика, цементы), а также несколько расширен раздел полупроводниковые материалы и их свойства . [c.401]

    Атомы большинства металлов на внешнем электронном слое имеют от 1 до 3 электронов. Исключение атомы германия Ое, олова 5п, свинца РЬ на внешнем электронном слое имеют четыре электрона, атомы сурьмы 5Ь, висмута В — пять, атомы полония Ро — шесть. Атомы металлов имеют меньший заряд ядра и больший радиус (размер) по сравнению с атомами неметаллов данного периода. Поэтому прочность связи внешних электронов с ядром в атомах металлов небольшая. Атомы металлов легко отдают валентные электроны и превращаются в положительно заряженные ионы. [c.273]

    Поляризация ионов. Правила Фаянса. Однако ионная модель строения кристаллов полностью оправдывает себя только в отношении галогенидов щелочных металлов, поскольку полная ионизация атомов не достигается даже в этих соединениях. В результате часть электронного облака становится общей для них, что создает эффект частичной валентной связи. Как правило, в соединениях чем выше энергия ионизации атомов металла, тем менее ионным становится взаимодействие их с атомами неметалла. В итоге менее строгим получается результат расчета энергии решетки по уравнениям (25.13), (25.16) и (25.18). В табл. 25.5 для сравнения приведены значения решетки как вычисленные по уравнению (25.16), так и полученные экспериментально. [c.330]

    Инверсионная вольтамперометрия. Чувствительность определения ионов металлов и неметаллов можно сильно повысить, применяя метод инверсионной вольтамперометрии. Этот метод отличается некоторыми преимуществами по сравнению с рассмотренным выше классическим полярографическим методом. Существует несколько вариантов метода. Во всех вариантах первой стадией процесса является предварительное электрохимическое концентрирование определяемых веществ, что приводит к существенному повышению чувствительности определений. В большинстве случаев вместо токсичного ртутного электрода используют твердый электрод из какого-либо материала, чаще всего из спектрально чистого графита, пропитанного эпоксидной смолой с полиэтиленполи-амином. Метод позволяет определять не только полярографически активные ионы, но также ионы, которые не поддаются прямому полярографированию. [c.498]

    Алюминий. Особенности химии алюминия. Второй типический элемент П1 группы Периодической системы — алюминий — является первым и самым легким sp-металлом с электронной формулой ls 2s 2p 3s 3pK У алюминия по сравнению с бором атомный радиус больше, а потенциалы ионизации меньше следовательно, возрастают металлические свойства. В отличие от неметалла бора алюминий является амфотерным элементом в широком смысле слова. Так, металлический алюминий и его гидроксид растворяются и в кислотах, и в щелочах, а Al(+3) образует и комплексные катионы, и ацидокомплексы. Алюминий по праву можно считать родоначальником как элементов подгруппы галлия, так и элементов подгруппы скандия. Это видно из рис. 138, на котором показан характер изменения энтальпий образования оксидов и галогенидов алюминия и элементов подгрупп галлия и скандия. [c.331]

    При переходе от одного элемента к другому в подгруппе или периоде Периодической системы Д. И. Менделеева наблюдается плавное изменение металлических и неметаллических свойств. Эта закономерность была показана выше на примере сравнения свойств простых вешеств элементов главной подгруппы V группы Ы, Р, Аз, 5Ь, В1. Закономерное изменение степени металлич-ности можно наблюдать и в пределах периода. Например, в третьем периоде (Ка, M.g, А1, 51, Р, 5, С1, Аг) натрий — типичный металл, магний и алюминий — металлы, кремний—неметалл, однако по внешнему виду и некоторым свойствам он напоминает металлы, а фосфор, сера, хлор и аргон — типичные неметаллы. Таким образом, в периоде слева направо происходит усиление неметаллических свойств элементов и ослабление металлических свойств. [c.166]

    Набл. Взаимодействие металлов и неметаллов с галогенами (Оп. 1— Оп.7) и их водными растворами (ui—П5). Сравнение интенсивности взаимодействия галогенов с разными реагентами. Окраска водной и органической фазы после отстаивания (Пь П2, П4). Какой продукт переходит в органическую фазу в каждом из рассмотренных случаев Сравните с результатами в 18.1.3. [c.132]

