Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углы между некоторыми связями

    В ряде случаев геометрия молекул способствует образованию внутримолекулярных водородных связей (например, в транс-цик-логександиоле-1,2, но не в гранс-циклопентандиоле-1,2). В ряду н-алкандиолов-а,со наиболее прочная внутримолекулярная водородная связь наблюдается у бутандиола-1,4, хотя доля конфор-меров с такой связью больше у этандиола-1,2 вследствие более предпочтительного энтропийного фактора [375]. Ориентация связанных гидроксильных групп в конформере. (161) последнего диола является результатом взаимодействия между гош-эффек-том и водородным связыванием [3]. Объемистые заместители, уменьшающие торсионный угол между связями С—О в виц-п.т-лах (или искажающие углы между связями у атома углерода, в результате чего происходит сближение атомов кислорода), повышают прочность водородной связи. Сходным образом такие заместители благоприятствуют связанным твисг-конформерам (162) в некоторых циклогександиолах-1,4 с уменьшением доли несвязанных структур, имеющих конформацию кресла. Преимущественные конформации альдитов как в кристаллическом состоянии [376], так и в водном растворе [377] в большой степени определяются тенденцией углеродного скелета к вытянутой, плоской, зигзагообразной форме, за исключением тех случаев, когда такое расположение приводит к отталкивающим 1,3-взаимодействиям параллельных связей С—О. Вытянутая конформация )-маннита (163) отличается от изогнутой ( серповидной ) конформации )-сорби-та, образующейся из вытянутой конформации путем вращения вокруг связи С-2, С-3 на 120 °С, в результате чего исчезает взаимодействие между гидроксильными группами при С-2 и С-4, как [c.121]


    В предыдущих главах электронное строение органических молекул описывалось в терминах структур Льюиса, в основу которых положен принцип принятия (или потери) электронов каждым из атомов молекулы, принимающим при этом конфигурацию инертного газа. Такой способ описания практически ничего не говорит относительно геометрии молекул. Почему, например, в соединениях тина метана и четыреххлористого углерода валентные углы составляют 109,5°, тогда как в воде угол между связями равен 104,5°, а в сероводороде 92° Структуры Льюиса не дают также возможности объяснить различия в прочности и реакционной способности различных связей, в частности углерод-углеродных простых, двойных и тройных связей. Необходим более глубокий подход к рассмотрению электронного строения органических молекул. В настоящей главе мы покажем, как формулируются атомно-орбитальные модели органических молекул, и проиллюстрируем некоторые из их достоинств и недостатков. [c.122]

    Напряженность молекулы циклопропана объясняется главным образом ненормальными углами между С—С-связями — взаимным отталкиванием электронных облаков этих связей. В результате этого связи (т. е. максимумы перекрывания электронных облаков) не находятся на прямых, соединяющих центры атомов углерода, а располагаются на некотором расстоянии — вне треугольника молекулы (рис. 57). Несмотря на то что при подобном искажении электронного облака перекрывание становится менее полным, такое расположение свяаей оказывается энергетически более выгодным. Таким образом, по современным представлениям с-связи в циклопропане отличаются от обычных а-связей и их гибридизация отличается от обычной sp -гибридизации. Они носят название банановых связей (бананообразное электронное облако искаженной ст-связи) и, по существу, занимают промежуточное положение между обычными о- и я-связями. Это отражается на многих свойствах циклопропана, особенно на его способности к сопряжению с кратными связями (см. далее). Угол между связями в циклопропане 106°, вместо 60° по классическим представлениям, угол Н—С—Н примерно 120°. Благодаря такому строению циклопропан склонен к реакциям электрофильного присоединения и в этом отношении напоминает соединения с двойными связями (хотя значительно пассивнее последних). [c.539]

