Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь между типом замещения и продуктами реакции

    Поэтому важнейшей задачей теории является найти закономерности, с помощью которых можно предвидеть направление реакции и выбрать условия, наиболее благоприятные для желаемого направления. В настоящей главе необходимо выяснять, какие связи существуют между типом реакции и конечными продуктами нуклеофильного замещения. По существу, здесь следует также обсуждать реакции элиминирования и перегруппировки, которые представляют собой разновидности [c.177]


    Реакция между алкилгалогенидами и аммиаком или первичными аминами обычно непригодна для синтеза первичных или вторичных аминов, так как последние являются более сильными основаниями, чем аммиак, и сами предпочтительно атакуют субстрат. Однако эта реакция может оказаться весьма полезной для получения третичных аминов [657] и четвертичных аммониевых солей. Если в качестве нуклеофила выступает аммиак, то три или четыре алкильные группы, связанные с атомом азота в продукте, окажутся одинаковыми. При использовании первичных, вторичных или третичных аминов можно получить соединения, в которых с атомом азота связаны различные алкильные группы. Превращение третичных аминов в четвертичные соли называется реакцией Меншуткина [658]. Иногда этим методом удается приготовить также первичные амины (при использовании большого избытка аммиака) и вторичные амины (при использовании большого избытка первичного амина). Однако ограничение такого подхода хорошо иллюстрируется реакцией насыщенного раствора аммиака в 90 %,-ном этаноле с этилбромидом при молярном отношении реагентов 16 1, в которой выход первичного амина достигал лишь 34,2 %, (при отношении реагентов 1 1 выход составлял 11,3%) [659]. Субстраты лишь одного типа дают приемлемые выходы первичных аминов (при условии, что аммиак взят в большом избытке) — это а-замещенные кислоты, которые превращаются в аминокислоты. [c.146]

    При реакциях замещения в плоскоквадратных комплексах на первой стадии процесса атакующий лиганд обычно подходит к комплексу в направлении, перпендикулярном плоскости комплекса. Расстояние между атакующим лигандом и комплексообразователем намного больше расстояния М—Ь в комплексе, вследствие чего координированный таким образом атакующий лиганд не может быть причислен к внутрисферным. С другой стороны, его непосредственная связь с комплексообразователем не позволяет считать его внешнесферным лигандом. Поэтому такой тип координационных соединений рассматривается как промежуточный случай, при котором происходит как бы расширение, раздувание , координационной сферы. Безусловно, активаторы, образующие с катализатором анизотропные комплексы, также могут сильно влиять на его реакционную способность как за счет изменения скорости реакций замещения с участием субстрата и продуктов, так и за счет изменений электронной структуры катализатора, что сказывается на взаимодействии его с субстратом. [c.27]


    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    Характерной особенностью асинхронного механизма реакций нуклеинофильного замещения является то, что процесс может идти через промежуточную стадию с образованием аддукта, приводящую затем к продуктам реакции. Механизм будет асинхронным, если время жизни аддукта превосходит время, необходимое для одного колебания зарождающейся связи ( Ю с). В этом случае аддукт можно идентифицировать с помощью ЭПР. Природа промежуточного продукта может быть различной в зависимости от типа реакционного центра субстрата [104, 224]. Одна из существенных задач теоретической химии сводится к установлению корреляций между типом реак- [c.143]

    В реакциях 10-87—10-95 нуклеофилом выступает карбани-онная часть металлоорганического соединения, часто реактива Гриньяра. Еще мало известно относительно механизмов этих реакций, и многие из них вовсе идут не как нуклеофильное замещение. В тех реакциях, которые все-таки представляют собой нуклеофильное замещение, атакующий атом углерода приходит со своей парой электронов, за счет которой и образуется новая связь С—С при этом не важно, свободны или нет карбанионы, действительно принимающие участие в этом процессе. Образование связи между двумя алкильными или арильными группами называется сочетанием. Реакции 10-87—10-95 могут идти с образованием как симметричных, так и несимметричных продуктов. Процессы образования несимметричных продуктов называются реакциями кросс-сочетания. Другие типы реакций сочетаний рассматриваются в дальнейших главах. [c.186]

