Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вид поверхности разрушения в полимерах

    Увеличение общей поверхности разрушения полимера благодаря росту шероховатости и затрудненному течению полимера вокруг частиц вблизи поверхности разрушения [c.340]

    Увеличение шероховатости поверхности разрушения полимера уравновешивается замещением полимера шариками податливость полимера не является доминирующим фактором [c.341]

    Увеличению общей поверхности разрушения полимера препятствует затрудненное течение полимера вблизи шариков [c.341]


    В последнее время результаты фрактографических исследований поверхности разрушения полимеров сопоставляются с температурно-временной зависимостью прочности [c.432]

    Поверхность разрушения полимера с самым высоким исследованным молекулярным весом (около 3,2 10 ), показанная на рис. 10, аналогична поверхности образца, разрушенного при наименьшей скорости нагружения (рис. 9). На рис. 9 область гиперболических фигур занимает все поле разрушения. Когда молекулярный вес уменьшается примерно до 4,9 10 , на поверхности обнаруживаются хорошо очерченные пояски вырванного мате- [c.196]

    Рассмотренные в разд. 9.1.3 составляющие критической удельной энергии разрушения (Зхс и данные табл. 9.1 и 9.2 позволили выяснить, что поверхность разрушения, очевидно, формируется не просто путем разрыва основных и (или) вторичных связей, расположенных поперек плоскости разрушения молекулярного масштаба. У конца трещины всегда происходит пластическое деформирование, благодаря которому образуется поверхность разрушения. Следует ожидать, что степень пластического деформирования тем меньше, чем меньше сегментальная подвижность, т. е. чем ниже температура. При температуре жидкого азота большинство полимеров напоминают стекло и разрушаются как хрупкий материал. При рассмотрении поверхностей разрушения, сфотографированных без увеличения (рис. 9.16), видна макроскопическая шероховатость, но поверхности кажутся локально гладкими, хотя и не блестящими. Это свидетельствует о том, что на поверхностях имеются структурные неоднородности, размеры которых больше длины световой волны. Это относится к ПЭ, ПП, ПВХ, ПС, а также ПММА, поверхность которого, однако, оказывается очень гладкой. [c.390]

    Предыдущие рассмотрения применимы к однородным изотропным материалам, т. е. к аморфным [61, 198, 200] и частично кристаллическим полимерам со слабо развитой микроструктурой [130]. В этих материалах направленность разрушения более или менее определяется полем локальных напряжений. Во всяком случае, судя по морфологии поверхности разрушения, ничего нельзя сказать о ее микроструктуре. Это не исключает существования определенной глобулярной микроструктуры (гл. 2, разд. 2.1.3), которую можно выявить путем ионного травления [132, 208]. Однако для полимеров с явно выраженной микроструктурой, обусловленной присутствием кристаллитов с вытянутыми цепями и сферолитов, отчетливо выявляются особенности поверхности разрушения. В таких полимерах сопротивление материала распространению трещины сильно зависит от ориентации плоскости разрушения относительно элемента структуры. [c.393]


    Прочность характеризует сопротивление материалов разрушению под действием внешних сил. Под разрушением полимера понимается разрыв его на части (нарушение сплошности), т. е. разрушение — процесс, приводящий к образованию новых поверхностей раздела .  [c.280]

    Механизм разрушения, обозначенный в табл. 11.2 как вязко-упругий, характеризуется протеканием процессов деформационного микрорасслоения материала на тяжи, подобно микрорасслоению полимера в трещинах серебра , но этот процесс выражен более отчетливо. По мере углубления зоны разрушения один за другим образуются и рвутся тяжи. Разрыв отдельных тяжей происходит в различных местах по их длине, поэтому после сокращения концов тяжей на поверхностях разрушения возникают бугорки и впадины, образующие в совокупности шероховатую поверхность. Образование тяжей связано с преодолением в основном межмолекулярных связей, а механизм медленного разрыва эластомеров в целом состоит из элементарных актов, включающих как преодоление межмолекулярного взаимодействия при образовании тяжей, так и последующий разрыв химических связей при обрыве тяжей. Основной вклад в долговечность эластомеров дает медленная стадия разрушения, где скорость процесса разрушения лимитируется не разрывом химических связей, а вязкой деформацией в микрообъемах, приводящей к микрорасслоению материала. [c.336]

