Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование химической связи. Энергия и длина связи

    Основными параметрами молекул являются длины связей между атомами (межъядерные расстояния), углы, образованные в молекулах линиями, соединяющими центры атомов в направлении действия между ними химических связей валентные углы), а также энергии связей, определяющие их прочность. Для полной характеристики молекулы необходимо знать распределение в ней электронной плотности и уровни энергии электронов. [c.113]


    Энергия химической связи. Основными параметрами связи считают ее длину, энергию и направленность. Поэтому любая теория химической связи прежде всего должна дать количественную оценку этих важнейших характеристик. Мерой прочности химической связи служит энергия связи. Ее величина определяется работой, необходимой для разрушения связи, или выигрышем в энергии при образовании вещества из отдельных атомов. Например, энергия связи Н—Н в молекуле водорода равна 435 кДж/моль. Это значит, что при образовании 1 моль газообразного молекулярного водорода из изолированных атомов по уравнению [c.75]

    Для полной характеристики химической связи атомов в молекулах определяют длину н энергию связи. Длиной связи называется расстояние между центрами (ядрами) атомов в молекуле, а энергия связи численно равна энергии, которая выделяется при образовании молекулы. Эти представления переносятся на кристаллы. В структуре кристаллов длина связи — расстояние между ближайшими атомами она колеблется в основном от 0,1 до 0,3 нм, а в редких малоустойчивых соединениях достигает 0,35 нм. В кристаллах химическая связь определяет энергию кристаллической решетки, которая значительно превосходит энергию связи молекул. [c.16]

    Итак, химическая связь образуется в результате того, что электрон оказывается на связывающей молекулярной орбитали. При этом зависимость энергии взаимодействия от расстояния между ядрами (кривая потенциальной энергии молекулы) имеет минимум, которому соответствует наиболее устойчивое состояние молекулы (рис. 20). Координата / о этого минимума равна среднему расстоянию между ядрами в молекуле, которое называется длиной химической связи. Глубина кривой в точке минимума О представляет собой энергию химической связи, т. е. энергию, которую необходимо затратить, чтобы разрушить молекулу на исходные части. Энергия связи рассмотренного иона Н2, образованного из частиц Н и Н, составляет О = = 2,7 эВ, а длина химической связи / о = 1,06 А. [c.59]

    Сравнение длин связей, например для муравьиной кислоты, показывает, что ковалентная связь в исходной молекуле мономера испытала деформацию. Ее длина увеличилась от 0,097 в мономере до 0,107 нм в димере. Большее или меньшее удлинение связи Н—X и ее разрыхление наблюдается и в других веществах. С другой стороны, укорочение межатомного расстояния Н. .. V упрочняет водородную связь. Энергия водородной связи невелика и лежит в пределах 8—40 кДж. Энергия этой связи примерно в 10 раз больше энергии ван-дер-ваальсового взаимодействия и на порядок меньше энергии ковалентной связи. Так, энергия водородной связи Н. .. Р равна 42 кДж, Н. .. О 21 кДж, Н. .. N 8 кДж. Водородная связь проявляется тем сильнее, чем больше относительная электроотрицательность и меньше размер атома-партнера. Поэтому она легко возникает с атомами неметаллических элементов второго периода Периодической системы и в меньшей степени характерна для хлора и серы. Несмотря на малую прочность водородной связи, она определяет иногда структуру вещества и существенно влияет на его физические и химические свойства. Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты, устойчивые при достаточно низких температурах. Ассоциаты могут представлять собой одномерные образования [c.138]


    К числу наиболее фундаментальных свойств атома относятся его размер и энергия электронов. Энергия, которой обладают электроны, находящиеся в наиболее устойчивом, или основном, состоянии, определяет индивидуальные свойства элемента и связана с так называемым распределением электронов, в особенности электронов внешней оболочки, участвующих в образовании химической связи. Особенность этой оболочки определяется легкостью отрыва электрона (потенциалом ионизации), а также легкостью присоединения избыточных электронов (сродством к электрону). Что касается размеров атома, то оказывается, что определить с абсолютной точностью его линейные размеры невозможно. Если допустить, что при образовании химической связи атомы соприкасаются, то размер атома можно определить как половину длины этой связи. Межатомные расстояния для различных типов связей рассматриваются в гл. 3, разд. 4, и гл. 4, разд. Б.1. [c.37]