    Рассмотрим некоторые экспериментальные данные о свойствах агрегатов, состоящих из небольшого числа молекул воды. Наиболее изучены, разумеется, димеры. Для них мы располагаем не только термодинамическими, но и структурными данными. Так, были изучены отклонения молекулярного пучка паров воды в сильном электрическом поле [361] и вращательные переходы в димере воды (путем облучения молекулярного пучка в микроволновом диапазоне [362]). В результате удалось выяснить, что димеры воды имеют линейную структуру расстояние между атомами кислорода Яоо = 298 им, угол между связью 0Н---0 (этот угол близок к 180°) и биссектрисой угла Н—О—И молекулы акцептора равен 57°. Что касается энтальпии образования димеров (Н20)2, то различные экспериментальные методы дают довольно отличающиеся друг от друга результаты (табл. 8.1). [c.133]


    СВЯЗЯМИ и обладающие зарядом, одинаковым по знаку, отталкиваются один от другого, что в той или иной степени изменяет угол между направлением связей. Влияние пространственного фактора заключается, например, в том, что при малом размере центрального атома и при большом размере присоединяемых к нему атомов последние не могут разместиться ири сохранении нормального угла между связями. Это приводит к некоторому увеличению валентного угла. [c.73]

    В табл. 5 приведены экспериментально найденные валентные углы для некоторых соединений, в которых центральный атом принадлежит элементу, находящемуся в двух- или трехвалентном состоянии (атомы кислорода, серы, азота). Эти данные могут иллюстрировать сказанное выше. Для сероводорода, у которого связи Н—8 очень слабо полярны, угол между направлениями связей (а) равен 92°33, а для воды, вследствие значительной полярности связи Н—О, под действием взаимного [c.73]

    Метод с циклическим изменением базиса. В соответствии с условиями (П1, 15) на 1-том шаге (1 < п) вектор р должен быть ортогонален I векторам у ,. .., т. е. п компонент вектора Р1 удовлетворяют I линейным соотношениям. Это значит, что соотношения (111,15) неоднозначно определяют вектор рг и имеются [п— ) степеней свободы. В связи с этим можно потребовать, чтобы вектор р, удовлетворял некоторым дополнительным условиям. Остановимся на одном способе построения р . Обозначим через О линейное пространство, натянутое на векторы Уо, , У1—1, а через С его ортогональное дополнение (С О, С X О = "). Согласно условиям (III, 15) вектор Р1 должен лежать в пространстве С. Помимо этого потребуем, чтобы направление р для 1 являлось проекцией —на С [31 ]. В качестве рд возьмем — (,. Такой выбор р1 приведет к тому, что угол между антиградиентом и направлением поиска будет наименьшим. Это будет способствовать устойчивости поиска. При таком построении г, = р / р, будет направлением наискорейшего убывания функции ( (х) в пространстве С, т. е. г = г будет давать решение задачи [c.84]

    Циклопропан, как мы уже отмечали, единственный плоский карбоцикл. Геометрические параметры самого циклопропана (7) и его производных, например (8) и (9), точно определены с помощью рентгено- и электронографических методов. Наиболее примечательно здесь некоторое сокращение расстояния между углеродными атомами (0,151 нм вместо 0,154 нм в алифатической цепи), а также увеличенный валентный угол между экзоциклическими связями. Это одно из проявлений особого характера связей в циклопропановом кольце ( банановые связи ). [c.202]

    Из этих факторов важнейшие — влияние полярности связей и пространственный фактор. Атомы, связанные с рассматриваемым атомом полярными связями и обладающие зарядом, одинаковым по знаку, отталкиваются один от другого, что в той или иной степени изменяет угол между направлением связей. Влияние пространственного (стерического) фактора заключается, например, в том, что при малом размере центрального атома и при большом размере присоединяемых к нему атомов последние не могут разместиться при сохранении нормального угла между связями. Это приводит к некоторому увеличению валентного угла. [c.78]

    Дифференциальное уравнение (12—8) устанавливает в каждой точке А связь между координатами и производной от функции у в этой точке. Таким образом, для любой точки области О по уравнению (12—8) можно вычислить производную, т. е. тангенс угла наклона кривой у = у (х). Выбирая достаточно большое число точек в области С и вычисляя в каждой точке угол наклона, можно затем соединить точки, имеющие один и тот же угол наклона, некоторыми кривыми, которые называются изоклинами дифференциального уравнения. Любая функция у х), у которой в каж- [c.349]