    Явление трибополимеризации. В металлополимерных узлах трения на рабочих поверхностях наблюдаются вспышки температур, высокие удельные нагрузки, разрушение полимера под действием механических нагрузок и высоких температур с образованием высокоактивных обрывков макромолекул — свободных радикалов. Все это создает условия, благоприятствующие протеканию реакций полимеризации. Протекание таких реакций в вышеописанных условиях и называется трибополимеризацией. Трибополимеризацией можно управлять, вводя в зону трения вещества, способные химически взаимодействовать с материалом поверхностей трения. Причем можно как снижать, так и повышать коэффициент трения. Например, при трении стали о поликапроамид (поликапро- [c.672]

    Широкое распространение для исследования структуры полимеров получил метод сколов . По этому методу образец полимера, охлажденный до температуры ниже температуры хрупкости, раскалывают, после чего с поверхности скола снимают реплику, которую и исследуют в электронном микроскопе. При этом предполагается, что при раскалывании полимера трещина распространяется по наиболее слабым местам, поэтому рельеф поверхности разрушения отражает морфологический характер структурных элементов. [c.175]

    Препарирование поверхностей разрушения механически испытанного образца с обязательным выявлением сверхтонкой структуры полимера (матрицы в композите) для исследования в растровом электронном микроскопе. Рекомендуется химическое или ионное травление в кислородной плазме исследуемой поверхности с последующим нанесением тонкого слоя (10-15 нм) токопроводящего покрьггия (золота) методом ионного напыления. [c.358]

    При достаточно больших механических напряжениях течение полимеров обусловливается не только перемещением макромолекул относительно друг друга, но и разрывом цепей и движением образовавшихся радикальных осколков (химическое течение). В результате взаимодействия этих осколков между собой могут возникать структурированные системы. Усиление каучука такими наполнителями, как сажа, тоже связано с механохимическими процессами, происходящими во время смешения этих веществ полученные при этом свободные радикалы взаимодействуют химически с поверхностью частиц сажи. Механохимические процессы лежат в основе явлений утомления и усталостного разрушения полимеров (с. 645). [c.643]

    Как уже указывалось, образование новых поверхностей при расколе монолитного полимера при измельчении, а также всякого рода изломы, проращивание трещин и дефектов сопровождаются разрывам молекулярных цепей и возникновением свободных макрорадикалов на образующихся поверхностях, и то, что механокрекинг в этом случае идет именно по поверхностям разрушения, подтверждается функциональной зависимостью степени дисперсности частиц полимера при измельчении и молекулярной массой фракций различной дисперсности [175, [c.327]

    По современным представлениям [66, 107, 126] предельное состояние в некоторой точке среды однозначно характеризуется тензором прочности. В общем случае ок зависит от свойств материала, характера напряженного состояния, температуры и времени. Геометрической интерпретацией этого тензора является поверхность разрушения. Ее форма зависит от критерия прочности, при выборе которого следует различать вязкое и хрупкое разрушение полимеров. Имеющийся экспериментальный материал [26, 70, 168, 174, 179, 224—226] свидетельствует о том, что независимо от характера разрушения существует принципиальная возможность прогнозирования долговечности при сложном напряженном состоянии по результатам простейших опытов. Допускается [224], [c.225]


    При действии агрессивных сред на связующее — полимерную основу композиционных материалов — протекают реакции окисления, гидролиза, дегидратации и др., которые, однако, характеризуются своими особенностями, обусловленными гетерогенностью системы. Разрушение начинается с поверхности раздела полимер — наполнитель вследствие ухудшения их адгезионных свойств, ослабления и нарушения связи между ними. Агрессивная среда может способствовать также вымыванию полимерного связующего. Оба процесса приводят к нарушению структуры композиционного материала. Кроме того, наполнитель (например, стеклянное волокно) и связующее имеют различные термические коэффициенты расширения, поэтому при нагревании изменяются внутренние напряжения, образуются пустоты, поры, трещины и другие дефекты и облегчается диффузия среды в композиционный . материал, ускоряется его разрушение. [c.16]