    Если атом имеет три неспаренных р-электрона, каждый из которых может принимать участие в образовании химических связей, то связи будут направлены приблизительно под прямыми углами одна к другой. Это обусловлено тем, что именно таким образом расположены оси р-функций. Значит, наряду с длиной и энергией связи параметрами, определяющими форму молекулы, являются также углы между связями. [c.48]

    Ясно, что а обладает всеми энергетическими характеристиками, необходимыми для образования химической связи. При сближении ядер энергия уменьшается, поскольку электрон оказывается одновременно вблизи двух ядер. Однако, когда протоны подходят слишком близко друг к другу, энергия возрастает в результате межъядерного отталкивания. Существует такое значение Гдв, которому соответствует минимум энергии такое расстояние называется равновесной длиной связи. [c.85]

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    При поглощении веществом кванта рентгеновского излучения (длина волны 0,1—20 А) или - -кванта (длина волны 10 — 10" А) образуются частицы с огромным избытком энергии, превосходящим энергию химических связей в сотни и тысячи раз. Эта энергия расходуется в основном на ионизацию молекул вещества и на возбуждение их внешних электронных оболочек. В результате поглощения одного кванта ионизирующего излучения образуется большое число пар ионов и возбужденных молекул. Как те, так и другие претерпевают разнообразные превращения, в частности, превращения, приводящие к разрыву химических связей и образованию свободных радикалов и атомов. [c.20]

    При действии света определенной длины волны молекулы переходят в возбужденное состояние. Энергия возбуждения, составляющая при поглощении квантов видимого и ультрафиолетового света десятки килокалорий на моль, может быть использована для разрыва той или иной химической связи в молекуле. Так, ацетон при действии света с длиной волны 2000 А распадается с образованием свободных радикалов СНз ч СОСН ,  [c.17]

    Бода, молекулы которой включают тяжелые изотопы водорода и кислорода, обобщенно называется тяжелой водой. Однако под тяжелой водой прежде всего имеют в виду дейтериевую воду ВгО . В природной воде 99,73% приходится на обычную воду НгО . Из тяжелых разновидностей в природной воде больше других содержится НгО (0,2 мол. доли, %), НгО (0,04 мол. доли, %) и НВО (0,03 мол. доли, %). Содержание остальных разновидностей тяжелой воды, в том числе и тритиевой ТгО, составляет не более мол. доли, %. Химическое строение молекул тяжелой воды такое же, как у обычной, с очень малыми различиями в длинах связей и углах между ними. Однако частоты колебаний в молекулЕ1Х с тяжелыми изотопами заметно ниже, а энтропия выше, чем в протиевой воде. Химические связи В—О и Т—О прочнее связи Н—О, числовые значения изменения энергии Гиббса реакций образования В2О и ТгО более отрицательны, чем для Н2О (-190,10, -191,48 и -185,56 кДж/моль соответственна). Следовательно, прочность молекул в ряду НгО, В2О, Т2О растет. Для конденсированного состояния разновидностей тяжелой воды также характерна водородная связь. Лучше других исследованы свойства дейтериевой воды В2О, которую обычно и называют тяжелой водой. По сравнению с НгО она характеризуется большими значениями плотности, теплоемкости, вязкости, температур плавления и кипения. Растворимость большинства веществ в тяжелой воде значительно меньше, чем в протиевой. Более прочные связи В—О приводят к определенным различиям в кинетических характеристиках реакций, протекающих в тяжелой воде. В частности, протолитические реакции и биохимические процессы в ней значительно замедлены. Вследствие этого тяжелая вода является биологическим ядом. Получают тяжелую воду многоступенчатым электролизом воды, окислением обогащенного дейтерием протия, изотопным обменом между молекулами воды и сероводорода с последующей ректификацией обогащенной дейтерием воды. [c.301]