    Иногда, основываясь на сведениях о, валентности атомов и форме их электронных облаков, можно предположить ту или иную конфигурацию молекулы. Например, в молекуле воды у атома кислорода два валентных электрона находятся в двух разных 2р-состояниях (скажем, в 2рж и 2р ). Форма их электронных облаков такова, что наилучшее перекрывание с электронными облаками атомов водорода (а следовательно, и наибольшая энергия связи) наблюдается в том случае, когда угол между связями ОН составляет 90° (что приблизительно соответствует экспериментальным данным). Оценка эта, разумеется, приближенная, так как при этом не учитываются отталкивание между атомами водорода, и деформация электронных облаков, которая при расчете некоторых молекул оказывается решающим фактором. [c.86]

    Фи ические Некоторые физические свойства воды уже рассмат-сг ()й( Т[1а воды ривались ранее угол между связями в Н2О (разд. 5.2.5), водородная связь, температуры плавления и кипения, лед и растворение органических веществ (разд. 4.5.3). [c.380]

    Кроме того, из физических соображений ясно, что отношение А/ /а/Дро должно заметно уменьшаться при увеличении U lgD. Очевидно, что, чем выше скорость потока, тем меньше частота столкновений частиц со стенкой. Это связано с тем, что при увеличении скорости потока угол между траекторией движения частиц и осью трубы уменьшается. Однако легко заметить, что должны быть- учтены и некоторые другие параметры, также включающие конечную скорость осаждения частиц и диаметр трубы. [c.211]


    Белый фосфор плавится при 44 °С, легко растворяется в некоторых неводных растворителях (бензоле, жирах). Как видно из рис. 22.1, углы между связями в молекуле равны 60°, что существенно меньше, чем нормальный угол между р-01)биталями, равный 90°. Поэтому молекула Р излишне напряжена и, как следствие этого, очень реакционноспособна. Белый фосфор загорается на воздухе уже при 50 °С, поэтому хранят его в темноте под водой. [c.278]

    Первичной структурой белков называют последовательность аминокислотных остатков в полипептидной цепи. Пептидная связь, характерная для первичной структуры, не является полностью одинарной. Ее длина составляет 0,132 нм, что является средним значением между истинной одинарной связью С—N (0,149 нм) и истинной двойной связью =N (0,127 нм). По некоторым данным, пептидная связь является частично двойной и частично одинарной. Обе структуры динамичны, и между ними имеются взаимные переходы. Методом рентгеноструктурного анализа Л. Полинг и Р. Кори определили углы пептидных связей, доказав при этом наличие жесткой, планарной (плоской) структуры полипептидной цепи. Несмотря на то что ее конформа-ционная подвижность ограничена, подвижность вокруг одинарных связей при а-углеродном атоме возможна и весьма вероятна. Углы вращения одинарных связей называются торсионными и имеют соответствующие обозначения угол вращения вокруг связи N—обозначают ф, а угол вращения вокруг связи — С——ц/. [c.29]

    Атомы углерода в молекулах алканов соединены между собой простыми связями в незамкнутые линейные или зигзагообразные разветвленные цепи, лежащие в одной плоскости. Длина связи атомов С-С составляет 0,151 нм, С-Н — 0,109 нм, угол между связями С-С-С в газообразном состоянии — 109°28. В кристаллическом углеводороде угол на 2°, а в некоторых случаях и больше, превышает это значение. [c.108]