    Естественно, что характерные механические свойства полимеров в высокоэластическом состоянии проявляются и в процессе разрыва. Так же как и разрушение полимеров в стеклообразном состоянии, эластический разрыв слагается из двух стадий — медленной и быстрой, но начальная, медленная стадия в отличие от хрупкого разрыва сопровождается образованием шероховатой, а быстрая — зеркальной зоны на поверхности разрыва. Соотношение поверхностей зеркальной и шероховатой зон зависит от длительности процесса разрушения. Уменьшение статической и динамической нагрузок или скорости растяжения сопровождается увеличением длительности процесса разрыва соответственно увеличивается часть поверхности разрыва, занимаемая шероховатой зоной (рис. П.33). При медленном разрыве почти всю поверхность занимает шероховатая зона, а зеркальная зона практически исчезает. При быстром разрушении всю поверх- [c.101]

    Разрушение полимеров, находящихся в высокоэластическом состоянии, имеет свои особенности. Медленная стадия в отличие от хрупкого разрыва дает шероховатую, а быстрая — зеркальную зону поверхности разрыва. В высокоэластическом состоянии полимеры проявляют способность к дополнительной ориентации в области распространения разрыва. Микродефект в этом случае уже нельзя называть микротрещиной, так как он имеет при одноосном растяжении форму овала или полуовала. Большая скорость протекания релаксационных процессов по сравнению со скоростью нагружения обусловливает рассасывание напряжений и образование тяжей в области разрыва. [c.137]

    В качестве иллюстраций рассмотрим кинокадры разрушения полимеров, снятые в поляризованном свете в широком интервале температур (см. рис. 11.53 и 11.54). На рис. П.53, а, 6 изображена картина, предшествующая разрушению аморфных образцов полиметилметакрилата и полиэтилентерефталата при стандартных скоростях разрушения при комнатной температуре. В концентраторах напряжений перпендикулярно деформирующей силе возникает поверхность, по которой располагается слой перенапряженных макромолекул или их частей. На определенной стадии нагружения по этой поверхности происходит разделение образца на части (см. рис. П.53, в). [c.234]

    При низких температурах, когда разрушение носит хрупкий характер, трещины разрушения полностью преобладают в полимерном теле и скорость их роста определяет долговечность образца в целом. При более высоких температурах (но ниже температуры стеклования) преобладают трещины серебра , и поэтому долговечность полимерного материала связана с их ростом (так как трепщны разрушения растут очень быстро и вносят очень малый вклад в долговечность). Поэтому почти во всех работах, в которых изучается макроскопическое разрушение материала за счет роста трещин, рассматриваются две (а иногда и более) стадии процесса разрушения. На первой стадии происходит медленный рост трещин, а на второй стадии, когда напряжение в вершине одной из них становится равным критическому, происходит быстрый распад тела на части. Это, в частности, приводит к характерному очертанию поверхности разрушения полимеров [c.158]

    В дальнейшем исследование интерференционных полос на поверхности разрушения полимеров позволило определить форму вершины как обычной трещины, так и трещины серебра . Так, в полиметилметакрилате ширина трещины серебра достигает 25 а в полистироле 550 мк. В процессе нагружения упругая деформация трещин серебра может превышать 100%, после чего трещины серебра переходят в обычную трещину. Поэтому при расчете энергии роста трещин необходимо учитывать это обстоятельство. Кроме того, при разрушении наблюдается повышение температури (А Г) в процессе прорастания трещины. Это обусловлено, по мнению авторов той оставшейся частью энергии, которую рассчитывали но Гриффитсу, вычитая энергию, расходуемую на образование трещин серебра и прорастание обычных трещин. Вводя ряд допущений, можно произвести расчет зависимости А Г от скорости разрушения. [c.167]

    В наиболее общем виде механизм криогенного микрорастрескивания сформулирован в работе Петерлина и Олфа [194]. Согласно развиваемым ими представлениям, деформация полимера приводит в первую очередь к увеличению его удельного объема и доли свободного объема. Этот эффект во многом эквивалентен понижению температуры стеклования полимера до температуры, меньшей температуры эксперимента. Особенно сильное увеличение удельного объема и доли свободного объема происходит в местах концентрации напряжения в материале и, естественно, в вершинах трещин и микротрещин. Как следствие высокой локальной концентрации напряжения, полимер в этой области переходит в каучукоподобное состояние, в результате чего оказывается способным к большим деформациям при напряжениях, значительно ниже предела текучести материала, окружающего концентратор напряжения. В связи с этим, полимеры даже при очень низких, вплоть до 4 К [195], температурах разрушаются нехрупко. Об этом свидетельствует анализ поверхностей разрушения полимеров, из которого следует, что истинной трещине разрушения всегда предшествует зона пластической деформации, которую, как правило, отождествляют с микротрещиной. [c.110]

