Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия химической связи . 24. Длина химической связи

Таблица 1.6. Длина и энергия химических связей Таблица 1.6. Длина и <a href="/info/2819">энергия химических</a> связей

    С увеличением кратности (порядка) связи изменяются длина связи I и ее энергия. На рис. 18 приведена зависимость между энергией и кратностью связи, которая имеет нелинейный I характер. Энергия двойной связи не увеличивается в два раза, а энергия тройной связи не увеличивается в три раза по сравнению с энергией одинарной связи. Это вызвано тем, что энергия я-связи меньше, чем энергия а-связей я-связь менее прочная, чем а-связь, и разрушается при химических взаимо-, действиях в первую очередь. [c.49]

    Энергия химической связи. Основными параметрами связи считают ее длину, энергию и направленность. Поэтому любая теория химической связи прежде всего должна дать количественную оценку этих важнейших характеристик. Мерой прочности химической связи служит энергия связи. Ее величина определяется работой, необходимой для разрушения связи, или выигрышем в энергии при образовании вещества из отдельных атомов. Например, энергия связи Н—Н в молекуле водорода равна 435 кДж/моль. Это значит, что при образовании 1 моль газообразного молекулярного водорода из изолированных атомов по уравнению [c.75]

    В каких пределах находятся значения энергии и длины химической связи  [c.79]

    Рентгеновские лучи обычно имеют длину волны от 1 до 10 А. Вычислите энергию фотонов с длиной волны 2 А, выразив ее в джоулях на фотон. Выразите ее в килоджоулях на моль и сравните с энергией простой углерод-углеродной связи, равной 347 кДж моль. Могут ли рентгеновские лучи вызывать химические реакции  [c.381]

    Используя справочные данные об энергии и длине химической связи, укажите, в какой из частиц каждого набора связь будет прочнее  [c.53]

    Экспериментальные данные — энергия химической связи длина химической связи и постоянный дипольный момент р (только для молекул и радикалов) — отвечают состоянию идеального газа. Многоточие в графах / и / означает отсутствие данных, прочерк в графе р для ионов — отсутствие (по определению) у них дипольного момента. [c.42]

    Известно, что все молекулы состоят из атомов, соединенных между собой химическими связями. Движение химически связанных атомов напоминает непрерывное колебание системы шариков, связанных пружинами. Их движение можно рассматривать как результат наложения двух колебаний — растягивающего и изгибающего. Частоты колебаний зависят не только от самой природы отдельных связей, таких, как С—И или С —О, но и от всей молекулы и ее окружения. Аналогично в системе шариков, связанных пружинами, на колебание одной пружины воздействует вся система в целом. В результате удара амплитуды колебаний в такой системе возрастают. Подобно этому амплитуды колебаний связей и вместе с ними колебаний электрических зарядов увеличиваются, когда на них воздействуют электромагнитные волны (инфракрасные лучи). Различие между молекулой и системой шариков на пружинах заключается в том, что колебательные энергетические уровни молекулы квантованы. Поэтому молекулой поглощаются только те частоты инфракрасного излучения, энергия которых точно соответствует разностям между двумя уровнями энергии связи амплитуда данного колебания, следовательно, возрастает не постепенно, а скачком. Значит, при облучении образца инфракрасным светом с непрерывно меняющейся частотой определенные участки спектра излучения должны поглощаться молекулой, вызывая растяжение или изгиб соответствующих связей. Луч, проходящий через вещество, ослабляется в области поглощения. Регистрируя интенсивность прошедшего излучения в зависимости от волновых чисел или длин волн, получают кривую, на которой видны полосы поглощения. Это и есть инфракрасный спектр. [c.11]


    Представлены энергии химических связей длины связей валентные углы (обозначения углов см. выше на пространственных изображениях) и постоянные дипольные моменты молекул р. Экспериментальные данные для молекул и радикалов отвечают состоянию идеального газа, данные для ионов — состоянию водного раствора или ионного кристалла. Многоточие в графах св . Валентный угол , р означает отсутствие данных, прочерк в графе р — отсутствие (по определению) постоянного дипольного момента у ионов. [c.43]