    К реакциям, идущим по внутрисферному механизму, однозначно относят лишь те, в которых и окислитель, и окисляемый восстановитель инертны к замещению и в которых перенос атома происходит в процессе окислительно-восстановительной реакции. Этот тип реакции характеризуется внедрением во внутреннюю координационную сферу реагентов с образованием мостикового активированного соединения, которое при разложении образует продукты реакции. Мостиковый лиганд может способствовать образованию связи между двумя ионами металлов и этим самым способствовать переносу электрона от восстановителя к окислителю. Учитывая, что этот процесс може Г идти по-разному у окислителей с различными лигандами, механизм реакции может меняться при использовании одних и тех же восстановителей. Очевидно, в этом случае реакция может идти двумя путями, из которых один доминирует. [c.40]

    Взаимную связь процессов дегидрогенизации и гидрогенизации можно особенно хорошо наблюдать на необратимых каталитических реакциях, открытых Н. Д. Зелинским в 1911 г. на примере превращения метилового эфира тетрагидротерефталевой кислоты в метиловый эфир терефталевой и цис-гекса-гидрофталевой кислоты. Необратимые каталитические превращения состоят в перераспределении водородных атомов между несколькими [одинаковыми молекулами частично гидрогенизованных ароматических циклов. В качестве другого примера можно назвать превращение циклогексена в бензол и циклогексан, происходящее уже при обыкновенной температуре в присутствии платиновой или палладиевой черни. Метилциклогексены в присутствии палладия при 117°, С превращаются в толуол и метилциклогексан. Такого же типа [изменениям подвергаются и более сложные замещенные. У соединений, содержащих в шестичленном цикле две двойные связи, способность к необратимым каталитическим превращениям выражена еще больше. Например, оба изомера циклогексадиена в присутствии палладия моментально превращаются в бензол и циклогексен. Реакция идет с саморазогреванием. Образующийся циклогексен превращается дальше в бензол и циклогексан. / -Дигидронафталин превращается в тетралин и нафталин. В одной из ранних работ (1924 г.) по необратимому катализу Н. Д. Зелинский обнаружил, что метиленциклогексан подвергается превращениям, дающим те же продукты реакции, что и метилциклогексен. Это превращение объясняется предварительной миграцией семициклической двойной связи в цикл, [c.19]


    Экспериментальные данные, приведенные в табл. 13, опровергают эти заключения в изученных случаях. Джонс и Вернон (Jones, Vernon, 1955) предположили, что при рассматриваемых реакциях расположение валентностей около атакуемого атома углерода близко к тетраэдрическому и что на атоме углерода у двойной связи, не участвующем в реакции, возникает карбанион-ный центр (см. XXV) этот анионный заряд в -замещенных эфирах может, конечно, частично находиться и на эфирной группе. Если бы такой промежуточно образующийся ион обладал некоторой продолжительностью жизни в растворе, то замещение сопровождалось бы значительной геометрической изомеризацией, и из каждого изомера в предельном случае получалась бы одна и та же смесь продуктов. Для стереоспецифической реакции надо принять, что реакция по своему типу приближается к синхронному замещению. Состояние, промежуточное между реагирующими веществами и продуктами реакции (XXV), отвечает максимуму энергии и должно поэтому рассматриваться как настоящее переходное состояние по крайней мере в той степени, некоторой реакция стереоспецифична. Сохранение конфигурации происходит в основном по той причине, что при образовании новой связи [c.540]