    Поверхности разрушения полимеров могут обладать определенными свойствами, которые отражают, как сказано выше, процесс разрушения. Типичная поверхность разрушения стеклообразного полимера (на примере полиметилметакрилата) показана на рис. . На представленной здесь поверхности разрушения, полученной при растяжении образца, подготовленного согласно стандарту ASTM различные участки, составляющие поверхность. [c.188]

    Известно, что вода является врагом №1 для дорожного покрытия. При переходе температуры через нулевую отметку происходит разрушение асфальтобетона из-за расклинивающего действия воды при кристаллизации. Поэтому увеличение водостойкости асфальтобетона благоприятно сказывается на долговечности дорожного покрытия. Способность набухания асфальтобетона обусловлена не только качеством битума, но и гифоскопичностью каменного материала. По экспериментальным данным видно, что именно обработка поверхности наполнителя полимером приводит к увеличению коэффициента водостойкости. [c.74]

    Образование макрорадикалов при механическом разрушении полимеров впервые было обнаружено в 1959 г. [4—6]. С тех пор натуральные и синтетические органические материалы достаточно систематически исследовались в отношении образования свободных механорадикалов (см., например, монографию Рэнби и Рабека [2] и обзорные статьи Бутягина и др. [7], Кауша [8], Сома и др. [64]). Вследствие ограниченной чувствительности ЭПР-спектрометров первые эксперименты были выполнены на измельченных полимерах, которые имеют высокое значение отношения поверхности разрушения к объему и, следовательно, сравнительно большой сигнал ЭПР. [c.164]

    ПА-6 в спектр кислотных радикалов Бекман и Деври установили, что 50 % всех повреждений происходят в слое толщиной менее 0,6 мкм от поверхности. Оставшиеся 50 % цепных радикалов получены на глубине до 3 мкм от поверхности. С учетом морфологии деградирующих полимеров, механики процесса измельчения и подвижности первичных свободных радикалов можно представить пространственное распределение вторичных радикалов. В данном случае с точки зрения прочности кристалла, по-видимому, маловероятно вытягивание и разрыв отдельных цепей ПА. Как уже рассматривалось в гл. 5, цепь ПА-6, уложенная в кристаллите более чем на 1,7 нм своей длины, будет скорее разрываться, чем вытягиваться из кристаллита. Вытягивание из поверхности разрушения целых микрофибрилл будет происходить с весьма большой вероятностью и сопровождаться разрушением межфибриллярных проходных цепей с образованием повреждений в поверхностном слое на глубине до 1 мкм. Это особенно важно для сильной пластической деформации материала перед растущей поверхностью разрушения. Перемещение свободных радикалов, конечно, вносит свой вклад в углубление слоя со следами повреждения. Тем не менее глубины поврежденного слоя, полученные в подобных экспериментах, действительно совпадают с нижними пределами размеров частиц, получаемых при механическом повреждении материала. Это свидетельствует о том, что повреждения могут вызываться механически вплоть до указанных выше глубин. [c.209]

    Характерное поведение хрупких полимеров при ударе удобно представить на примере полистирола. Рамштайнер [105] совсем недавно провел калиброванное испытание на удар на стандартных брусках полистирола. Обследование разрушенных образцов показало, что образцы ослаблены вследствие быстрого распространения трещины, образующейся в зоне растяжения с более или менее значительными трещинами серебра. Длина самой большой трещины серебра обычно совпадает с длиной зеркальной зоны поверхности разрушения. Кривые сила—отклонение, полученные путем такого калиброванного испытания на удар, выявляют слабонелинейный рост нагрузки в течение 1 мс, за которым следует резкое падение до нуля менее чем за 50 мкс (рис. 8.24). [c.271]

    В первой части данного раздела были рассмотрены частично кристаллические полимеры (ПЭВП, ПП, ПА). Не меньшее внимание в литературе уделяется морфологии поверхности разрушения стеклообразных полимеров. Во многих исследованиях трещин серебра для объяснения их роста и разрушения материала [76—177] используется фрактография. Фрактографиче-скне исследования процессов разрушения ПС описаны в работах [106, 115, 132, 150, 155, 169, 9, 194, 199], ПММА —в работах [61, 66, 197, 200], ПВХ —в работах [198, 208] и ПК — в работе [196]. [c.397]

