Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение и физико-механические свойства полимеров

    Для исследования высокополимерных соединений и процессов их получения существуют различные модификации масс-спектрометрического метода. Одна из них относится к изучению продуктов термического распада полимеров [19], поскольку предполагают, что продукты термической деструкции в глубоком вакууме не претерпевают превращений и сохраняют структуру, отвечающую исходной молекуле. Исходя из этой предпосылки и используя данные масс-спектро-метрического анализа, было доказано, в частности, наличие разветвленных и пересекающихся цепей в молекуле полиэтилена, а также установлены зависимости между строением молекулы полиэтилена и физико-механическими свойствами полимера. [c.11]


    А 4.11. Напишите формулы, выражающие различия в пространственном строении цис- и тракс-полимеров а ) поли-1,3-бутадиена б) полиизопрена. Как влияет пространственное строение на физико-механические свойства полимера (объясните на примере натурального каучука и гуттаперчи)  [c.26]

    Основное содержание химии и физики полимеров как самостоятельной отрасли науки — установление взаимосвязи между структурой полимеров и их свойствами. Структура полимеров, как и всякого вещества, определяется двумя факторами строением молекул (у полимеров — макромолекул) и характером их взаимной укладки в конденсированном состоянии. Способ взаимной укладки (упаковка) молекул определяет тип надмолекулярной структуры. Для установления количественных связей между параметрами структуры и свойствами нужно прежде всего выбрать действительно необходимые параметры структуры и выразить их количественно. Это должны быть такие параметры молекулярной и надмолекулярной структуры, задав которые, мы могли бы предсказать в общих чертах, каков будет комплекс физико-механических свойств полимера. [c.91]

    Так как изменения характера надмолекулярной организации макромолекул, состава компонентов в полимерных композициях, температуры полимера в конечном счете приводят к изменению эффективности межмолекулярного взаимодействия, то понятно, что все эти факторы весьма чувствительно влияют на величину и характер динамического модуля упругости и скорости звука. Таким образом, динамический модуль и скорость звука позволяют получить информацию двух видов во-первых, сведения о важнейших механических (деформационных) свойствах полимеров и, во-вторых, о структуре, строении и состоянии полимера. Кроме того, эти параметры позволяют изучить релаксационные процессы, которые и обусловливают важнейший комплекс физико-механических свойств полимеров. [c.258]

    Свойства высокомолекулярных соединений зависят от молекулярного веса, химического состава и строения, формы макромолекул, ориентации и релаксации (релаксация — снятие напряжений в материале при нагревании), а также упорядоченности структуры макромолекулы. С увеличением молекулярного веса до известного предела улучшаются физико-механические свойства полимеров. Химический состав и строение оказывают большое влияние на тепло-, морозостойкость и химическую стойкость полимеров. Полимеры, имеющие менее разветвленное (асимметричное) строение макромолекулы, отличаются большей вязкостью, меньшей растворимостью и большей прочностью. От правильной ориентации макромолекул во многом зависит качество искусственного и синтетического волокон. [c.294]


    СТРОЕНИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРОВ [2, 5, 6, 7, 9] [c.55]

    В настоящее время можно считать законченным большой этап в развитии теоретической физики полимеров. Очевидно, что такое развитие не является самоцелью. Задачи физики полимеров сводятся к теоретическому и экспериментальному исследованию зависимости технически важных физико-механических свойств полимеров от их химического строения. С другой стороны, физика макромолекул служит основой молекулярной биофизики. Очередные проблемы и технической и биологической физики полимеров состоят в исследовании надмолекулярных структур, образуемых макромолекулами в блочных полимерах, в концентрированных растворах и [c.7]

