Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подготовка ионитов к анализу

    При подготовке к анализу анионита АВ-17 или ЭДЭ-10 набухшую смолу заливают 2 н. раствором соляной кислоты на 48 ч, затем отмывают ее водой до удаления иона хлора. Реакция на ион хлора 5 мл промывной воды помещают в пробирку, прибавляют 1—2 капли азотной кислоты, разбавленной 1 1, и 1 жл 0,25%-ного раствора нитрата серебра. [c.329]

    Применение реактива, состоящего из 1 г нитрата висмута, 0,5023 г роданида аммония и 0,0924 г нитрата ртути, дает возможность производить обнаружение цинка как в солях цинка, так и в подготовленных к анализу природных объектах. Реактив должен быть приготовлен растиранием тщательно обезвоженных солей и иметь желтый цвет. К крупинке пробы добавляют 1—2 крупинки реактива и энергично растирают. В присутствии цинка реакционная масса приобретает красно-коричневый цвет. Если реактива недостаточно, масса окрашивается в розовый цвет. При смачивании массы каплей концентрированной соляной кислоты возникает розово-фиолетовое окрашивание. Ионы Fe + и Сц2+ мешают проведению реакции. Их влияние устраняется введением солянокислого гидроксиламина. Подготовка к анализу заключается в разложении пробы нагреванием с суль- [c.136]


    Прн масс-спектрометрическом анализе интерметаллических соединений было установлено образование фона органических загрязнений [51]. Загрязнение образцов органическими веществами происходит либо в процессе их подготовки к анализу, либо за счет адсорбции органических примесей, присутствующих в ионном источнике. По всей вероятности, наличие этих линий в масс-спектре можно объяснить присутствием остаточных паров масла, диффундирующих из насосов, а линии с большими массами преимущественно возникают за счет других источников загрязнения. В какой-то степени удается избавиться от органических загрязнений травлением образцов, однако фон [c.127]

    Подготовка раствора I к анализу катионов II группы. Подготовка заключается в удалении из раствора сульфид-ионов и разложении избытка аммониевых солей. Ее необходимо осуществить сразу же после отделения осадка I, в противном случае сульфид-ионы постепенно окисляются кислородом воздуха в сульфат-ионы, которые при дальнейшем ходе анализа могут значительно осложнить обнаружение катионов II группы. [c.275]

    Динамический метод. Это наиболее часто применяемый метод ионного обмена. Ионообменную колонку заполняют ионитом так же, как в хроматографии. При заполнении колонки ионитом важно не допускать попадания воздуха в слой ионита. При работе с промышленными марками ионитов следует провести предварительную подготовку их для анализа  [c.377]

    Редокс-иониты в настоящее время применяют в аналитической химии в основном для предварительной подготовки пробы к анализу и реже для разделения ионов. Примером применения редокс-ионитов является восстановление ионов Ре + перед определением железа перманганатометрическим методом [51]. [c.381]

    В чем же преимущество абсорбционного метода по сравнению с эмиссионным Число возбужденных атомов в любом источнике света, как мы видели, зависит от его температуры п присутствия третьих элементов. Число же невозбужденных атомов при достаточно высокой температуре практически не зависит ни от небольших скачков температуры, ни от присутствия третьих элементов, так как возбужденные атомы и ионы составляют обычно только малую часть всех атомов, а устойчивые молекулы с третьими элементами образуются крайне редко. Поэтому по одному градуировочному графику с достаточно высокой точностью удается анализировать атомно-абсорбционным методом объекты, весьма различные по своей природе. В отличие от эмиссионных методов переход к новому анализируемому объекту почти не требует дополнительной подготовки. Количественный атомно-абсорбционный анализ напоминает в какой-то степени своей универсальностью эмиссионный качественный анализ, где переход к анализу нового объекта редко требует специальной подготовки. [c.275]


    Методы определения химических и физических свойств ионообменных сорбентов. Подготовка ионитов к работе. Иониты синтезируются в аппаратуре, недостаточно защищенной от коррозионного воздействия реакционной среды. Поэтому в гранулы ионообменных смол попадают ионы металлов, в основном железа. Кроме того, смолы могут содержать некоторое количество исходных мономеров и других органических загрязняющих веществ. Прежде чем применять иониты для анализа или определять их химические и физические свойства, необходимо их подготовить к работе. Наиболее удобны иониты со средним диаметром зерен 0,25—0,50 мм. [c.164]

    Требования к технической воде разнообразны. Они сводятся в основном к условию примеси не должны препятствовать или вредить ее производственному использованию. Вода не должна вызывать коррозии котлов, труб, аппаратуры, механизмов, не должна содержать избытка взвешенных веществ, забивающих трубки охлаждающей системы, засорять и истирать детали прессов, насосов, труб, портить продукцию. Поэтому воду, поступающую из водоисточника, необходимо анализировать до и после ее подготовки. При полном анализе определяют содержание взвешенных веществ, сухой остаток, жесткость, остаток после прокаливания, окисляемость, щелочность, кислотность, содержание различных ионов (Са , Mg , Ре +, Ее " , С1 , С0 , 5102 ИТ. д.), содержание двуокиси углерода, сероводорода, кислорода. [c.187]