    Общей особенностью практически всех поверхностей разрушения стеклообразных полимеров являются остатки слоев с трещинами серебра. При низких скоростях роста обычных трещин разрыв трещин серебра, как правило, происходит в центре материала, содержащего такие трещины, при сохранении более или менее однородного слоя с каждой стороны поверхности разрушения [15, 50, 150, 194, 199]. При промежуточных и высоких скоростях роста обычных трещин в ПС прп комнатной температуре становится возможным расслоение по поверхности раздела трещины серебра — матричный материал. Бихан и др. [150] более подробно исследовали данное явление на рис. 9.25 показана их микрофотография (довольно редкого) случая обычной трещины, которая распространялась с промежуточным значением скорости, а затем остановилась в области с трещинами серебра. Микрофотография позволяет выявить расслоение сильно деформированного материала с трещинами серебра по поверхности раздела, а также чередование такого расслоения между противоположными поверхностями раздела. Регулярное [c.397]

    Скибо, Херцберг и Мансон [191] изучали характеристики роста усталостной трещины в полистироле в интервале значений коэффициента интенсивности напряжений и частоты. Образцы с нанесенным односторонним надрезом и испытываемые на растяжение компактные образцы, изготовленные из листов промышленного полистирола (с молекулярной массой 2,7-10 ), были подвергнуты циклическому нагружению с постоянной амплитудой на частотах 0,1, 1, 10 и 100 Гц, что соответствовало скоростям роста усталостной трещины от 4 10 до 4Х X10 см/цикл. При заданном значении интенсивности напряжений скорость роста усталостной трещины уменьшается с увеличением частоты, причем само уменьшение скорости роста наиболее сильно выражено при больших значениях интенсивности напряжения. Чувствительность данного полимера к частоте во всем исследованном интервале значений была объяснена влиянием переменной компоненты ползучести. В макроскопическом масштабе поверхность разрушения была двух различных типов. Прп низких значениях интенсивности напряжений наблюдалась зеркальная поверхность с высокой отражательной способностью, которая с увеличением интенсивности напряжения превращалась в шероховатую матовую поверхность. Повышая частоту, сдвигали переход между этими типами поверхности разрушения в сторону более высоких значений интенсивности напряжений. Микроскопическое исследование зеркальной поверхности выявило распространение обычной трещины вдоль одной трещины серебра, в то время как исследование шероховатой поверхности выявляло рост обычной трещины через большое число трещин серебра, причем все они в среднем были перпендикулярны оси приложенного напряжения. Электронное фракто-графическое исследование зеркальной области выявило много параллельных полос, перпендикулярных направлению роста обычной трещины, каждая из которых формировалась в процессе ее прерывистого роста в ряде усталостных циклов. Размер таких полос соответствовал размеру пластической зоны у вершины трещины, рассчитанной по модели Дагдейла. При высоких значениях интенсивности напряжений была получена новая система параллельных следов в матовой области, которая соответствовала приращению длины трещины за один цикл нагружения [191]. [c.412]

    Здесь В — относительная деформация выступов (неровностей поверхности) Ящах—максимальная высота выступов, мкм р—параметр кривой опорной поверхности й — диаметр пятна касания Лиз — постоянная, зависящая от вида износа, и п — число циклов, приводящих к усталостному разрушению трущихся поверхностей. Когда а п>1, преобладает износ, связанный с микрорезанием. При Каа я-С износ прзктически полностью определяется усталостным механизмом. Если же 0,1результате процессов микрорезания и усталостного разрушения, примерно одинаковы (следовательно, эквивалентный износ определяется обоими этими механизмами). В общем случае можно считать, что при шероховатых поверхностях твердых полимеров преобладает их абразивный износ, а при гладких поверхностях—усталостный износ. [c.383]

    Исследование структуры полимеров с помощью злектронных микроскопов можно проводить непосредственно а образцах полимера, приготовленных в виде ультрато,нких срезов, или на специально изготовленных образцах для растровых микроскопов (прямые методы), либо на слепках-репликах с поверхности полимера (косвенные методы). Применение косвенных методов вызвано разрушением полимера в электронном луче, что искажает картину структурного рельефа, роме того, применение косвенного метода позволяет получить высокое разрешение (до 0,3 нм). В то же время косвенные методы трудоемки и требуют специальной подготовки поверхности полимера. [c.111]