    В 1927 г. немецкие ученые У. Гейт-лер и Ф.Лондон провели квантовомеханический расчет взаимодействия атомов водорода при образовании молекулы На-В результате приближенного решения уравнения Шредингера они вывели зависимость потенциальной энергии системы от расстояния между ядрами атомов водорода (рис. 13). При сближении двух атомов электроны с антипараллельными спинами притягиваются одновременно двумя протонами, поэтому потенциальная энергия системы уменьшается (кривая 1). При сближении двух атомов действуют не только силы притяжения, но и силы отталкивания. Два электрона отталкиваются друг от друга, то же наблюдается и для двух протонов. Силы отталкивания начинают преобладать при очень малых расстояниях между атомами. При некотором расстоянии между ядрами энергия системы минимальна. Система становится наиболее устойчивой, возникает химическая связь и образуется молекула водорода. Расстояние между ядрами в молекуле водорода Го (длина связи) равно 0,074 нм. При сближении атомов, у электронов которых спины параллельны, наблюдается только их отталкивание и энергия системы возрастает (кривая 2). Квантовомеханические расчеты показывают, что электронная плотность в системе при взаимодействии двух атомов водорода, имеющих антипараллельные спины электронов, максимальна в области, лежащей между ядрами [c.42]

    На рис. 30 показана зависимость энергии молекулы водорода от межъядерного расстояния, образование молекулы водорода представлено сплошной кривой. Она состоит ИЗ двух ветвей притяжения аЬ и отталкивания Ьс атомов. В точке минимума силы притяжения уравновешиваются силами отталкивания. Равновесное расстояние го, т.е. расстояние от минимальной точки Ь до оси ординат, представляет собой длину химической связи, а отрезок от минимума кривой до оси абсцисс характеризует энергию связи или энергию диссоциации Ец молекулы водорода на атомы. При образовании молекулы водорода (рис. 30, сплошная кривая) спины электронов антипараллельны, а отсутствие химического взаимодействия (пунктирная кривая) характеризуется параллельностью электронных спинов. Это вытекает из анализа уравнения (IV.9) при перемене координат электронов с соблюдением принципа Паули. Уравнение (IV.9) можно записать в виде двух самостоятельных выражений  [c.69]

    Ядра атомов стягиваются к этой области повышенной электронной плотности до тех пор, пока не наступит равновесие между силами притяжения и межъядерного отталкивания. При этом понижается потенциальная энергия системы (рис. 5.1). Минимум на кривой / соответствует энергии связи в молекуле Иг (максимальная энергия, выделяющаяся при ее образовании) и минимально возможному расстоянию между ядрами, когда силы отталкивания уравновешены силами притяжения (длина связи). Если спины электронов параллельны (кривая 2), потенциальная энергия системы из двух атомов непрерывно возрастает при их сближении и, следовательно, химическая связь не образуется. [c.57]

    Атом лития на 25-подуровне имеет один неспаренный электрон и, следовательно, соединение должно иметь состав LiH. У атома бериллия этот подуровень заполнен и нет ни одного неспаренного электрона, следовательно, бериллий не должен образовывать ни одной химической связи. У бора и следующих за ним элементов (С, N, О, F) происходит последовательное заполнение 2р-подуровня, и атомы этих элементов будут иметь определенное число неспаренных электронов. Если при образовании связей учитывать только наличие неспаренных электронов, то для этих элементов должны образоваться следующие водородные соединения ВН, СН , NH3, Н7О, HF. Отсюда видно, что, применяя только обменный механизм образования химической связи, можно вступить в противоречие с экспериментальными данными бериллий образует соединение с водородом состава ВеНг, водородные соединения бора также имеют другой состав, а простейшее соединение углерода с водородом имеет состав СН4.Устранить это противоречие можно, предположив, что атомы элементов второго периода в образовании молекул участвуют в возбужденном состоянии, т.е. происходит распаривание 5-электронов и переход их на р-подуровень. Но тут возникает другое несоответствие с опытными данными. Поскольку энергии 5- и р-электронов различны, то и энергии образуемых ими химических связей должны отличаться, а, следовательно, подобные связи Э-Н должны иметь разную длину (в зависимости от того, орбитали какого типа принимают участие в их образовании). Согласовать теорию и эксперимент можно, введя предположение об усреднении энергий 5- и р-подуровней и образовании новых уровней, на которых энергии электронов, находящихся уже на орбиталях другого типа, одинаковы. А раз это так, то по правилу Хунда, в атоме появляется максимальное число неспаренных электронов. Эта гипотеза получила название явления гибридизации, а орбитали, образующиеся в результате усреднения энергий подуровней, называются гибридными. Естественно, что при этом меняются и форма электронных облаков, и их расположение в пространстве. В зависимости от того, какие орбитали участвуют в образовании гибридных орбиталей, рассматривают различные типы гибридизации и пространственные конфигурации образовавшихся гибридных орбиталей (см. рис. 14.). Число получившихся гибридных орбиталей должно быть равно общему числу орбиталей, вступивших в гибридизацию. В зависимости от того, какие орбитали взаимодействуют между собой, рассматривают несколько типов гибридизации  [c.48]