    Гибридизация одной s- и трех р-орбиталей (sp -гибридизация), как уже указывалось, объясняет валентности углеродного атома. Образование sp -гибридных связей характерно также и для аналогов углерода — кремния и германия валентности этих элементов также имеют тетраэдрическую направленность. Может возникнуть вопрос — если гибридные орбитали обеспечивают большую концентрацию электронного облака между ядрами и, следовательно, более прочную связь, то почему они не возникают в НаО л NH3 На да шый вопрос следует ответить, что направленность связей в этих соединениях также можно объяснить sp -гибридизацией. Такой подход является даже более точным, чем изложенный на стр. 161 и 162. Не следует, однако, забывать, что оба подхода являются приближенными. При образовании молекулы HjO атом кислорода люжет приобретать конфигурацию наружного слоя где Ф2, Фз и — sp -гибридные волновые функции верхние индексы указывают количество электронов, занимающих данную орбиталь. Таким образом, две из четырех гибридных орбиталей атома кислорода заняты неспаренньши электронами и могут образовать химические связи угол между этими связями должен составлять 109,5°. Это значение ближе к экспериментальному (104,5°), чем величина 90°, даваемая схемой, рассмотренной на стр. 161. Однако если на стр. 161—162 пришлось объяснять отклонение теоретической величины от экспериментальной для молекулы HjO, то здесь нужно объяснить, почему углы между связями у аналогов воды HjS, HaSe и НаТе заметно отличаются от 109,5°. Это объясняется действием ряда факторов. В частности, в соединениях, содержащих большие атомы, связь слабая и выигрыш энергии в результате образования связи гибридными орбиталями не компенсирует некоторое возрастание энергии s-электронов, обусловленное их переходом на sp -гнбридные орбитали. Это препятствует гибридизации. Кроме того, как показали точные расчеты, при образовании связи Э—Н 25-орбитали кислорода (и азота) сильнее перекрываются с ls-орбиталями водорода, чем 2р-орбита-ли. Для аналогов кислорода, наоборот, сильнее перекрываются р-орбитали. Это обусловливает больший вклад s-состояний (гибридизацию) в образование химической связи в молекуле Н О, чем в ее аналогах. Поэтому валентные углы в H2S, HjSe и НаТе близки к 90°. [c.168]

    В большинстве неорганических соединений сущест вует ионная (или условно принимаемая за ионную) связь между элементами, основанная на притяжении разноименных электрических зарядов. Одноименно заряженные элементарные ионы не могут быть связаны между собой. Все валентности должны быть полностью взаимо насы-ш,еиы. Каждая единица валентной связи обозначается черточкой между символами связанных между собой ионов. Структурные формулы являются в некоторых отношениях условными и, как правило, не отражают реальной геометрии молекул. Например, структурная формула воды обычно пин1ется Н —О—Н, но современная наука нашла угол между направлениями валентных связей между ионами кислорода и водорода (ок. 105 ), обусловленный полярностью молекул воды. Поэтому графическое начертание структурных формул может быть различным, но должно удовлетворять требованиям симметрии и удобства, а также основному требованию—чередованию положительных и отрицательных Зарядов. Приводим примеры составления структурных формул окислов, оснований, кислот и солей. [c.41]

    Физическая химия имеет дело с количественными законами химии, и поэтому одной из ее основных задач является детальное описание состояния любого вида атомов, ионов и молекул. Эта часть физической химии значительно более нолио рассматривается в специальном разделе, посвященном атомам и ионам, здесь же мы остановимся на некоторых общих результатах, полученных в молекулярной химии. В качестве примера рассмотрим пятиатомную молекулу бромистого метила, которая, как это доказывается в органической химии, имеет формулу СНдВг и является тетраэдром с атомом углерода, расположенным в центре. Данные физической химии свидетельствуют о том, что расстояние ме>кду ядрами атомов углерода и водорода составляет 1,094 10" см, а между ядрами атомов углерода и брома — 1,936-Ю см. Кроме того, найдено, что угол между направлениями связей С—Н и С—Вг на 2°38 больше, чем у правильного тетраэдра. Измерены также частоты девяти внутренних колебаний и оиределена энергия, необходимая как для растяжения, так и для разрыва межатомных связей. Для этой молекулы приближенно определено эффективное число электронов, участвующих в дисперсии света, и найдена частота их колебаний. С помощью этих данных можно вычислить силы [c.11]