    Гибкость цепей полимеров зависит от химического строения, температурных условий и состава среды (пластификация), однако возможность проявления гибкости цепей в значительной мере обусловлена также условиями деформации. Изменение конфигурации цепей происходит не мгновенно, а требует известного времени при слишком быстрой деформации изменения конфигурации не успевают следовать за полем, и цепь в этих условиях перестает быть гибкой то же самое относится к процессам перемещения цепей (течению). При быстром повторном действии деформирующих усилий на величину деформации накладываются остаточные влияния предыдущих деформаций и результирующее напряжение в образце оказывается зависящим от его предыстории. Эти вопросы имеют важное значение для характеристики физико-механических свойств полимеров (растяжения, сжатия, изгиба и др.), на которых главным образом основано их техническое применение. [c.217]

    В полимерах со сферолитной структурой можно получить различные по строению и размерам надмолекулярные образования. Поэтому физико-механические свойства полимеров в значительной степени зависят от условий кристаллизации полимерного образца [17—26]. Однако почти во всех исследованиях кристаллизация изучалась в условиях, сильно отличающихся от условий формования изделий. В реальных условиях переработки полимер подвергается воздействию рабочих органов машин, высоких температур и давлений. Производственные операции требуют высоких скоростей, которые не оставляют достаточно времени для достижения структурного равновесия. Перепады температур и давлений, возникающие в различных частях изделия в процессе производства, приводят к возникновению структуры со значительно большей гетерогенностью, чем в соответствующих лабораторных исследованиях [27—35]. [c.10]

    Физико-механические свойства полимеров в стеклообразном, высокоэластическом и вязкотекучем состояниях тесно связаны со строением макромолекул их размерами, формой и т. п. Несмотря на то что современный уровень представлений о строении макромолекул еще не позволяет с достаточной достоверностью предсказать все свойства полимеров по их молекулярным характеристикам, знание последних является все же необходимым для исследователей и практиков. [c.227]

    Необходимо сразу же сказать, что в области изучения закона трения твердых стеклообразных полимеров нет единого мнения относительно вида зависимости силы или коэффициента трения от нагрузки, нет и четких значений коэффициента трения. По нашему мнению, это связано с двумя обстоятельствами во-первых, с использованием различных методов исследования (режимы нагружения, скорости скольжения, внешние условия и т. п.) во-вторых, с сильным различием между исходными физико-механическими характеристиками у исследуемых полимеров. Возьмем в качестве примера хорошо исследованный фторопласт-4. Это материал, степень кристалличности которого колеблется в зависимости от технологии изготовления от 0,45 до 0,80 [29]. Принимая во внимание, что температура плавления этого материала равна 327° С, а температура стеклования аморфной части около —120° С, можно ясно видеть, в каком широком интервале могут меняться физические свойства в исходном состоянии. Фторопласт-4 имеет различные модификации кристаллической фазы [30]. Весьма важным его свойством является холодное течение под действием постоянного напряжения. Широкий диапазон физико-механических свойств имеют и другие полимерные материалы (см. гл. 1). Вполне понятно, что без учета особенностей строения и физико-механических свойств полимеров трудно разобраться в конкретных закономерностях и природе трения. [c.68]

    Физико-механические свойства полимеров определяются не только химическим составом и строением, т. е. структурой на молекулярном уровне (конфигурацией, конформацией, молекулярной упаковкой), но и взаимным расположением макромолекул и их элементов — их надмолекулярной организацией (НМО). Под надмолекулярной структурой (НМС) полимеров понимают способ упаковки макромолекул в пространственно выделяемые элементы (агрегаты), размеры и объем которых на несколько порядков превышают размер и объем звена. [c.140]


    Поливинилхлорид, так же как и другие полимеры, при переработке, хранении и эксплуатации подвергается действию многочисленных внешних факторов, способствующих развитию различных физических и химических процессов, вследствие которых изменяются физико-механические свойства полимера или изделий на его основе. Способность поливинилхлорида подвергаться деструкции зависит от молекулярной массы, строения макромолекулы, структуры полимера. [c.110]