    Радиационное разложение определяется как вынужденный разрыв химической связи под действием облучения, сопровождающийся образованием молекул меньшего (по сравнению с исходным) молекулярного веса. Может оказаться, что при поглощении энергии облучения произойдет разрыв многих связей, но часть из них быстро восстановится, так что эти разрывы не удастся наблюдать. В полиэтилене, например, энергия С — С-связи значительно меньше, чем энергия С — Н-связи. Поэтому происходит преимущественный разрыв С — Н-связей. Вероятно, при разрыве С — С-связи два образовавшихся длинных фрагмента цепи жестко связаны в твердой матрице и имеют возможность воссоединиться. При облучении газообразных углеводородов (этан, пропан, бутан) а-частицами от родонового источника соотношение количеств образовавшихся водорода и метана для всех указанных газов одинаково и равно 5 1. Теоретического обоснования столь точного выполнения указанного соотношения не имеется . При облучении неопентана отношение СН4 Нг равно единице. В неопентане на 4С — С-связи приходится 12СН-связей. Эти сведения приводятся для того, чтобы акцентировать внимание на возможности разрыва С — С-связи при облучении. Разумеется, выделение низкомолекулярных углеводородов из полиэтилена низкой плотности, полипропилена и других полимеров во время облучения свидетельствует о необратимом разрыве С — С-связей. В этих случаях образуются фрагменты, достаточно подвижные, чтобы выйти из матрицы. [c.435]

    В реальных условиях адсорбция, как правило, протекает не на чистом металле, а на металлической поверхности со следами воды и пленками оксидов. Проведено [76] исследование поверхностной активности органических спиртов различной длины цепи на чугуне, а также иа восстановленном и окисленном железе. Результаты опытов показали, что тепловые эффекты на чугуне меньше, чем на железе. Это указывает на малое сродство полярных групп (ОН-групп) к чугуну, который имеет низкую поверхностную энергию. Если в молекуле адсорбата содержится химически активная группа с повышенной полярностью, то его теплота адсорбции растет. Так, более высокая теплота адсорбции стеариновой кислоты на железе по сравнению со спиртам и объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью вплоть до образования химической связи [77]. В связи с этим на свежеобнаженных (ювенильных) поверхностях метала должна происходить преимушественная адсорбция неполярных углеводородов. Адсорбция же полярных соединений значительно возрастает на окисленных участках. С этих позиций оказывается воз.можным дополаить объяснения Г. В. Виноградова [78] и других исследователей о влиянии кислорода на процессы граничного трения с.мазочное действие жирных кислот и других полярных соединений повышается за счет растворенного кислорода. При этом предполагается, что присутствие кислорода способствует интенсивному окислению поверхности трения и следовательно, повышению адсорбции полярных ингредиентов, содержащихся в смазочном материале. Однако этим не ограничивается влияние кислорода. В атмосфере кислорода наряду с окислением поверхности происходит также окисление компонентов смазочного материала, в результате их поверхностная активность повышается. [c.77]

    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]