    До настоящего времени мультиплетная теория Баландина [4] остается единственной, в которой конкретные каталитические реакции рассматриваются на атомарном уровне, т. е. с точки зрения конфигурации молекул и решеток твердых тел, а также длин и энергий химических связей. [c.11]

    При поглощении веществом кванта рентгеновского излучения (длина волны 0,1—20 А) или - -кванта (длина волны 10 — 10" А) образуются частицы с огромным избытком энергии, превосходящим энергию химических связей в сотни и тысячи раз. Эта энергия расходуется в основном на ионизацию молекул вещества и на возбуждение их внешних электронных оболочек. В результате поглощения одного кванта ионизирующего излучения образуется большое число пар ионов и возбужденных молекул. Как те, так и другие претерпевают разнообразные превращения, в частности, превращения, приводящие к разрыву химических связей и образованию свободных радикалов и атомов. [c.20]

    Энергия химической связи выражается величиной порядка 10 эв/связь. Окажется ли химически активным квант красной области излучения с длиной волны 7-10 см7 [c.67]

    Дальнейшее сближение атомов (на расстояние меньше Го) требует больших затрат энергии вследствие взаимного отталкивания. одноименно заряженных ядер атомов. Поэтому ядра связанных атомов остаются на расстоянии го и совершают колебания относительно друг друга. Равновесное межатомное расстояние Го называют длиной химической связи длина является одной из главных характеристик связи. Для молекулы Н2 = 0,074 нм при радиусах атомов водорода 0,053 нм. [c.47]

    По длине химической связи косвенно можно судить о такой ее важнейшей характеристике, как прочность. Чем ближе располагаются взаимодействующие атомы, тем полнее перекрываются их атомные орбитали. Следовательно, химическая связь тем прочнее, чем меньше ее длина. Количественно прочность связи характеризуют энергией. Энергия связи Е равна работе, которую необходимо затратить на разрыв связи, и измеряется в килоджоулях, отнесенных к одному молю вещества. В молекуле водорода энергия связи высока н,=435 кДж/моль, что объясняется небольшими размерами взаимодействующих атомов. [c.47]

    Таким образом, энергии химических связей имеют значения в пределах от 100 до 1000 кДж/моль, а их длины не превышают 0,3 нм. [c.79]

    Для осуществления реакции молекулы реагирующих веществ должны сблизиться на расстояние, сравнимое с длинами химических связей. В этом случае становится возможным перераспределение химических связей в молекулах реагирующих веществ. Однако для осуществления реакции необходима затрата энергии на деформацию, ослабление химических связей в исходных молекулах, чтобы осуществилось их превращение в новые, более устойчивые химические связи в продуктах реакции. [c.10]

    Длина химической связи. Вторая фундаментальная характеристика связи — ее длина. Под длиной связи понимают расстояние между центрами ядер атомов в молекуле (и кристалле), когда силы притяжения уравновешены силами отталкивания и энергия системы минимальна. Длины связей определяют экспериментально по рентгеноструктурным и спектральным данным. Расчетные методы, основанные на использовании величин атомных и [c.77]

    Сравнение длин связей, например для муравьиной кислоты, показывает, что ковалентная связь в исходной молекуле мономера испытала деформацию. Ее длина увеличилась от 0,097 в мономере до 0,107 нм в димере. Большее или меньшее удлинение связи Н—X и ее разрыхление наблюдается и в других веществах. С другой стороны, укорочение межатомного расстояния Н. .. V упрочняет водородную связь. Энергия водородной связи невелика и лежит в пределах 8—40 кДж. Энергия этой связи примерно в 10 раз больше энергии ван-дер-ваальсового взаимодействия и на порядок меньше энергии ковалентной связи. Так, энергия водородной связи Н. .. Р равна 42 кДж, Н. .. О 21 кДж, Н. .. N 8 кДж. Водородная связь проявляется тем сильнее, чем больше относительная электроотрицательность и меньше размер атома-партнера. Поэтому она легко возникает с атомами неметаллических элементов второго периода Периодической системы и в меньшей степени характерна для хлора и серы. Несмотря на малую прочность водородной связи, она определяет иногда структуру вещества и существенно влияет на его физические и химические свойства. Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты, устойчивые при достаточно низких температурах. Ассоциаты могут представлять собой одномерные образования [c.138]