    Ряд, соединений, в которых электроотрицательный атом и атом со свободной электронной парой расположены рядом, проявляет аномально высокую склонность к присоединению по карбонильной группе. Так, например, в случае реакций присоединения семикарбазида, метоксиамина, гидроксиламина и гидразина к аниону пировиноградной кислоты, который в водном растворе находится в основном в негидратированной форме, константы равновесия [уравнение (44)] лежат в области от 10 до 57 л-моль . В то же время обычные первичные амины, а также пиперидин и имидазол не образуют в водном растворе таких продуктов присоединения в заметных количествах [98]. Разность свободных энергий, соответствующая константам равновесия этих реакций, равна по крайней мере 3—5 ккал/моль и характеризует относительную склонность соединений такого класса к реакциям присоединения по сравнению с обычными аминами или водой. Способность перекиси водорода присоединяться по карбонильной группе следует из того, что значение константы равновесия образования аддукта из ацетальдегида и перекиси водорода составляет 48 л-моль [106]. Этой величине соответствует разность в 4,5 ккал/моль между свободными энергиями образования продуктов присоединения воды и перекиси водорода. Кроме того, известно, что при взаимодействии 50%-ной водной перекиси водорода с ацетоном [132], присоединяющим воду лишь с большим трудом [47], образуется с хорошим выходом продукт типа (СНз)2С(ООН)2, состав которого соответствует присоединению 2 молей перекиси водорода. Алкилгидро-перекиси также легко присоединяются к альдегидам [193]. Из этого следует, что водородные связи с атомами водорода перекисной группы не могут служить причиной необычайной устойчивости этих продуктов присоединения. Весьма интересной особенностью этого класса соединений является также высокая скорость, с которой они взаимодействуют с карбонильными группами в реакциях как присоединения, так и замещения. Другими словами, особые свойства этих соединений приводят к увеличению устойчивости не только конечных продуктов реакции, но также и переходных состояний [71, 78, 99]. Причины такой необычной склонности этих соединений к присоединению по карбонильной группе неизвестны. Основность при- [c.377]

    Что касается окислительно-восстановительных.свойств комплекса, то их роль, по-видимому, сводится к тому, что образующиеся хотя бы в небольшой степени производные Pt(II) способны реагировать с исходными производными Pt(IV) с образованием сверхкомплексных молекулярных соединений типа хингидропа (стр. 550) или производных Pt(III). В обоих случаях имеет место увеличение реакционной способности (подвижности) ионов галогена, координированных при Pt(IV), что и должно влечь за собой облегчение протекания реакций замещения. Некоторые авторы приписывают промежуточно образующимся продуктам взаимодействия соединений Pt(IV) и Pt(H) мостиковые структуры (стр. 492). Во всяком случае есть основания усматривать причинную связь между наличием редокс-превращений и повышенным порядком реакции в отпошении концентрации комплексного иона. Для протекания внутримолекулярного восстановления существенным является, с одной стороны, возможность образования координированных амидо- или имидогрупп, а с другой, — относительная легкость отщепления групп, находящихся на концах одной из координат в комплексе Pt(IV). [c.471]

    Содержание и построение настоящей главы во многом определено тремя главными особенностями нуклеофильного замещения в гетероароматическом ряду. Во-первых, широкой распространенностью реакций замещения гидрид-иона, редко встречающихся в ряду аренов. Во-вторых, исключительно высокой реакционной способностью гетероароматических катионов и склонностью азасистем превращаться в катионы, с чем связано очень важное явление кислотного катализа и автокатализа. Наконец, в-третьих, ярко выраженной способностью гетероциклов давать при действии нуклеофилов продукты раскрытия цикла и, что особенно важно, продукты рециклизации. Разумеется, между нуклеофильным замещением в ряду гетероциклов и аренов есть и немало общих черт. Это прежде всего связано с общностью основных типов механизмов нуклеофильного замещения, а также с легкостью замещения таких хорошо уходящих групп как галоген-, нитро-, суЛьфогруппы. [c.209]