    В процессе роста трещины энергия, запасенная в образце, тратится в двух направлениях. Во-первых, она идет на образование новой поверхности. Эта энергия численно равна удельной поверхностной энергии полимера, помноженной на площадь поверхности разрушения. Во-вторых, энергия затрачивается на всевозможные процессы перемещения структурных элементов на пути днижения трещины. Движение структурных элементов приводит к рассеянию энергии за счет внутреннего трения и переходу ее в теплоту. Наиболее простым случаем является разрушение при полном отсутст- [c.196]

    Лимеров, начинается, как правило, с микродефектов, располагающихся обычно на поверхности материала. Специфичность процесса разрушения полимеров проявляется в том, что микродефекты могут разрастаться до размеров, сравнимых с размерами сечения материала. В отдельных случаях одиночные дефекты достигают больших размеров, а поверхность разрушения проходит не по ним, а на. некотором расстоянии от них. Релаксационные свойства полимерных материалов обусловливают перераспределение и выравнивание напряжений, что способствует при определенных условиях согласованному росту микро- и макродефектов. Эти дефекты могут расти несогласованно при больших скоростях прпложення нагрузок к (материалу. [c.110]

    В результате многократных деформаций связь наполнителя с полимером даже в случае высокоэластичных каучуков у к1ень-шается. Поверхность разрушенного деформированного вулканизата становится аналогичной наполненному СКС-85. При многократной деформации высокостирольного полимера связи наполнителя и полимера разрушаются еще в большей степени, что приводит к значительному падению модулей при повторной деформации. [c.42]

    Исходя из представлений о пачечной структуре полимеров и о разнообразии высших морфологических структур, можно также предположить, что механокрекинг первоначально направлен по проходным цепям, соединяющим пачки, сферолиты или иные надмолекулярные структуры, а затем по мере их распада лри диспергировании — в соответствии с общими закономерностями. Дальнейшее уточнение этих представлений возможно после накопления экопериментальных данных о поведении надмолекулярных структур в процессе диспергирования. В настоящее время известно лишь, что разрушение застеклованных полимеров происходит яе только по границам надмолекулярных образований, но и непосредственно по элементам этих структур [180]. Ряд. работ последних лет [41—43, 77, 1 81 —189] позволил уяснить многие вопросы разрушения полимеров, например несоизмеримо большие затраты энергии на деформацию полимеров, предшествующую разрушению, чем собственно на раарушение и образование новой поверхности, некую корреляцию между плотностью упаковки — числом цепей, проходящих через единицу площади сечения, и прочностью, большую долю разрыва химических связей при большей ориентации, представление о том, что 00бщ = аг +ав, т. е. полное напряжение есть сумма энергетического и энтропийного эффектов, причем первым уменьшается во времени после нагружения, а второй возрастает и т. д. Показано также, что в зависимости от природы полимера разрыв может происходить преимущественно по проходным цепям (капрон) или по межмолекулярным связям (лав сан). Все это может быть учтено при обсуждении результатов в дальнейшем, но не может подробно рассматриваться в данном случае, К тому же следует заметить, что большинство данных относится к одноосной деформации — проблеме прочности, а статистический характер разрушения при механодиспергировании накладывает существенную специфику. [c.56]

    Поверхностная энергия при разрушении полимеров, без учета вторичных превращений свободных радикалов, для предельно ориентированных структур Е приближается к Л/О (где N — число цепей/м , а Q — энергия свободного радикала) и в этом случае мало завлсит от энергии межмолекулярной когезии д. Для сдастем с низким д при соотношении Q q= Q() достигается 80% от теоретического Е при СП=800, а для С /<7=10 — то же при ОП=80. С уменьшением М вклад в общую энергию поверхности разрушения О понижается, а q растет при М 1,6 ЛГ,, вклад Q д. [c.329]

    ЛОКОН, мало изучен. Недавно Пройссом замечено, что хрупкий разрыв кристаллического полиэтилена сопровождается процессом оплавления поверхностей разрушения. В связи с этим автор предполагает, что при хрупком разрушении полимеров возникают местные перегревы до 300 "С, приводяш,ие к изменению характера надмолекулярной структуры. Однако, вероятнее всего, здесь под действием больших концентраций напряжения протекают процессы химического течения, а не плавления. [c.102]