    Состояние и строение полимеров влияют на их свойства. Увеличение кристалличности сопровождается повышением физико-механических свойств полимеров (прочности на разрыв, теплостойкости), а увеличение аморфной части вызывает повышение эластичности полимера. [c.13]

    При совместной поликонденсации полимеры состоят из смешанных звеньев, что нарушает регулярность строения полиамида. А это сказывается на физико-механических свойствах полимеров уменьшается степень кристалличности, снижается температура плавления, увеличивается растворимость в полярных растворителях и т. п. Подбирая исходные компоненты и их соотношения, можно очень широко варьировать свойства полиамидов. В промышленности таким образом модифицируются капрон и найлон. [c.594]

    Таким образом, требования, предъявляемые к молекулярному строению высокомолекулярных эластомеров с точки зрения получения резин с наилучшим комплексом физико-механических свойств и в то же время высокотехнологичных, являются достаточно противоречивыми. Именно для разрешения этого противоречия во всех практически реализуемых процессах синтеза каучуков необходимо проводить работы по регулированию ММР (или в более общем случае регулированию молекулярного состава) образующихся полимеров с целью их оптимизации. Вопрос о синтезе каучуков с оптимальным молекулярным составом в каждом конкретном случае должен решаться отдельно с учетом существующей технологии переработки и требований, предъявляемых к основным показателям резин. [c.93]

    Наша книга не претендует на охват всех разделов физики н механики полимеров. В трех ее частях представлены наиболее важные сведения о строении и свойствах полимеров. В первой рассмотрены строение, физические состояния, кристаллизация и стеклование как основные фазовые и релаксационные переходы, статистическая и молекулярная физика макромолекул и полимерных сеток, а также некоторые вопросы термодинамики механических свойств полимеров. Во второй рассмотрены механические, электрические, магнитные и оптические свойства, относящиеся к релаксационным явлениям в полимерах. В третьей представлены важнейшие тепловые и механические свойства, связанные с прочностью и разрушением, а также с трением и износом полимеров. [c.8]

    Химическая природа полимеров, как видно из рассмотрения способов их получения и строения макромолекул (см. ч. 1), принципиально не отличается от химической природы их низкомолекулярных аналогов (например, полиэтилен, полипропилен и другие производные этиленовых углеводородов и этан, пропан и другие парафины и их производные). Основная разница состоит в огромной длине макромолекул полимеров по сравнению даже с большими молекулами низкомолекулярных аналогов. Это придает по-ли.мерам тот особый комплекс физико-механических свойств (см. [c.214]

    Физико-механические свойства пространственных полимеров зависят от их химического строения и числа межмолекулярных связей (час- [c.219]

    При воздействии больших деформирующих усилий химические связи разрываются в цепи макромолекулы и образуются свободные радикалы и бирадикалы. При этом снижается вязкость и повышается текучесть полимера, так как такие куски молекул имеют меньший молекулярный вес, В дальнейшем, благодаря высокой химической активности свободных радикалов и бирадикалов, они образуют новые макромолекулы, т. е. полимер уже будет иметь другое строение. Это безусловно скажется и на его физико-механических свойствах, которые могут, следовательно, изменяться в процессе переработки и эксплуатации полимерных материалов. [c.257]

    Химическое строение полиарилатов фенолфталеина и ароматических дикарбоновых кислот определяет высокую жесткость их макромолекул. Поэтому при синтезе таких полиарилатов в дитолилметане, который не является растворителем образующегося полимера, свободная энергия образования свернутых макромолекул должна быть меньше свободной энергии образования развернутых. Это-то и приводит к отбору в процессе синтеза глобулярных форм макромолекул, что и обуславливает у полиарилата фенолфталеина, синтезированного в дитолилметане, глобулярный тип надмолекулярной структуры. При синтезе же полиарилата фенолфталеина в "хороших" растворителях, например в а-хлорнафталине или нитробензоле, преимущественно синтезируются развернутые (вытянутые) макромолекулы. В результате этого возникают фибриллярные надмолекулярные структуры. Полимеры же с такой надмолекулярной структурой, естественно, обладают лучшим комплексом физико-механических свойств, как это можно видеть из табл. 4.14 на примере полиарилатов изофталевой кислоты и фенолфталеина, синтезированных в разных средах. [c.93]