    В какой мере эти необычайные свойства динамических организаций зависят от их химического состава Такая зависимость, конечно, существует — ведь нельзя представить себе развитие жизни, если исходное вещество представляет собой, например, только водород или водород и кислород и т. д. Дж. Уорд рассмотрел вопрос о том, почему живое вещество базируется главным образом на элементах второго и третьего периодов системы Менделеева. Как известно, необходимых для жизни элементов всего 16 и все они имеют небольшую массу атома. Особую роль играют четыре элемента водород, кислород, азот и углерод (на них приходится 99% массы живых тканей организма), а так Же сера и фосфор. Атомы Н, О, N. С приобретают стабильные конфигурации, присоединяя 1, 2, 3 и 4 электрона — это обусловливает и разнообразие образуемых ими химических связей. Важно, что наряду с простыми указанные элементы способны образовать и кратные связи, а также длинные цепи. Сера и фосфор, имеющие З -орбитали, способны к образованию более четырех ковалентных связей, причем их прочность не слишком велика и допускает реакции обмена. Фосфорные соединения являются, акку улятора-ми энергии, и именно они играют важнейшую роль в передаче богатых макроэргических групп и сохранении запасов энер гии. [c.346]

    Химическая связь характеризуется длиной, полярностью, поляризуемостью и энергией. Ковалентная связь имеет также определен-ную направленность. Длину и направленность связей наиболее часто определяют электронографическим или рентгенографическим методом. Полярность связи может быть определена из величин дипсль-ных моментов или по спектральным данным. Поляризуемость отдельных связей определяется по спектральным данным. Поляризуемость молекул характеризуется величиной молекулярной рефракции. Энергия связей определяется по теплоте образования химических соединений из атомов, т.е. термохимическим путем, или из спектральных данных. [c.22]

    Простая связь, как известно, допускает вращение одной части молекулы относительно другой без деформации валентных углов или химических связей. В случае макромолекул такое вращение приводит к возникновению множества различных конформаций нерегулярной формы. Это объясняется тем, что такое вращение может происходить вокруг большого числа последовательно расположенных простых связей в цепи (рис. 36). Если представить, что три атома углерода (С , Сг и Сз) молекулы лежат в одной плоскости, то атом С4 может занимать любую точку по краю окружности конуса , образованного вращением около связи Сг—Сз как оси вращения. То же относится и к атому С5 при его свободном вращении вокруг простой связи Сз—С4. В случае очень длинной молекулы полимера в результате таких произвольных поворотов вокруг множества простых связей форма мак ромолекулы будет довольно сложной, с высокой степенью асимметрии. Такую линейную макромолекулу можно представить в виде спутанного клубка щерсти. Однако, как известно, внутреннее вращение вокруг простых связей не совсем свободно. Это связано с различными стерическими препятствиями, возникающими вследствие взаимодействия соседних замещающих атомов или 1рупп атомов этой или соседней макроцепи. Такие препятствия особенно проявляются в случае огромных молекул, занимающих в пространстве различное положение. При внутреннем вращении происходит изменение общей энергии молекулы, так как энергия взаимодействия между атомами или группами атомов определяется расстоянием между ними. Поэтому для высокомолекулярных соединений еще в большей степени, чем для низкомолекулярных, характерно заторможенное внутреннее вращение. [c.360]

    Электронная структура фосфорорганических соединений и природа химических связей энергии и длины связей фосфора валентные углы образование связей с участием Зй-орб италей . [c.63]

    В том случае, когда п-электроны участвуют в образовании химических связей, их энергия значительно понижается и полосы я -переходов смещаются в сторону коротких длин волн. Так, например, происходит при образовании диполь-дипольных или водородных связей с молекулами полярных растворителей. При протонировании или комплексообразовании переходы п практически исчезают, так как электроны на п-орбиталях нельзя считать неподеленными, поскольку они участвуют в обра зовании новых молекулярных орбиталей. [c.71]

    В рабочий язык химии прочно вощли льюисовы представления и элек-тронно-точечные структурные формулы. Если известна льюисова структура молекулы, можно кое-что сказать об устойчивости, порядке, энергиях и длинах связей этой молекулы. А если воспользоваться методом ОВЭП, часто удается предсказать и геометрическое строение молекулы. В данной главе будет показано, что можно продвинуться еще дальще в определении электронного строения молекул, исходя из рассмотрения пространственной направленности и энергии валентных атомных орбиталей, принимающих участие в образовании химической связи. Этот более глубокий метод анализа известен под названием теории молекулярных орбиталей. [c.509]