    На рис. 30 показана зависимость энергии молекулы водорода от межъядерного расстояния, образование молекулы водорода представлено сплошной кривой. Она состоит ИЗ двух ветвей притяжения аЬ и отталкивания Ьс атомов. В точке минимума силы притяжения уравновешиваются силами отталкивания. Равновесное расстояние го, т.е. расстояние от минимальной точки Ь до оси ординат, представляет собой длину химической связи, а отрезок от минимума кривой до оси абсцисс характеризует энергию связи или энергию диссоциации Ец молекулы водорода на атомы. При образовании молекулы водорода (рис. 30, сплошная кривая) спины электронов антипараллельны, а отсутствие химического взаимодействия (пунктирная кривая) характеризуется параллельностью электронных спинов. Это вытекает из анализа уравнения (IV.9) при перемене координат электронов с соблюдением принципа Паули. Уравнение (IV.9) можно записать в виде двух самостоятельных выражений  [c.69]

    Расстояние, соответствующее положению минимума на кривой, является равновесным межъядерным расстоянием и определяет длину химической связи. Так как атомы в молекуле участвуют в колебательном движении относительно положения равновесия, расстояние между ними постоянно меняется, т.е. атомы не жестко связаны друг с другом. Равновесное расстояние соответствует при данной температуре некоторому усредненному значению. С повышением температуры амплитуда колебания увеличивается. При какой-то достаточно большой температуре атомы могут разлететься на бесконечно большое расстояние друг от друга, что будет соответствовать разрыву химической связи. Глубина минимума по оси энергии определяет энергию химической связи, а величина этой энергии, взятая с обратным знаком, будет равна энергии диссоциации данной двухатомной частицы. Если сближаются атомы водорода, электроны которых имеют параллельные спины, между атомами возникают лишь силы отталкивания, а потенциальная энергия такой системы будет возрастать (рис. 10). [c.43]

    Выше уже отмечалось, что в ходе химической реакции существенный вклад в энергию взаимодействия реагирующих молекул, находящихся на расстояниях, превышающих длины химических связей, вносят электростатические взаимодействия [c.208]

    Идеи, обсуждавшиеся в предыдущем разделе, схематически отражены на рис. 10.7 на примере элементарной реакции Ач В. Для участия в реакции молекула А должна приобрести дополнительную энергию Еа, в результате чего она превратится в активированный комплекс X, который затем реагирует с образованием продукта В. Чтобы участвовать в реакции, молекула В должна приобрести количество энергии Е >Еа и превратиться в активированный комплекс X, который в дальнейшем реагирует с образованием А. Координатой реакции (абсцисса на рис. 10.7) может быть, например, длина химической связи, изменяющаяся при переходе от А к В. [c.300]

    Ультрафиолетовое облучение широко используется при определении органических вешеств, углерода, азота и фосфора, присутствующих в водах [13, 14]. При облучении растворов, содержащих органические вещества, светом ртутной лампы с длинами волн короче 400 нм протекают первичные или вторичные фотореакции. Как известно, энергия кванта света обратно пропорциональна длине волны и при 200-300 нм составляет 600 00 кДж моль , в то время как энергия химических связей лежит в пределах 250-500 кДж-моль . Количество распавшихся под дейст- [c.51]