    Электронные облака трех пар р-злектронов атома имеют силыю вытянутую форму, представляющую в сечении вид восьмерки. Большие оси этих восьмерок, как было указано в 12, ориентированы в пространстве взаимно перпендикулярно. Поэтому при образовании данным атомом простых связей с двумя или тремя другими атомами с помощью р-электронов направления связей должны располагаться в пространстве под углом 90°. Однако другие факторы, влияющие на взаимное расположение атомов, нередко в некоторой степени искажают этот угол. Важнейщими из них являются полярность связей и пространственный (стерический) фактор. Атомы, связанные с рассматриваемым атомом полярными связями и обладающие зарядом, одинаковым по знаку, отталкиваются один от другого, что в той или иной степени изменяет угол между направлением связей. Влияние пространственного фактора заключается, например, в том, что при малом размере центрального атома и при большом размере присоединяемых к нему атомов последние не могут разместиться при сохранении нормального угла между связями. Это приводит к некоторому увеличению валентного угла. [c.72]

    Одним ИЗ наиболее характерных и важных свойств ковалентной связи, в отличие от ионной связи, является ее неизменная пространственная налравленность. Так, в ковалентно построенных симметричных молекулах СН4, ССЦ, С(СНз)4 угол между направлениям связей равен 109°28. Ковалентные связи кислорода, серы, азота, фосфора, мышьяка и некоторых других элементов также имеют определенное направление в пространстве. [c.102]

    Рассмотрим теперь, каким образом эти два ряда кислородных соединений образуются за счет участия электронов. Для этого будем исходить из кислород-1ЮГ0 атома, представленного на рис. 52, а. Когда 1 s-орбита водородного атома с единственным электроном перекрывает одну из 2р-орбит некоторого кислородного атома, содержащую только один электрон, например 2р на рис. 52, а, и спаривается с нею, образуется стабильная молекула гидроксила, или ОН. В другой незавершенной 2р-орбите кислорода, например 2р , остается единичный или неспаренный электрон. Наличие неспаренного электрона должно сообщить гидроксилу парамагнитные свойства и открыть возможность для дальнейшего образования химической связи. Среднее распределение электронов в связывающей молекулярной 2ру—ls-орбите (так называемой сигма-орбите) может быть таким, что электронная плотность становится более высокой около кислородного атома. В таком случае молекула должна обладать электрическим моментом. При таком же присоединении другого атома водорода со спариванием 2р -орбиты образуется вода. Поскольку 2р - и 2р2-орбиты, спаренные с атомами водорода, ориентированы под прямым углом, молекула воды должна быть V-образной. Это доказывается экспериментально фактический угол между ОН-связями составляет 104°31 [39]. Разность между 104 и 90° приписывается электростатическому отталкиванию между атомами водорода и другим эффектам, которые не приняты во внимание в рассматриваемой нами простой модели, например влиянию гибридизации. Асимметрическая структура должна способствовать образованию у молекулы воды электрического момента последний оказался равным 1,85-10 GSE. [c.269]

    Надо допустить на основании ряда соображений, что орбиты атома углерода обладают не только з- и р-характером, но в некоторой степени й- и /-характером тогда оба описания двойной связи не будут эквивалентными, как считали Холл и Леннард-Джонс, а описание при помощи двух изогнутых связей будет лучшим. 2. Такое описание кратных связей поразительным образом объясняет некоторые из их свойств [там же, стр. П] Полинг при этом ссылается на расчеты Хэллмана , который приняв для простой связи СС длину 1,54 А, нашел аналогично тому, как это делал Бернстейн (стр. 273), что длина двойной связи будет 1,32 А, а длина тройной — 1,18 А, в хорошем соответствии с опытом. 3. Согласно расчетам по этой модели угол между простой связью и двойной равен 125° 16, что в общем близко к экспериментальным данным, хотя сам этилен представляет явное исключение. 4. Остальные доводы относятся к расчету потенциальных барьеров вращения вокруг простых связей, примыкающих к кратным (к этому вопросу мы вернемся в следующей главе). В третье издание Природы химической связи (1960 г.) Полинг ввел уже представление об изогнутых связях [16, стр. 136 и сл.], которое отсутствовало в предыдущем издании (ср. [95, стр. 95 и сл.]). Две сравниваемые модели иллюстрируются следующими рисунками  [c.275]