    Вхождение алюминия и бора в диагональные пары — еще одно обстоятельство, оправдывающее рассмотрение в данной главе свойств только этих двух элементов подгруппы алюминия, как типичного представителя р-металлов, и р-неметалла бора, проявляющего аномальные свойства по сравнению со всеми другими элементами подгруппы. [c.224]

    В плане развития работ в этом направлении на кафедре были рассмотрены вопросы электронной природы твердости металлов, неметаллов и сплавов (Л. И. Баженова, А А. Иванько) и обобщены в монографическом справочнике электронного строения сложных карбидо-гидридных фаз (Л. Н. Баженова, канд. техн. наук В. В. Морозов) — эта работа привела к выводам о двойственном состоянии водорода в гидридах и карбидо-гидридах как в форме протонов, так и отрицательных гидрид-ионов, позволила объяснить причины более сильной связи водорода в карбидо-гидридах по сравнению с гидридами, представить схему химических связей в этих соединениях, а также существенно развить представление о структуре фаз внедрения вообще. Развитие представлений конфигурационной модели применительно к ферритам с использованием редкоземельных элементов было выполнено [c.78]

    При всех исследуемых температурах, кроме 250° С, из никелевых контактов сульфид оказался наиболее активным, а окись никеля наименее. Из соединений же Сг селенид обладает более высокой активностью по сравнению с сульфидом. Это различие в рядах активности авторы объясняют разными величинами радиусов катионов и анионов в соединениях N 5 и СгЗе. Благодаря этому расстояния между центрами атомов N1 и 8 в кристалле N 5 и Сг и 5е в Сг5е оказываются равными и наиболее выгодными для данной реакции (активность этих контактов максимальна). Межатомные расстояния в 2п5 меньше всего соответствуют длине С=С-связи в молекуле бутадиена, и этот катализатор проявляет наинизшую активность. Таким образом, при использовании этих катализаторов четко прослеживается влияние геометрического фактора. Очевидно, что реакция идет по дублетному механизму не только на окислах, но и на сульфидах и селенидах. Поскольку каталитическая активность изучаемых веществ зависит от межатомного расстояния металл — неметалл, то атомы неметалла входят в состав активных центров и участвуют в образовании мультиплетного комплекса. Эта работа хорошо подтверждает структурный принцип мультиплетной теории Баландина. [c.88]

    Эри и Свитендик [17] также учли металл — металл- и металл — неметалл-связи, но их зонная структура Ti значительно отличается от предположенной Лаем. Эрн и Свитендик рассчитали зонную структуру Ti и TiN методом присоединенных плоских волн. Преимущество этого метода в том, что он не требует априорных предположений о характере взаимодействий между различными состояниями. Расчет может быть сделан также самосогласован ным путем сравнения исходной электронной конфигурации с вычисленной. Трудность метода состоит в выборе потенциалов атомов металла и неметалла. Хотя метод является самосогласованным с начальным потенциалом, но сам этот потенциал может изменяться в зависимости от предполагаемой ионности. На рис. 129 и 130 показаны полученные Эрном и Свитендиком гистограммы плотности состояний и характер связи в каждой зоне. В Ti 3d-и 2р-полосы сильно гибридизованы. Для TiN степень гибридизации значительно меньше, и 2р-полоса по шкале энергий расположена ниже уровня Ферми. Эти результаты показывают, что единая зонная модель не может описывать свойства как карбидов, так и нитридов. Напомним, что в предложенных ранее моделях, например модели Бильца, предполагалось, что зонные структуры карбидов и нитридов могут быть аппроксимированы моделью жесткой полосы, пригодной для соединений обоего типа. [c.244]

    Общс й особенностью атомов металлов яв.чяются их большие сравнении с атомами неметаллов размеры (см. 33). Внешний лектрйиы Q атомах металлов находятся иа значительном удале-1ИИ 01 я.дра н связаны с ним сравиительно слабо — атомы метал-тов характеризуются кпзкнми потенциалами ионизации (см. 34, габл, 4 и 5) и близким к н лю или отрицательным сродством ( электрону. Именно поэтому металлы легко отдают валентные электроны, выступая в качестве восстановителей, и, как правила, не способны присоединять электроны — проявлять окислительные свойства. [c.531]