    Радиационное разложение определяется как вынужденный разрыв химической связи под действием облучения, сопровождающийся образованием молекул меньшего (по сравнению с исходным) молекулярного веса. Может оказаться, что при поглощении энергии облучения произойдет разрыв многих связей, но часть из них быстро восстановится, так что эти разрывы не удастся наблюдать. В полиэтилене, например, энергия С — С-связи значительно меньше, чем энергия С — Н-связи. Поэтому происходит преимущественный разрыв С — Н-связей. Вероятно, при разрыве С — С-связи два образовавшихся длинных фрагмента цепи жестко связаны в твердой матрице и имеют возможность воссоединиться. При облучении газообразных углеводородов (этан, пропан, бутан) а-частицами от родонового источника соотношение количеств образовавшихся водорода и метана для всех указанных газов одинаково и равно 5 1. Теоретического обоснования столь точного выполнения указанного соотношения не имеется . При облучении неопентана отношение СН4 Нг равно единице. В неопентане на 4С — С-связи приходится 12СН-связей. Эти сведения приводятся для того, чтобы акцентировать внимание на возможности разрыва С — С-связи при облучении. Разумеется, выделение низкомолекулярных углеводородов из полиэтилена низкой плотности, полипропилена и других полимеров во время облучения свидетельствует о необратимом разрыве С — С-связей. В этих случаях образуются фрагменты, достаточно подвижные, чтобы выйти из матрицы. [c.435]

    Рассчитывая и для разных значений разрывных напряжений, удалось установить линейную зависимость IУ=/( Tp), что псзво-лило графически определить свободный член 1/ и угловой коэффициент у. Естественно, что определение этим способом значений Оо н у возможно только при неизменности структуры материала, т. е. неизменности значения 7. Для ряда волокон были определены значения (/ . Величина характеризует энергию связей, которые надо преодолеть при разрушении материала. Для высокоориентированных волокон величины колебались в пределах от 35 до 56 ккал моль, что соответствует энергии химической связи. Это дало основание С. Н. Журкову утверждать, что разрыв происходит по химическим связям [17, 19, 22]. При введении пластификаторов в волокносбразующие полимеры прочность волокна уменьшалась в 1,5 раза, а значение Uf не изменялось. Это тоже свидетельствовало в пользу представлений, основывающихся на разрыве химических, а не межмолекулярных связей. Однако все эти доказательства относятся к предельно ориентированным полимерам, в которых силы межмолекулярного взаимодействия, суммируясь по длине макромолекул, превосходят прочность хи.мической связи между звеньял и одной цепи. В этих условиях рвется наиболее слабая химическая связь, которая и определяет, в основном, прочность полимера. Если же полимер не находится в предельно ориентированном состоянии, то разрушение происходит по границе раздела надмолекулярных образований. Суммарное противодействие разрыву сил межмолекулярного взаимодействия сравнимо с противодействием сил химических. [c.238]

    Для молекулы, находящейся на высоком колебательном уровне в возбужденном электронном состоянии, есть две возможности или вернуться на более низкий энергетический уровень за счет излучения света, или же перейти в состояние, где уровни ее энергии окажутся в континууме н вследствие этого избыток энергии пойдет на разрыв химической связи, т. е. произойдет диссоциация. Таким образом, если переход от дискретной системы уровней к сплошной разрешен соответствующими правилами отбора, то наступление предиссоциации должно выразиться не только в том, что исчезнет вращательная структура полос, но и в том, что произойдет уменьшение интенсивности флюоресценции. Последнее можно использовать для фиксирования предиссоциации. Во многих случаях этот метод установления предиссоциа-дии оказывается более удобным, чем обнаружение расширения вращательных линий в полосе. Например, при облучении NHa светом, длина волны которого соответствует области предиссоциации, полностью исчезает флюоресценция аммиака и распад аммиака уже не зависит от давления. Эти факты совершенно однозначно указывают на то, что диссоциация аммиака происходит непосредственно после поглощения света, а не -в результате дополнительного влияния столкновения молекул друг с другом. [c.68]

    Вернемся, однако, к приближению Борна — Оппенгеймера. Для химика его значение чрезвычайно велико, так как оно привносит в теорию строения молекул широкий круг фундаментальных понятий. Прежде всего сюда относятся практически все стереохимиче -ские понятия и представления (длина химической связи, угол между связями, конформация, конфигурация, симметрия ядерного полиэдра и т. д.), а также понятия многомерной поверхности потенциальной энергии и потенциальной кривой и мкогне, многие другие, которые вне рамок адиабатического приближения теряют смысл. [c.113]

    Таким образом,. химическая связь в молекуле БеИз осуществляется на счет двух электронных пар в трехцентровых о,- и сг,-орбиталях. Каждая из днух электронных пар в равной степени принадлежит обоим атомам водорода. Поэтому можно считать порядок связи Ве—И равным 1 и строение этой молекулы ныра-зить структурной формулой Н—Ве—Н, которая показывает, что связи Ве—Н равноценны имеют одинаковую энергию и длину. [c.57]