    До СИХ пор кратные связи в этилене и ацетилене описывались с помощью <т- и я-орбиталей, но можно обсуждать их строение и с помощью гибридных орбита-лей, расположенных приблизительно тетраэдрически. Например, можно считать, что в этилене связи углерод—водород образуются благодаря перекрыванию хрЗ-гибридных орбиталей углерода с 15-орбиталями водорода, а двойная связь — благодаря перекрыванию двух оставшихся гибридных орбиталей каждого из атомов углерода. Это последнее перекрывание (рис. 8.19) дает две изогнутые, или банановые , орбитали, расположенные выше и ниже плоскости, содержащей ядра углерода и водорода. На каждой орбитали находится по два электрона. Образование двойной связи вызывает некоторое нарушение исходной ориентации гибридных орбиталей угол между двумя связями С—Н в этилене несколько превышает тетраэдрическое значение в 109,5°. Хотя может показаться, что такое описание сильно отличается от описания с /помощью а- и я-связей, это не так. Оно просто является другим способом разделения четырех связывающих электронов между двумя областями. Переход от одного описания к другому математически делается путем преобразования волновых функций. Так, при описании с помощью а- и я-орбиталей необ.ходимы две функции 1 )а=1/К2 (фс1( )-НРс2(а)) [c.112]

    Очень важным свойством катализаторов является их пористая структура. Ее обычно характеризуют по физической адсорбции и десорбции газов, а также методом ртутной поромет-рии. Для пор размером 20—500 А надежен и весьма полезен метод адсорбции азота. По форме петель гистерезиса адсорбции и десорбции определяют форму и размер пор [34]. Для крупных пор размером 100—150 мкм часто используют ртутную порометрию. Поскольку прилежащий угол между поверхностью ртути и несмачивающимся твердым веществом превышает 90°, ртуть может войти в поры только под давлением. Если известна зависимость объема ртути, который вдавлен в поры катализатора, от приложенного давления, то можно найти распределение пор по размерам. При этом приходится делать некоторые предположения о форме пор, а также считать, что поры выходят на поверхность и не связаны между собой. Микропоры диаметром менее 20 А нельзя надежно измерить никаким методом. Для их изучения рекомендуются молекулярные зонды различных размеров и форм. Таким образом, хотя знание nopH Toff структуры чрезвычайно важно, надежное измерение ее может быть затруднено. [c.31]

    Необычные свойства воды объясняются ее строением. Молекула воды нелинейна — угол между связями Н—О—Н равен 104°27. Связи Н—О ковалентны, однако они полярны, т. е. некоторый положительный заряд несут атомы водорода, а отрицательный — атом кислорода. Вследствие этого связанный атом кислорода способен притягивать атом водорода соседней молекулы с образованием водородной связи, что существенно повышает общую энергию связи. Таким образом, молекулы в воде ассоциированы. В кристаллах льда водородные связи еще сильнее. В силу высокой полярности молекул Н2О вода является растворителем других полярных соединений, не имея себе равных. [c.101]