    Реакции этого типа изучены мало, поэтому трудно последовательно оценить влияние строения и условий реакции на долю замещения, сопровождающего присоединение хлора к олефинам. В настоящее время описано большое число реакций хлорирования типа хлорирования изобутилена [63]. Иногда их называют реакциями в газовой фазе, но обычно они протекают в тонйой жидкостной пленке, состоящей из первичных продуктов реакции. Рассматривая некоторые из них, Тафт [66] указывает, что следует принимать во внимание статистическое количество атомов водорода, которые могут подвергаться замещению. Сравнение, проведенное Тафтом, показывает, что, по-видимому, имеется связь между реакционной способностью олефина и степенью замещения при этом чем более реакционноспособен олефин, тем больше степень замещения. Вероятно, это означает, что чем более устойчив карбониевый ион, тем больше доля замещения, приходящаяся на эквивалентный атом водорода. Но единственное сравнение, которое можно [c.129]

    Кумароновые или кумароно-инденовые смолы были первыми синтетическими смолами, использованными в промышленности . Эти сравнительно низкомолекулярные продукты широко применяются в резиновой промышленности в качестве добавок, повышающих клейкость пластификаторов и, что особенно важно, диспергирующих агентов для несажевых наполнителей типа двуокиси кремния и различных синтетических и природных силикатов, например каолина. Сами по себе кумароно-инденовые смолы не усиливают эластомеры, но улучшают диспергирование в них несажевых наполнителей типа двуокиси кремния и каолина, вероятно, вследствие замещения слабых водородных связей между частицами кремнистых наполнителей более прочными водородными связями между теми же частицами и смолой. Кумароно-инденовые смолы получаются путем кислотной полимеризации из неочищенных фракций каменноугольной смолы с интервалом температур кипения 150—200° С. Кумароно-инденовые смолы в основном являются полиинденовыми, хотя содержат различные количества полимеров и сополимеров кумарона, стирола и родственных им соединений. Путем реакции каменноугольных продуктов с фенолами получают смолоподобные материалы с различными свойствами. Эти модифицированные кумароно-инденовые смолы известны в промышленности под названием невиллаков. [c.417]

    Аналогичный по замыслу подход к конструированию ФАП положен в основу исследований Гудмена по полимерным производным изопротеренола. Описанные выше работы по связыванию изопротеренола с полимером с помощью азосочетания в ароматическом кольце показали принципиальную возможность замещения в кольце без потери активности. Однако синтез 6-амино- и 6-ацетамидоизопротеренола как функциональных производных изопротеренола для связывания с полимером, а также 2-, 5- и 6-пропилизопротеренолов [18] как моделей 3-гидроксипропилизопротеренола, пригодного для тех же целей, привел к получению мало активных соединений. Более того, совсем недавно было показано, что полимерные производные изопротеренола, в которых ранее предполагалась азосвязь между ФАВ и полимером, по-видимому, представляют собой продукты арилирования изопротеренола по С(2) или С(6> по реакции Гомберга, т. е. с непосредственной связью между фениль-ными ядрами фенилаланина в полимере и изопротеренола [32]. Модельные низкомолекулярные соединения такого типа проявляли биологическую активность, свойственную описанным ранее полимерам. [c.91]

    Поскольку предполагается, что карбениевый центр является плоским, то гетеролиз связи у хирального атома углерода с образованием карбениевого иона в процессе замещения мог бы привести к полной потере оптической активности. Однако обычно наблюдается лишь частичная рацемизация и в основном преобладает обращение конфигурации, причем соотношение между продуктом с обращенной конфигурацией и рацематом растет по мере уменьшения устойчивости карбениевого иона (табл. 2.7.13). Обращение конфигурации является ожидаемым стереохимическим результатом альтернативного гетеролитического пути протекания реакций, а именно механизма согласованного бимолекулярного замещения (5л 2). Обращение конфигурации при замещении, проходящем через образование карбениевых ионов, объясняется атакой нуклеофилом ионной пары. Следует отметить, что некоторые исследователи [30] интерпретируют все реакции замещения этого типа как проходящие через промежуточное образование ионных пар, и считают, что возрастание выхода обращенного продукта имеет место в том случае, когда нуклеофил атакует более тесные ионные пары. Идею согласованного механизма реакции замещения (5 2-механизма) упорно защищали многие ученые [37], современная точка зрения на течение замещения у насыщенного атома углерода основана на схеме процесса ионизации, предложенной Уинстейном схема (14) [38]. Существование в промежутке между ковалентными [c.533]