    Свойства полимеров определяются не только гибкостью макромолекул, но и их взаимным расположением, т. е. структурой. Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют прочные ковалентные химические связи длиной 0,1 0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3 0,4 нм. Иногда между макромолекулами возникают и водородные связи. Энергия межмолекулярного взаимодействия на 1—2 порядка меньше энергии химической связи. Например, энергия химической связи С—Н (в углеводородах) составляет 415, С—С-связи — 332 кДж/моль, а энергия взаимодействия между молекулами углеводородов — приблизительно 4,18кДжна группу СНз.При увеличении молекулярной массы вещества (например, у полимеров) суммарный эффект межмолекулярных сил резко возрастает. [c.327]

    Так как линии рентгеновской флуоресценции возникают вследствие переходов электронов в наиболее глубоких внутренних электронных слоях, энергия химической связи в общем слишком мала для того, чтобы изменить состояние электронов этих слоев. Напротив, в случае легких элементов в образовании связи участвуют электроны ЛI-oбoлoчки. В этом случае могут проявляться заметные смещения длин волн, например, для элемента и его окисла. Для А1/Ср-линий это различие составляет ДЯ = 0,02 А. Наряду с изменением длины волны изменяется и относительная интенсивность линий. Длины волн линий алюминия изменяются также в зависимости от его координационного числа по отношению к кислороду. Этим способом можно было бы. например, определить координационные числа алюминия в полевых шпатах и других алюмосиликатах. [c.217]

    Эволюция локализованных возбуждений. Дальнейшая судьба образовавшихся радикалов и экситонов также во многом определяется исходной геометрией аниона, симметрией местоположения, степенью орбитального вырождения, природой центрального атома аниона. Если орбиталь, занимаемая неспаренным электроном, вырождена, то эффект Яна-Теллера приводит к искажению ядерной конфигурации вплоть до диссоциации. Устойчивость к диссоциации определяется химической природой радикала. Для координационно-насыщенных соединений наблюдается разрыв связи, а для ненасыщенных - нет. При локализации экситона наблюдаются аналогичные вибронные эффекты. Энергия возбуждений анионов заведомо превышает энергию разрыва любой из химических связей внутри многоатомного аниона. Прямая диссоциация синглетных возбуждений кислородсодержащих анионов с образованием атомарного или молекулярного кислорода запрещена правилом сохранения мультиплетности, в связи с чем она протекает через образование комплексов с переносом заряда типа [ХОп-т От]. Экспериментально такие комгшексы обнаружены в нитратах, хлоратах и перхлоратах. Первоначально при диссоциации происходит селективный разрыв наиболее длинной связи (даже при разности длин связей менее 1%), что экспериментально подтверждено для нитратов щелочных металлов, хлората калия, перхлората бария. [c.98]

    В рамках рассматриваемой модели И1 используется предположение об отсутствии взаимодействия между фрагментами молекул, за исключением химической (обратимой) реакции функциональных групп. Реакционная способность последних предполагается равной и неизменной, как в модели I, одиако в отличие от пее теперь допускается возможность образования циклических структур. Энергия такой системы в отсутствие внешних полей равна произведению энергии Fa одной связи иа их числе N . Координаты групп (напрпмер, Гз1 н Гзг на рис. П1.1) могут совпадать, даже если они пе образовали химическую связь. Положение в пространстве функциональных групп одного звена является, вообш е говоря, коррелированным (например, жесткие мономеры на рис. 1.17,6). Одиако далее для простоты мы предположим, что каждая из этих групп связана с мономером гибкой линейной цепочкой среднеквадратичной длины а, распределение расстояния Г — r.j между концами которой описывается функцией Я (г — Гу). [c.209]