    В качестве примера рассмотрим структуры молекул HjO и NHa. Молекула воды образова 1а атомом кислорода и двумя атомами водорода. У атома кислорода два неспаренных р-электрона, которые занимают две орбитали, расположенные под углом 90 друг к другу. У атомов водорода по одному s-электрону. Если электрон атома водорода обладает спином, направленным противоположно спину одного из неспаренных р-электронов атома кислорода, то при сближе-нии этих атомов образуется общая электронная пара, связывающая атомы О и Н. Если бы пространственное расположение орбиталей после образования связи не изменилось, то угол между связями был бы 90° или близок к нему. Однако известно, что угол в молекуле HjO равен 104,5° (рис. 5). Это объясняется тем, что связи О—Н сильно полярны (вследствие большой разницы электроотрицательностей этих элементов), электроны сильно оттянуты к атому кислорода, в результате чего остовы атомов водорода приобретают некоторый положительный заряд и взаимно отталкиваются при этом угол между связями увеличивается. У аналогов кислорода — серы, селена, и теллура — электроотрицательность меньше, поэтому углы между связями в молекулах HaS, HjSe, НаТе равны соответственно 92, 91, 89°. [c.27]

    Однако каждая связь О — Н является полярной связью (так как ЭОо>ЭО[ ). Области перекрывания электронных облаков (общие электронные пары) смещаются к атому кислорода, на котором появляется некоторый отрицательный заряд (—6). На атомах водорода появляются положительные заряды, которые отталкиваются друг от друга. Поэтому угол между связями (ZHOH) увеличивается до 104,5 ". [c.99]

    Каркас является основной частью покрышки, воспринимаюш,ей нагрузку, приходящуюся на шину. Обычно каркас состоит из четного количества слоев прорезиненного корда. Нити корда в соседних слоях каркаса перекрещиваются между собой и образуют с линией радиального разреза угол 48—52°. Каждые два соседних слоя в каркасе образуют систему, напоминающую обычную ткань. Между некоторыми слоями корда в каркасе для повышения эластичности и прочности связи между ними располагаются резиновые прослойки, не доходящие до бортов. [c.392]

    Атом кислорода в молекуле воды связан с четырьмя группами (двумя атомами водорода и двумя изолированными парами электронов). Поскольку их разделение наиболее эффективно в случае тетраэдрической геометрии молекулы, можно предположить, что атом кислорода в молекуле воды должен находиться в центре тетраэдра, т. е. должен быть р -гибридизован. Однако угол П—О—И в воде равен лишь 104,5°. Вследствие этого следует ожидать отклонение от идеальной геометрии тетраэдра, так как несвязывающие электронные пары атома кислорода (зр ) будут отталкивать друг друга сильнее, чем связывающие пары (связи О—Н). В результате угол между орбиталями, содержащими эти несвязывающие пары, будет увеличиваться, и соответственно будет уменьшаться угол между связями Ы—О—Н. Таким образом, гп ом кислорода в воде рЗ-гибридизован с некоторым искажением, возникающим из-за необходимости уменьшить отталкивание между парами валентных электронов. [c.59]

    Круг молекул или ионов, рагсматриваемы.х в данном разделе, ограничен теми их иредставнтеля.ми, которые содержат один нли несколько атомов азота, каждый из которых образует одну кратную и одну простую связь. Что касается характера этих связей, то он оказывается промежуточным между (редким) случаем, в котором азот образует две угловые ординарные связи (например, в МНг ), и случаем, когда он формирует две коллинеарные кратные связи. Необходимо отметить, что во многих циклических молекулах и ионах азот образует две угловые связи, несмотря на то, что обе они по длине приблизительно соответствуют двойным связям некоторые нециклические катионы также иллюстрируют трудность приписывания простых структурных формул системам, в которых имеется п-связывание. В N[3 (СНз)2Ь валентный угол при атоме азота составляет 111°, а расстояние N—3—1,64 А [1а] в Н(ЗС1)2 валентны угол составляет 149°, а расстояние N—3— 1,535 А [16] (для сравнения длина связи N—3 равна 1,72 А, а N = 3 1.54 А). В [ (Р(СбН5)з)2]+ угол между связями азота составляет 147°, а расстояние N—Р— 1,57 А [1в], что близко к значению для двойной связи. [c.561]