    Регулярное строение полимера обеспечивает высокие физико-механические свойства ненаполненных латексов. Поэтому пленки хлоропреновых латексов превосходят пленки из натурального латекса по устойчивости к окислению, действию озона и тепла, газонепроницаемости, огне- и водостойкости, К недостаткам хлоропреновых латексов следует отнести невысокую морозостойкость и дегидрохлорирование при хранении изделий, что приводит к ухудшению их физико-механических свойств. [c.269]

    В связи с этим полимеризация различных слоев мономера происходит при неодинаковой температуре, нарушается линейное строение макромолекулы и увеличивается полидисперсность по молекулярной массе. Кроме того, давление паров мономера в глубине блока, вызванное перегревом, создает внутренние напряжения в полимере в лучшем случае такие напряжения приводят к неоднородности блока по физико-механическим свойствам, а в худшем — к вздутиям и трещинам. Чем больше размеры отливаемого образца, тем труднее получить технически годный материал. Значительная усадка при полимеризации в блоке, обусловленная большей плотностью полимера по сравнению с плотностью мономера, уменьшает точность отливки. [c.247]

    Все рассмотренные особенности строения высокомолекуляр ных соединений определяют их физико-механические свойства и возможность изготовления из них изделий самого разнообразного назначения. Эти свойства полимеров, как и других веществ, обусловливаются характером и величиной деформации (изменений формы до разрушения) под влиянием внешних усилий. Деформации, возникающие под влиянием нагрузки, могут быть обратимыми (полностью исчезать после снятия нагрузки и необратимыми (сохраняться после снятия нагрузки). [c.374]

    При сополимеризации используют различные мономеры производные стирола, акрилатов, а также целый ряд эластомеров. Применение эластомеров различного строения, в то.м числе химически стойких эласто. меров на основе акриловых эфиров, хлорированного полиэтилена, сополи.мера этилена с винилацетатом и др., позволило резко улучшить физико-механические свойства образующихся полимеров, разработать ряд систем (АБС-пластиков), обладающих ударопрочностью, атмосферостойкостью и т. д. [2, 3]. [c.188]

    Упорядоченность во взаимном расположении полимерных молекул и высокая степень регулярности построения цепи приводят к ухудшению приспосабливаемости макромолекул к поверхности и взаимодействия с нею. В работе [563] была рассмотрена роль гибкости молекулярных цепей каучука в усилении сажей на основе представлений об изменении конформации цепей при смачивании полимером твердой поверхности. При этом было найдено, что усиление тем более заметно, чем. выше гибкость цепи и чем больше, следовательно, ее контактов с поверхностью может быть реализовано. Проведенные термомеханические исследования свойств наполненных аморфных и кристаллических образцов полистирола также показали, что при введении наполнителя изменения свойств кристаллического полимера менее заметны, чем аморфного того же химического строения. Таким образом, взаимодействие с поверхностью и адгезия зависят не только от химической природы полимера и наполнителя, но и от степени регулярности цепи и молекулярной упорядоченности полимера в надмолекулярных образованиях. Взаимодействие этих образований с поверхностью и их взаимное расположение — весьма важные факторы, определяющие физико-химические и физико-механические свойства наполненного полимера. [c.284]