    Поскольку каждая структурная единица цепи содержит электроны и положительно заряженные ядра, она обладает локальным электрическим полем, которое оказывает влияние на соседние структурные элементы. В результате этого между химически несвязанными атомами, принадлежащими одной макромолекуле или разным, возникает взаимодействие, проявляющееся 8 притяжении и отталкивании Назовем это взаимодействие физическим. На большом расстоянии между несвязанными атомами действуют силы притяжения, но при достаточном сближении исключающем возможность химического взаимодействия) проявляются силы отталкивания. В результате атомы располагаются на некотором расстоянии, характернзующ.е ся минимальной потенциальной энергией. Для многих органических соединений эти расстояния составляют 0,3—0,5 нм. Таким образом, физические связи внутри макромолекул или между ними, так же как и в низкомолекулярлых веществах, имеют электрическую природу. Их образование не сопровождается смещением или переходом электронов и происходит на расстояниях, превышающих длину химических связей, т. е. для этих связей характерно дальнодействие, [c.19]

    В процессе механодесгрукции происходит постепенное снижение стегсии полимеризации. Степень полимеризации, при которой дсструкиия резко замедляется или прекращается, называется пределом деструкции. Предел деструкции для многих полимеров составляет 100—1000 звеньев. Кроме того, происходит выравнивание длин макромолекул и, следовательно, сужение молекулярно-массового распределения (рис. 3 7) Минимальная предельная молекулярная масса определяется соогно-шением энергий химических связей макромолекулы и межмолекуляр кого взаимодействия. Кроме того, большое значение имеет вид механического воздействия, величина прилагаемой нагрузки, температура и характер среды. Увеличение степени асимметрии, жесткости и плотности упаковки макромолекул и концентрации раствора благоприятствуют механическому крекингу полимеров. И наоборот, повышение гибкости и подвижности тормозит этот процесс [c.217]

    Ориентационные силы. Электростатические взаимодействия между диполями. Дипольный момент р малой молекулы или атомной группы равен по порядку величины произведению заряда электрона (4,8 10 ед. СГСЭ) на длину химической связи ( 10 см). Единица дипольного момента, равная 10 ед. СГСЭ, называется дебаем (В). Диполи стремятся установиться аптипа-раллельно или в хвост друг к другу. Энергия ориентационного взаимодействия двух диполей обратно пропорциональна кубу расстояния между ними  [c.55]

    На поверхности молекулярных кристаллов резко различаются расстояния между соседними атомами, связанными химически в одной молекуле, и расстояния между соседними атомами разных молекул. Однако поверхность отдельной грани таких кристаллов можно рассматривать как физически однородную благодаря строгой периодичности изменения потенциальной энергии при перемещении адсорбированной молекулы вдоль такой поверхности. В этом случае периодически повторяющиеся участки представляют собой площади, занимаемые молекулами на соответствующей грани кристалла. Эти площади могут быть значительными, а периодичность может сильно зависеть от направления перемещения адсорбированной молекулы вдоль поверхности грани. Например, в случае кристаллов -алканов площади периодически повторяющихся участков часто состав.яяют десятки А , причем движение вдоль оси одной вытянутой молекулы к-алкана связано с периодичностью на расстоянии, определяемом длиной химической связи С—С, равной около 1,5 А, а при переходе от одной молекулы к-алкана к другой периодичность определяется ван-дер-ваальсовыми размерами групп СНа соседних параллельно расположенных молекул и-алканов, т. е. проявляется на рас- [c.19]


Смотреть страницы где упоминается термин Энергия химической связи . 24. Длина химической связи: [c.318]    [c.156]    [c.65]    [c.91]    [c.94]    [c.189]    [c.168]   
Смотреть главы в:

Общая химия -> Энергия химической связи . 24. Длина химической связи




ПОИСК





Смотрите так же термины и статьи:

Длина связи

Образование химической связи. Энергия и длина связи

Свойства химических связей — углы, частоты, длины, энергии, полярности

Связь связь с энергией

Связь химическая энергия

Связь энергия Энергия связи

Химическая длина

Химическая связь

Химическая связь длина

Химическая связь связь

Химическая энергия

Химический связь Связь химическая

Энергия и длина химических связей

Энергия и длина химических связей

Энергия связи

Энергия химически связей

Энергия химическои связи



© 2024 chem21.info Реклама на сайте