    Анализ пейтропоструктурных данных, характеризующих углы Н—О—Н и 0...Н—О — Н...0, показывает, что между этими параметрами водородного мостика также нет четкой взаимосвязи (рис. 3). Разброс значений угла молекулы воды составляет 108 + 6°, в то время как угол 0...Н—О —Н...Оменяется от 80 до 140°. Многочисленные данные такого рода [111, 199, 223, 233, 246—248, 289, 389] послужили основой для доказательства высказывавшегося уже давно [370] утверждения, что молекулы и ионы, окружающие молекулу воды, ее почти пе деформируют (расстояния /-qh и/ нн практически пе изменяются), а лишь меняют ее ориентацию в крист алле. В результате этого некоторые Н-связи существенно изгибаются, так что угол 0Н...0 уменьшается от 180 до 140—130°. Атом водорода при этом смещается с прямой, соединяющей атомы кислорода водородного мостика, соответственно па 0,4—0,5 Д. В результате этого в кристаллах искривленные Н-связи являются скорее типичным явлением, чем редкостью. В среднем Н-связь в кристаллах имеет угол 167° [288], а предельным можно считать угол 130° [111]. Искривление водородных связей происходит не только в плоскости молекулы воды. Отмечены случаи, когда угол между плоскостями Н—О — Н и О...О составляет 12°. [c.18]

    Образующиеся в щелочном растворе ионы 8з (имеют V-образную форму, углы между валентными связями составляют 103°), зГ (спиральной формы, угол 3—3—3 105°), Зе (также спиральной формы, угол 3—3—3 109°) и т. п. имеют структуру, похожую на структуру, найденную для цепей Зе—Зе в некоторых модификациях селена. Эти ионы, называемые по-лисульфид-ионами, имеют бледно-желтую окраску и в результате окисления распадаются на сероводород НгЗ и ромбическую серу. [c.100]

    Как И В случае амидов, частично двоесвязанный характер связи С(0)—N приводит к возникновению конфигурационных изомеров. Тремя возможными изомерами (названными по положению карбонильной группы относительно связи N—и имеющими плоское строение) являются цис-цис (88а) цис-транс (886) и транс-транс (88в), К сожалению, еще не проведено детальное изучение барьеров вращения, однако примеры изомеров каждого типа были обнаружены с помощью измерений ИК-спектров и дипольных моментов [7, 8]. транс-транс-Форшг является наименее вероятной, так как расстояние между двумя атомами кислорода составляет всего 0,250 нм. Однако диациламин все же существует в транс-транс-форме в твердом состоянии, но превращается в более стабильную цис-транс-форму в растворе [200]. N-Ацетиллактамы также имеют цис-транс-конфигурапию, в то время как цис-цис-формы являются единственно возможными для имидов с малыми кольцами. Изомеры с ч с-чис-конфигурацией (например, сукцин-имид) имеют очень низкий дипольный момент (около 1,50), так как моменты связей сильно компенсируют друг друга, оставляя незначительный момент вдоль связи N—R (88а). В случае щестичленных. колец, где угол между двумя копланарными карбонильными группами уменьшается, большой вклад вдоль оси связи N—R2 вносит момент связи карбонильных групп, который увеличивает общий дипольный момент до величины около 2,60. Имиды с чмс-гранс-конфигурацией имеют большую величину дипольного момента (около 3,00) в направлении, обозначенном на формуле (886), так как моменты связей вдоль оси N — R сильно компенсируются, оставляя остаточный компонент от одной карбонильной группы, перпендикулярный к оси N—R . Некоторые величины дипольных моментов приведены в виде таблиц в работах [7, 8]. В противоположность амидам растворитель может заметно влиять на величину дипольного момента имидов [201], хотя причины такого различия в поведении неясны. . [c.445]


Смотреть страницы где упоминается термин Углы между некоторыми связями: [c.128]    [c.238]    [c.177]    [c.209]    [c.46]    [c.467]    [c.366]    [c.366]    [c.186]    [c.106]    [c.270]    [c.240]   
Смотреть главы в:

Спутник химика -> Углы между некоторыми связями

Спутник химика -> Углы между некоторыми связями




ПОИСК





Смотрите так же термины и статьи:

Угол связи



© 2025 chem21.info Реклама на сайте