    Процесс изготовления пленок из линейного полиуретана предполагает использование раствора полимера линейного строения, нанесение его на поверхность с последующим удалением растворителя. В случае синтеза пленки, где СПУ имеет пространственную сетку химических связей, используются реагирующие системы в растворе, например, олигомер - удлинитель цепи - растворитель. Взаимодействие полимерных цепей с молекулами растворителя, а также процессы, протекающие при удалении растворителя, являются важными факторами, влияющими на структуру получаемого полимера и его свойства. В настоящей работе исследована зависимость физико-механических свойств полиуретановых пленок от условий синтеза, которые предполагают одновременное проведение процесса химической реакции и испарения растворителя. Рассмотрена проблема прогнозирования свойств химически сшитого СПУ толщиной 0.1-0.8 мм. [c.226]

    Настоящая книга не является справочным руководством, и в ней отсутствуют данные относительно особенностей синтеза и физико-механических свойств для сетчатых полимеров различного химического строения. Этот поистине огромный материал разбросан в патентной и научной литературе самого различного профиля и лишь частично обобщен в монографиях и обзорах, посвященных конкретно тем или иным полимерам. [c.3]

    Рассмотрение сетчатых полимеров потребовало уточнения существующей в настоящее время классификации структурной организации полимеров. Как показывает анализ, структурную организацию полимеров следует подразделить на три уровня молекулярный, топологический и надмолекулярный. Авторами сделана попытка установить связь между физико-механическими свойствами сетчатых полимеров как в высокоэластическом, так и в стеклообразном состоянии с различными уровнями их структурной организации. Особое внимание было уделено анализу роли топологической структуры, задаваемой химическим строением исходных мономеров и условиями синтеза, в формировании свойств сетчатого полимера. [c.3]

    В зависимости от числа атомов серы в составе элементарного звена различают тетрасульфндные н дисульфидные полимеры. Физико-механические свойства полимера определяются как строением органического радикала, так и числом атомов серы в полисульфид ном звене. Все тетрасульфидные полимеры, независимо от строения органического радикала, — эластичные материалы. Дисульфидные полимеры обладают эластическими свойствами, если в органическом радикале содержится четыре и более атомов углерода. [c.272]

    Процессы деструкции могут быть использованы в исследовательско-аналитических целях, если протекают до образования мономеров, характеризуемых определенной молекулярной массой. Таким путем определяется состав и строение полимера. Деструкция при воздействии известных факторов (температура, давление, кислород воздуха) используется для производственно-технологических целей при пластификации полимеров, при получении блок-сополимеров и привитых сополимеров из смесей нескольких полимеров или полимеров с мономерами. В условиях эксплуатации и хранения техники деструкция — процесс нежелательный, ухудшающий физико-механические свойства полимеров. Деструкция приводит [c.42]

    Физико-механические свойства полимеров. Физико-механические свойства полимеров сильно зависят от их внутреннего строения. Большое значение для механических свойств имеет форма макромолекул. Различают полимеры 1) линейные, макромолекулы которых можно рассматривать как длинные нити, сравнительно мало связанные друг с другом 2) пространственные, или сетчатые, молекулы которых представляют собой своеобразный каркас. Примеры линейных полимеров описанные ранее полиэтилен, полипропилен, певулканизованный каучук. Пример полимера с пространственной структурой молекул — вулканизованный каучук. [c.336]

    Полимерные материалы, так же как и низкомолекулярные, в процессе эксплуатации подвергаются агрессивному воздействию окружающей среды и, в частности, действию адсорбционноактивных сред. В чем же состоят особенности действия жидких сред на механические свойства полимеров Эти особенности, прежде всего, связаны с цепным строением полимерных молекул, их гибкостью, обусловливающей целый ряд характерных физико-механических свойств полимеров. [c.102]

    Катализаторами полимеризации пропилена являются комплексные металлорганические соединения, состоящие из кристаллического треххлористого титана и алкилов алюминия, (триэтил-, триизобутилалюминия, диэтилалюминийхлорида). Особенностью данных типов катализаторов является способность придавать молекулам ПП определенное стереорегулярное строение (изотактиче-ское строение), определяющее повышенные физико-механические свойства полимера. Содержание изотактической части в ПП, полученном при 80—90 °С в присутствии различных катализаторов, указано ниже, %  [c.22]