    Лекция 4. Химическая связб. Метод валентных связей. Ковалентная связь, механизм ее образования. Характеристика ковалентной связи длина связи между атомами, энергия связи. Свойства ковалентной связи направленность и насьвденность. Валентные углы. [c.179]

    Рассмотрим образование ковалентной химической связи между двумя атомами водорода (Н и Н ). При сближении атомов водорода между ними возникают разные виды взаимодействия отталкивание между ядрами, отталкивание между электронами, притяжение каждого из электрона к ядрам. Следо-вате. 1ьно, чтобы молекула реально существовала, необходимо, чтобы силы притяжения и отталкивания уравновешивали друг друга. При этом условии происходит взаимное перекрывание атомных орбиталей с антипараллельными спинами электронов. В области перекрывания, которое находится между ядрами, возникает повышенная электронная плотность. Она притягивает к себе оба ядра атомов водорода. При этом образуется достаточно прочная молекула, так как такое состояние отвечает минимуму энергии и определенной длине связи (рис. 8). [c.70]

    Зависимость скорости реакции от природы реагирующих веществ. Влияние природы реагирующих частиц определяется их атомным составом, пространственным строением и молекулярными свойствами. Скорость химической реакции определяется скоростью разрыва одних и образования других химических связей. Эти превращения происходят в элементарном акте реакции. Мы знаем, что изменение длины химической связи, валентных углов и других геометрических параметров молекулы сопровождается изменением ее потенциальной энергии. Поэтому и взаимодействие частиц в элементарном акте реакции также должно характеризоваться изменением потенциальной энергии всей системы. Поскольку реагирующие молекулы обьгчно содержат много атомов, то элементарный акт химической реакции характеризуется многомерной поверхностью потенциальной энергии. На этой поверхности потенциальной энергии отражается влияние изменения каждого геометрического параметра одной молекулы на энергии ее взаимодействия с другой молекулой и наоборот. [c.189]

    Полимеры, у которых макромолекулы имеют пространственную сшитую структуру, не могут так обратимо размягчаться и затвердевать, так как химические связи для разрыва требуют гораздо большей энергии. Если же нагреть полимер до такой температуры, когда имеющиеся химические связи начнут разрываться то сначала, полимер приобретет некоторую подвижность, но затем начнется либо полная его деструкция, либо он вторично заполимеризуется с образованием новых еще более прочных и жестких структур. Такие полимеры называются термореактивными. К ним относятся фенолоформальдегидная, мочеви-ноформальдегидная, полиэфирные, органосилоксановые и др. смолы. Изделия из термореактивных полимеров не размягчаются при нагревании. Неорганические полимеры при нагревании ведут себя иначе. Многие из них при нагревании распадаются на участки меньшей длины, происходит деполимеризация. [c.615]

    Так как линии рентгеновской флуоресценции возникают вследствие переходов электронов в наиболее глубоких внутренних электронных слоях, энергия химической связи в общем слишком мала для того, чтобы изменить состояние электронов этих слоев. Напротив, в случае легких элементов в образовании связи участвуют электроны ЛI-oбoлoчки. В этом случае могут проявляться заметные смещения длин волн, например, для элемента и его окисла. Для А1/Ср-линий это различие составляет ДЯ = 0,02 А. Наряду с изменением длины волны изменяется и относительная интенсивность линий. Длины волн линий алюминия изменяются также в зависимости от его координационного числа по отношению к кислороду. Этим способом можно было бы. например, определить координационные числа алюминия в полевых шпатах и других алюмосиликатах. [c.217]

    Если электроны имеют антипараллельные спины (ц), то по мере приближения атомов водорода вначале преобладают силы притяжения, а в дальнейшем силы отталкивания. Минимум иа энергетической кривой показывает выигрыш энергии Е о при образовании молекулы водорода из атомов, который составляет 435 кдж/моль. Минимум иа кривой отвечает также устойчивому (равновесному) межъядерному расстоянию в молекуле водорсда /"о оно равно 0,74 А. (Межъядерное расстояние между химическими связанными атомами иначе называют длиной связи). [c.12]