    Механизмы перехода во внешней сфере. В окислительновосстановительных реакциях, в которых скорости замещения окислительных и восстановительных лигандов высоки, промежуточные продукты с мостиковыми связями обычно не образуются, и электроны непосредственно переходят от восстановителя к окислителю. Реакции этого типа обычно идут медленно, если при изменении заряда ионов окислителей и восстановителей происходит изменение суммарного спина (табл. 4.34), и быстро, если при изменении заряда ионов высокоспиновое или низкоспииовое состояние сохраняется неизменным. В процессе окислительно-восстановительных реакций меняются также расстояния между центральными ионами и координированными атомами, но пока изменения в спиновом состоянии невелики, длина связи также меняется незначительно. [c.253]

    Реакции алкилирования обратимы, и определение первоначальной реакции связано с большими трудностями из-за последующих перегруппировок с перемещением заместителя из одного положения в другое в кольце и внутри алифатической или боковой цепи. Так, количественные соотношения между орто-, мета- и п.а,ш-замещен-ными продуктами будут изменяться с температурой и, кроме того, в зависимости от катализатора обычно чем выше температура или активнее катализатор (как показано ниже), тем больше количество, иета-производного. Однако тщательное сравнение скорости замещения в одинаковых условиях дает ясные указания на природу группировки, которая входит в ароматическое кольцо. Скорость реакции, по-видимому, определяется сильно выраженным электрофил ьньш взаимодействием между ароматическим и промежуточным соединениями. Так, например, скорость реакции возрастает, если ароматическое ядро содержит —ОР, —ОН или алкил, так что при алкилировании замещение не прекращается на образовании однозамещенных производных, а протекает дальше. С другой стороны, группы типа —N0, —СНО и —С1 1 уменьшают скорость алкилирования настолько заметно, что, например, нитробензол можно использовать в этих реакциях в качестве растворителя При алкилировании замещенных бензолов алкильная группа [c.80]

    Данные табл. 8 показывают, что склонность ароматических углеводородов к конденсации связана с их строением совершенно так же, как способность этих углеводородов образовывать кокс. В случае незамещенных ароматических углеводородов легче всего образуют продукты конденсации линейно конденсированные много-ядерные углеводороды—ацены. еры-Конденсированные и ангулярно конденсированные (фены) углеводороды весьма термически устойчивы, а углеводороды со смешанным типом конденсации бензольных колец обладают промежуточной между аценами и фенами склонностью к образованию продуктов конденсации. Алкилирование ароматических колец сильно снижает термическую устойчивость углеводорода. Нужно отметить, что замещение ароматического водорода радикалами крупнее метильного снижает термическую устойчивость в значительно большей степени, так как связь АгС — С приблизительно на 1 2 ккал1моль слабее связи АгС — Н. Гетероциклические аналоги могут иметь и большие, и меньшие термическую стойкость и склонность к образованию продуктов конденсации, чем соответствующие ароматические углеводороды. Повышение или понижение устойчивости ароматических углеводородов к реакции конденсации при замене углеводородного атома в молекуле на гете- [c.24]


Смотреть страницы где упоминается термин Связь между типом замещения и продуктами реакции: [c.293]    [c.6]    [c.6]    [c.221]    [c.470]    [c.425]    [c.279]    [c.212]    [c.212]    [c.120]    [c.66]   
Смотреть главы в:

Общий практикум по органической химии -> Связь между типом замещения и продуктами реакции




ПОИСК





Смотрите так же термины и статьи:

Замещения продукты

Продукты реакции

Реакции замещения

Реакция между СО

типы связ



© 2025 chem21.info Реклама на сайте