    Ацетилированный и стабилизированный ПМО по стабильности в условиях повышенных температур переработки в изделия все же уступает другим полимерам. Этот недостаток отчасти устраняется получением сополимеров формальдегида с диоксоланом, окисью этилена и другими мономерами. При этом происходит частичное нарушение регулярности строения цепи полимера. Со вторым компонентом в макромолекулу вводятся связи —С—С—, более стабильные по сравнению со связями —С—О—. В результате термическая стабильность ПМО повышается, но ухудшается ряд физико-механических свойств полимера (снижаются температуры размягчения и кристалличности, твердость, жесткость и теплостойкость). Поэтому сополимер добавляется в количестве 2—6%. В промышленности в этом случае берут не газообразный формальдегид, а его кристаллический тример — триоксан. Сополимеризацию проводят в присутствии бутилового эфира фторида бора ВРз-0(С4Нэ)2  [c.130]

    Многочисленные методы ф изико-химических исследований веществ и не менее обширный круг объектов исследований дали возможность приступить к изучению надмолекулярной структуры полимеров и выяснению ее влияния на физико-механические свойства полимеров. Изучение особенностей надмолекулярной структуры полимеров началось с середины 30-х гг. и наиболее интенсивно равивается в настоящий период. Однако полученные сведения еще не дают достаточных данных для создания единой и стройной теории строения полимеров в аморфном и особенно в аморфно-кристаллическом состоянии. [c.19]

    Для этих полимеров, имеющих практически фиксированную микроструктуру, определяющую роль с точки зрения технологических свойств невулканизованных смесей и физико-механических свойств резин играют такие параметры, как ММР и геометрическое строение полимерных цепей — степень и характер их разветвленности. Эти параметры зависят от типа каталитической системы, ее физико-химических свойств (в частности, растворимости) и условий проведения процесса полимеризации. В случае растворимых (гомогенных или близких к ним) каталитических систем образуются линейные и статистически разветвленные полимеры. В случае гетерогенных систем возможно образование микрогеля специфического строения (см. рис. 1) С точки зрения общих представлений о технологических свойствах резиновых смесей и процесса вулканизации строение растворных микрогелей является более благоприятным, чем строение микрогеля эмульсионной полимеризации. [c.59]

    Особенность строения получаемых таким методом полимеров заключается в том, что в концевые фрагменты полимерной цепи встроены уретановые мостики, наличие которых обусловливает ряд интересных свойств полимеров. Уретанфункциональные полимеры обладают более высокими физико-механическими свойствами, чем соответствующие полимеры, не содержащие, уретановых фрагментов проявляют аномальное поведение при течении и в процессе реакции структурирования, о чем более подробно будет сказано ниже. [c.432]

    В настоящее время курсы физики и механики полимеров, а чаще всего их разделы, читаются студентам и аспирантам на физических и химических факультетах университетов, педагогических институтов и во многих технических вузах страны. Пожалуй, первыми неофициальными учебными пособиями по физике и механике полимеров были книга П. П. Кобеко Аморфные вещества [32] и книга Л. Трелоара Физика упругости каучука [77]. Затем были опубликованы книга В. А. Каргина и Г. Л. Слонимского Краткие очерки по физи-ко-химии полимеров [29], написанная ведущими учеными по химии и физике полимеров в СССР, и переведенная с английского книга известного специалиста А. Тобольского Свойства и структура полимеров [76]. Они отражают второй этап развития физики и механики полимеров. Третий этап представлен как книгами, близкими по изложению к учебным пособиям, так и книгой авторов Курс физики полимеров [8], являющейся официальным учебным пособием для вузов. Среди книг близких к учебным пособиям можно назвать книги, издан-ны е в период 1,975—1978 гг. И. Уорда Механические свойства твердых полимеров [82], Д. В. Ван Кревелеиа Свойства и химическое строение полимеров [17], Г. В. Виноградова и А. Я. Малкина Реология полимеров [18], И. И. Перепечко Введение в физику полимеров [56]. Примерно в это же время изданы в СССР учебные пособия по полимерам для других специальностей В. Е. Гуля и В. И. Кулезнева Структура и механические свойства полимеров [23] и А. А. Тагера Физикохимия полимеров [72]. В этих учебных пособиях больше внимания уделе.чо структуре и свойствам растворов и смесей полимеров. [c.8]