    У бора и алюминия в сравнении с -элементами второй группы ослабляются металлические свойства. Это обусловлено увеличением числа валентных электронов. Бор — неметалл. Остальные элементы—металлы. Оксид и гидроксид бора В2О3, Н3ВО3 обладают кислотными свойствами, оксиды и гидроксиды алюминия, галлия и индия Э2О3 и Э (ОН)з амфотерны  [c.73]

    ХИМИЯ ПЛАЗМЫ. Плазма — ионизованный газ, используется как среда, в которой протекают в[лсокотемператур-ные химические процессы. С помощью плазмы достигают температуры около миллиона градусов. Плазма, используемая в химии, в сравнении с термоядерной считается низкотемпературной (1500—3500 С). Несмотря на это, в химии и химической технологии она дает возможность достижения самых высоких температур. В химии плазма используется как носитель высокой температуры для осуществления эндотермических реакций или воздействия на жаростойкие материалы ири их исследовании. Технически перспективными процессами X. п. считаются окисление атмосферного азота, получение ацетилена электро-крекингом метана и других углеводородов, а также синтез других ценных неорганических и органических соединений. Специальными разделами X. п. является плазменная металлургия — получение особо чистых металлов и неметаллов действием водородной плазмы на оксиды или галогениды металлов, обработка поверхностей металлов кислородной плазмой для получения жаростойких оксидных пленок или очистки поверхности (в случае полимеров). К X. п. примыкают также процессы фотохимии (напр., получение озона). Здесь фотохимический процесс протекает в той же плазме, которая служит источником излучения. [c.275]

    Для получения нитридов наиболее пригоден аммиак, который nqpeA азотом имеет некоторые преимущества. В молекуле аммиака химическая связь непрочная, и при нагревании наблюдается его разложение, которое ускоряется на поверхности металлов. Выделяющийся атомный азот активен, поэтому реакции образования нитридов идут при более низких температурах, по сравнению с реакциями, идущими с азотом. Атомный BOAqpoA восстанавливает оксидные пленки на металлах, которые ме-щают получению чистых нитридов. Небольшое количество кислорода или паров воды в аммиаке не мешает получению чистых нитридов, если исходные металлы (медь, железо, кобальт, никель и т. д.) не обладают большой активностью к кислороду. Активные металлы (магний, кальций, алюминий и т. д.) соединяются даже со следами кислорода, поэтому нитриды загрязняются оксидами. Если при нитровании использовать азот, то следы кислорода или паров воды будут переводить металлы или неметаллы в оксиды даже при небольшом сродстве к кислороду. Для получения нитридов с использованием аммиака применяют установку, изображенную на рисунке 19. [c.50]

    Чтобы установить относительный порядок или шкалу потенциалов отдельных металлов и таким образом сравнивать способность различных металлов и неметаллов к отдаче или захвату электронов, целесообразно выбрать некоторый стандартный электрод. Этот электрод можно скомбинировать с любым другим и условно принять, что его потенциал равен нулю. Таким электродом сравнения выбран водородный. Он состоит из платины, погруженной в раствор какой-либо кислоты и омываемой водо-)одом (рис. VIII.2). В этом полуэлементе идет реакция /2Н2(г)я Н+ + е. По аналогии с уравнением (Vni.il) для электродного потенциала определяемого этой реакцией, можно написать  [c.107]

    В противоположность примитивным типам взаимодейстций металлохимические реакции, приводящие к образованию соединений, можно условно отнести к сложным типам. Основное отличие этих реакций заключается в возникновении при взаимодействии качественно нового химического индивида, характеризующегося своеобразными структурой и свойствами по сравнению с исходными компонентами. По мере нарастания взаимного химического сродства металлов о азующиеся соединения приобретают все более ярко выраженную индивидуальность. В зависимости от того, какой из металлохимических факторов преобладает при взаимодействии, возникают фазы различного типа соединения Курнакова, фазы Ла-веса, фазы внедрения, электронные соединения Юм-Розери и, наконец, соединения, отвечающие правилу формальной валентности. Последние соединения возникают при взаимодействии металлов с неметаллами, когда преобладает фактор электроотрицате льности, и В рамках металлохимии обычно не рассматривается. Тем не менее для получения полной картины взаимодействия металло з этот случай целесообразно рассмотреть в общей связи. [c.378]