    Эволюция локализованных возбуждений. Дальнейшая судьба образовавшихся радикалов и экситонов также во многом определяется исходной геометрией аниона, симметрией местоположения, степенью орбитального вырождения, природой центрального атома аниона. Если орбиталь, занимаемая неспаренным электроном, вырождена, то эффект Яна-Теллера приводит к искажению ядерной конфигурации вплоть до диссоциации. Устойчивость к диссоциации определяется химической природой радикала. Для координационно-насыщенных соединений наблюдается разрыв связи, а для ненасыщенных - нет. При локализации экситона наблюдаются аналогичные вибронные эффекты. Энергия возбуждений анионов заведомо превышает энергию разрыва любой из химических связей внутри многоатомного аниона. Прямая диссоциация синглетных возбуждений кислородсодержащих анионов с образованием атомарного или молекулярного кислорода запрещена правилом сохранения мультиплетности, в связи с чем она протекает через образование комплексов с переносом заряда типа [ХОп-т От]. Экспериментально такие комгшексы обнаружены в нитратах, хлоратах и перхлоратах. Первоначально при диссоциации происходит селективный разрыв наиболее длинной связи (даже при разности длин связей менее 1%), что экспериментально подтверждено для нитратов щелочных металлов, хлората калия, перхлората бария. [c.98]

    В рамках рассматриваемой модели И1 используется предположение об отсутствии взаимодействия между фрагментами молекул, за исключением химической (обратимой) реакции функциональных групп. Реакционная способность последних предполагается равной и неизменной, как в модели I, одиако в отличие от пее теперь допускается возможность образования циклических структур. Энергия такой системы в отсутствие внешних полей равна произведению энергии Fa одной связи иа их числе N . Координаты групп (напрпмер, Гз1 н Гзг на рис. П1.1) могут совпадать, даже если они пе образовали химическую связь. Положение в пространстве функциональных групп одного звена является, вообш е говоря, коррелированным (например, жесткие мономеры на рис. 1.17,6). Одиако далее для простоты мы предположим, что каждая из этих групп связана с мономером гибкой линейной цепочкой среднеквадратичной длины а, распределение расстояния Г — r.j между концами которой описывается функцией Я (г — Гу). [c.209]

    Ко второй группе относятся вещества, поверхностно-активные на границе двух несмешивающи.хся жидкостей или на твердых поверхностях раздела, но не образующие структур ни в объеме раствора, ни в поверхностных слоях. Адсорбируясь и тем самым понижая свободную поверхностную энергию жидкости или твердого тела, они облегчают процесс образования новых поверхностей, т. е. диспергирование в данной среде. Адсорбируясь на твердых поверхностях, поверхностно-активные вещества второй группы могут резко изменять молекулярную природу твердой повер.хности. В результате такой ориентированной адсорбции поверхностно-активных веществ происходит гидрофобизация первоначально гидрофильных твердых поверхностей. Эффект гидрофобизации усиливается химической связью — фиксацией полярных групп молекул поверхностно-активного вещества на соответствующих участках твердых поверхностей. Длинные углеводородные цепи, ориентированные наружу, вызывают несмачиванне такой поверхности водой или избирательное вытеснение воды с иоверхности неполярной жидкостью. [c.193]


Смотреть страницы где упоминается термин Образование химической связи. Энергия и длина связи: [c.82]    [c.14]    [c.81]    [c.163]    [c.112]    [c.314]    [c.51]    [c.48]    [c.65]    [c.94]    [c.108]    [c.91]    [c.104]   
Смотреть главы в:

Курс общей химии -> Образование химической связи. Энергия и длина связи




ПОИСК





Смотрите так же термины и статьи:

Длина связи

Связь связь с энергией

Связь химическая энергия

Связь энергия Энергия связи

Химическая длина

Химическая связь

Химическая связь длина

Химическая связь образование

Химическая связь связь

Химическая энергия

Химический связь Связь химическая

Энергия и длина химических связей

Энергия образования

Энергия образования химических связе

Энергия связи

Энергия химически связей

Энергия химическои связи

Энергия химической связи . 24. Длина химической связи



© 2024 chem21.info Реклама на сайте