    Итак, быстрый разрыв происходит без образования надрывов, в результате прорастания треш,ин разрушения, медленный—путем образования и прорастания надрывов . В первом случае поверхность разрыва гладкая, во втором—шероховатая. На первой стадии разрушения растут дефекты в виде надрывов, дающие шероховатую зону поверхности разрушения, на второй— дефекты в виде трещин, дающие гладкую зону. В соответствии с этим разрушение резин происходит вследствие роста дефектов двух видов надрывов и трещин . Механизм разрушения ири прорастании трещин в резине аналогичен таковому ири разрушении хрупких тел (непосредственный разрыв связей), чем и оправдывается термин трещина для высокоэластичного материала. Образование сильноориентированных тяжей на первой стадии разрушения связано с преодолением межмолекулярных связей. Поэтому молекулярный механизм медленного разрыва высокоэластичных полимеров состоит из элементарных актов, включающих преодоление межмолекулярного взаимодействия при образовании тяжей и разрыв химических связей. [c.111]

    Разрушение полимеров начинается с микродефектов, распо-лагающихся обычно на поверхности образца Специфичность процесса разрушения полимеров проявляется в том, что микродефекты в полимерах могут разрастаться до размеров, сравнимых с размерами сечения образца. Релаксационные свойства полимерных материалов обусловливают перераспределение и выравнивание напряжений, что приводит к согласованному росту микродефектов. При больших скоростях нагружения перераспределение напряжений не успевает произойти, и микродефекты растут несогласованно. [c.137]

    Независимо от типа разрушения полимерного материала часть его макромолекул реализует способность изменять форму под действием механических сил. Однако относительная доля этих макромолекул или их отрезков в образце существенно зависит от типа разрушения. При хрупком разрушении полимера только в тонком слое на поверхности разрушения происходит изменение конформационного набора макромолекул, скорее всего в результате вьшужденноэластической деформации. [c.138]

    Трекингостойкость является разновидностью показателя сопротивления электрическому разрушению. Суть трекинга в перемещении по поверхности диэлектрика плавающих разрядов, вызывающих образование искр. Искрение на поверхности сопровождается разрывом покрывающей ее пленки (влага, загрязнения) и разрушением полимера. Искрение тяготеет к одному из электродов, вследствие чего на полимерной поверхности развиваются токопроводящие пути (треки), по которым и разрушается изоляция. [c.162]

    В наполненном полимере в присутствии пластификатора взаимодействие агрегатов молекул с поверхностью ограничено вследствие взаимодействия с поверхностью молекул пластификатора. Здесь, как и при адсорбции, происходит конкуренция за места на поверхности между полимером и пластификатором. В результате этого агрегаты цепей, взаимодействующие с поверхностью, обладают большей подвижностью в пластифицированном полимере по сравнению с полимером без пластификатора. Можно полагать, что в наполненном полимере, где имеется достаточно развитая поверхность контакта молекул полимера и наполнителя вследствие неплотности упаковки, пластификатор легче проникает к границе раздела, чем внутрь агрегата. В результате этого эффекты нарушения, связей молекул с поверхностью играют преобладающую роль. По мере увеличения содержания пластификатора в наполненном полимере постепенно снижается роль пластификации на границе раздела фаз полимер — наиолиитель и более существенную роль начинает играть собственно пластификация полимера, т. е. нарушение межмолекулярных связей в самом полимере. Однако поскольку взаимодействие полимера с поверхностью происходит и при относительно большом содержании пластификатора, то дальнейшее ослабление связей с поверхностью накладывается на собственно пластификацию полимера и общее снижение Тс в прл-сутствии пластификатора становится больше для наполненного, 4(i,M для ненаполненного полимера. Следовательно, разрушение связей полимера с поверхностью в присутствии пластификатора происходит постепенно и продолжается даже при большом содержании пластификатора. В противном случае после точки пересечений кривых на рис. 1П. 5 и И1.6 не наблюдалось бы различий в Тс наполненных и ненаполненных пластифицированных полимеров. [c.103]


Смотреть страницы где упоминается термин Вид поверхности разрушения в полимерах: [c.227]    [c.272]    [c.392]    [c.142]    [c.227]    [c.238]    [c.254]    [c.192]   
Смотреть главы в:

Механические свойства твёрдых полимеров -> Вид поверхности разрушения в полимерах




ПОИСК







© 2024 chem21.info Реклама на сайте