    Если взаимодействие коллоидных частиц со средой незначительно, то золи называют лиофобными (гидрофобными), если оно выражено сильно, то золи называют лиофильными (гидрофильными). Частицы в лиофильных золях окружены сольватной (гидратной) оболочкой, делающей их более агрегативно устойчивыми по сравнению с лиофобными золями. Типичные гидрофобные золи — гидрозоли металлов (платины, золота, серебра и др.), неметаллов (серы, графита и др.), солей, не образующих истинных растворов в воде (Agi, As Sg и др.). Гидрозоли кремниевой и ванадиевой кислот, гидроксидов алюминия и железа (III) несколько приближаются к гидрофильным системам. Типичные лиофильные системы — водные растворы желатина и вообще разных белковых веществ, целлюлозы и др. Их раньше причисляли к лиофильным коллоидам. Но в настоящее время доказано, что растворы подобного рода высокомолекулярных веществ, а также синтетических высокомолекулярных веществ являются однофазными системами (Каргин, Слонимский и др.). В отличие от типичных коллоидных растворов указанные растворы только в некоторых отношениях сходны с типичными коллоидами медленная диффузия, неспособность проникать через животные и растительные пленки. Это объясняется тем, что в растворах высокомолекулярных веществ молекулы велики (см. гл. XIII) и соизмеримы с размерами коллоидных частиц. Но все же они являются молекулярно-дисперсными системами и по своей агрегативной устойчивости близки к истинным растворам низкомолекулярных веществ. По этой причине растворы высокомолекулярных веществ сейчас не причисляют к типичным коллоидным микрогетеро-генным системам. [c.176]

    Соединения с другими неметаллами. Сульфид бериллия [10] можно получить взаимодействием серы и бериллия в атмосфере водорода, нагревая 10—20 мин при 1000—1300°. Полученный таким способом сульфид бериллия фосфоресцирует в вакууме при 1300° в присутствии следов других металлов. Следы железа вызывают синее свечение, висмута — слабое фиолетовое, сурьмы — слабое желтое. Фосфоресценция усиливается в присутствии Na l. В воде BeS растворяется плохо и с разложением, но по сравнению с AI2S3 более устойчив. Разбавленные кислоты разлагают сульфид — выделяется H2S. Все галогены, за исключением иода, при взаимодействии с сульфидом бериллия образуют галогениды  [c.185]

    Успешное обучении химии требует сформированности умений наблюдать и сравнивать. Сравнение начинается с вычленения изучаемого объекта из совокупности других однородных объектов, выявления общих черт и различий. Этот прием обеспечивает системность, обобщенность, осознанность знаний. Уже с первых тем мы начинаем сравнивать простые и сложные вещества, основные и кислотные оксиды, металлы и неметаллы, кислоты и основания, слабые и сильные электролиты и т.д. [c.32]

    В свободном состоянии электроположительные элементы образуют простые вещества с типичными металлическими свойствами. К таким свойствам относятся, во-первых, характерный металлический блеск, т. е. высокая способность отражать видимый свет, н, во-вторых, более высокая по сравнению со многими неметаллами пластичность, вызванная возможностью скольжения друг относительно друга плоскостей, образованных атомами в кристаллической решетке металла. Благодаря этому для металлов, хотя и в разной степени, характерны ковкость, тягучесть и другие важные для практики свойства. В-третьнх, металлы отличаются высокой тепло- и электропроводностью. Для последней характерно то, что она уменьшается прн повышении температуры и при переходе металла в жидкое состояние. [c.163]

    Основные области применения фотометрического анализа те же, что и спектрального анализа определение 1—0,001% примесей в различных технических и природных матери пах. Фотометрический метод по сравнению со спектральным ана изом дает возможность определить большее количество различных элементов и материалов. Далее при фотометрическом анализе результаты более точны, нет необходимости применять заранее проверенные стандарты. Фотометрические методы разработаны для определения содержания металлов и неметаллов. Фотометрические методы легко совмещаются с методами получения аналитических концентратов, что необходимо для анализа микропримесей 10 — 10 %. Фотометрические методы широко применяются для автоматического, а также для дистанционного контроля. [c.9]


Смотреть страницы где упоминается термин Сравнение металлов и неметаллов: [c.257]    [c.83]    [c.112]    [c.67]    [c.247]    [c.54]    [c.240]   
Смотреть главы в:

Химия в центре наук. Ч.2 -> Сравнение металлов и неметаллов




ПОИСК





Смотрите так же термины и статьи:

Неметаллы



© 2024 chem21.info Реклама на сайте