    Макромолекулярная природа полимеров сун ественно изменяет протекание н них химических реакций по сравнению с низкомолекулярными аналогами. Например, при взаимодействии с серой или кислородом низкомолекулярных олефинов, моделирующих строение элементарных звеньев нолидиенов, образуются соответствующие низкомолекулярные сульфиды, альдегиды, кетоны и другие соединения. У полидиенов эти реакции, аналогичные по механизму, приводят к образованию сетчатых структур (серная вулканизация) или продуктов распада макромолекул на более мелкие образования (окислительная деструкция). При этом суш,ественНо изменяются молекулярная масса и молекулярно-массовое распределение исходных полимеров и их физико-механические свойства. [c.219]

    Перспективными материалами с повышенными физико-механическими свойствами являются молекулярные композиты. Они представляют собой смесь жесткоцепного полимера, выполняющего функцию армирующего наполнителя, и гибкоцепного полимера, играющего роль непрерывной матрицы, в которой равномерно распределен жесткоцепной полимер. Представляется, что микроструктуру такого материала можно более тонко (по сравнению с механической смесью полимеров) регулировать за счет синтеза блочных молекулярных композитов соответствующего строения. [c.232]

    Наряду с таким чисто эмпирическим и интуитивным подходом представляет интерес другое направление в физике и химии полимеров, связанное с количественным анализом влияния химического строения иа физические свойства полимеров и с предсказанием этих свойств. Это направление появилось лишб 10—15 лет назад. Речь идет о том, чтобы без привлечения какого-либо эксперимента, исходя из данных только по химическому строению повторяющегося звена и типу присоединения звеньев друг к другу, рассчитать важнейшие физические параметры полимера. В результате, написав на бумаге формулу повторяющегося звена полимера, который предполагается синтезировать, можно заранее определить такие характеристики как температура стеклования, температура плавления, температура начала интенсивной термодеструкции, плотность полимера, оптические и оптико-механические параметры (показатель преломления и коэффициенты оптической чувствительности), плотность энергии когезии, растворимость и диффузия,, механические показатели, коэффициент объемного расширения-и др. [c.4]

    Из сказанного следует, что в настоящее время еще не создано количественной теории, связывающей строение полимера с его физико-механическими свойствами, в том числе с его прочностью. Однако в ряде работ установлена связь между особенностями строения полимеров, режимом деформации и характеристиками прочности. Важнейшими характеристиками химического строе ния, по-видимому, являются степень полимеризации, интенсив ность межмолекулярного взаимодействия, регулярность струк туры, разветвленность, степень поперечного сшивания полимера Кроме того, очень большое влияние на прочность оказывает фи зическая структура образца.  [c.253]


Смотреть страницы где упоминается термин Строение и физико-механические свойства полимеров: [c.217]    [c.255]    [c.255]    [c.81]    [c.277]    [c.49]    [c.328]    [c.99]   
Смотреть главы в:

Нефтехимический синтез в промышленности -> Строение и физико-механические свойства полимеров




ПОИСК





Смотрите так же термины и статьи:

Механические свойства полимеро

Полимеры механические свойства

Полимеры строение

Физика полимеров

Физико-механические свойства



© 2025 chem21.info Реклама на сайте