    Если задача определения брома ставится в плане многоэлементного анализа, ее стараются решить без разрушения анализируемой пробы, применяя эмиссионный спектральный, рентгенофлуоресцентный или инструментальный активационный методы. В других случаях проводят ту или иную подготовку образца к анализу, нередко подвергая его химическому разрушению, а после этого — отделяют бром от элементов, мешающих его определению. Разделению смесей может сопутствовать концентрирование определяемого элемента. При определении микроколичеств и в радиохимическом анализе концентрирование выступает в качестве задачи самостоятельного значения, но решается она теми же методами осаждения, экстракции, ионного обмена и отгонки, которые применяют для аналитического разделения. Выбор конкретного хода анализа и метода определения брома, естественно, зависит от характера поставленной аналитической задачи и состава объекта исследования. [c.162]

    Подготовка смолы. Подготавливают к анализу не бывшую в употреблении (см. примечание 1) анионообменную смолу, например дауэкс-1, с размером частиц 20—50 меш. Для этого заливают 50 г смолы 200. чл воды и взбалтывают содержимое стакана, повторяют эту операцию, сливают раствор и переносят пульпу в колонку так, чтобы она заполняла ее до отметки 25 мл. Перед использованием промывают смолу 1 л десорбирующего раствора, затем водой для извлечения избытка кислоты. Раствор проверяют на отсутствие ионов С1 , добавляя 4%-ный раствор нитрата серебра. [c.120]

    Применение ионной масс хроматографии низкого разрешения для непосредственного анализа экстрактов из исходной плазмы крови осложняется в ряде случаев из за присутствия мешающих примесей (плазма, растворители, используемые pea генты и др ) Поэтому для определения нанограммовых коли честв сверхчувствительными методами требуется предваритель ная очистка образца Для большинства ЛП процедура очистки сырого экстракта обычно связана с экстракцией кислыми раст ворителями и последующим удалением липидов путем отмыва ния неполярными растворами Такая очистка как правило, весьма трудоемка и продолжительна, что затрудняет автомати зацию процесса подготовки образца и анализа, и в итоге не позволяет проводить массовые клинические анализы [c.180]

    Анализ смесей. Методы исследования простых соединений не могут быть с уверенностью применены к анализу смесей. Много затруднений вызывают вещества, которые препятствуют осаждению или замедляют его. Вещества, вызывающие нежелательные побочные явления и реакции, должны быть предварительно удалены. Наибольшие затруднения возникают потому, что многие из применяемых реакций не приводят к полному разделению ионов. Так, кремневая кислота не может быть полностью отделена от бора выпариванием досуха кислых растворов и последующим обезвоживанием ионы цинка при осаждении сероводородом частично осаждаются с ионами меди, ноны кобальта—вместе с ионами олова (IV) и т. д. Осадок гидроокиси алюминия удерживает ионы меди и цинка даже после повторного переосаждения аммиаком. Фосфат магния увлекает в осадок ионы щелочных металлов. Успех зависит в значительной степени от того, с какой тщательностью был подготовлен раствор к анализу. Эту подготовку нельзя выполнить по определенным заранее сделанным предписаниям. Каждый случай должен быть обдуман и рассмотрен особо. [c.287]

    Кроме того, в настоящее время разработаны спектрофотометрические методы определения большого содержания отдельных компонентов. Эти методы называют дифференциальной фотометрией. Для точного измерения в параллельном световом потоке устанавливают стандартный раствор, близкий по составу к испытуемому раствору. Таким образом, измеряется разница интенсивности двух световых потоков ошибка измерений меньше сказывается на конечном результате. Главные трудности и недостатки, по сравнению с эмиссионным спектральным анализом, связаны с затратой времени на подготовку вещества к анализу, отделение мешающих компонентов, и др. Результат зависит от выбора условий, реактивов и концентрации посторонних ионов. Групповые методы почти не разработаны, поэтому для каждого элемента необходим отдельный ход анализа. [c.9]


    Хлоридные комплексы в 8 М растворе хлористоводородной кислоты легко сорбируются на сильноосновном анионите АВ-17 и на слабоосновном анионите ЭДЭ-10. Катионы алюминия, никеля, хрома (III), ванадия (IV) не образуют отрицательно заряженных хло-ридных комплексов и не сорбируются анионитами. Разделение на анионите состоит из следующих операций 1) подготовка колонки с анионитом 2) приготовление анализируемого раствора 3) сорбция на анионите хлоридных комплексов 4) исследование первичного фильтрата 5) последовательная десорбция,определяемых ионов 6) анализ полученных после десорбции фильтратов 7) регенерация анионита. [c.219]

    Специальные приемы анализа. При анализе большинства твердых объектов не требуется серьезная предварительная подготовка. Например, небольшую пластинку из полупроводника или металла непосредственно зажимают в держателе из тантала и проводят ионообразование. Но в ряде случаев необходимо выполнить специальные операции. Так, ддя анализа с помощью искрового зонда непроводящих порошков (какими являются измельченные пробы горных пород) необходимо найти способы введения порошка в источник ионов и создания электропроводности для замыкания цепи искрового разряда. Эти трудности можно преодолеть следующим образом. Небольшое количество порошка (около 10 мг) насыпают в тигель из чистого алюминия.и спрессовывают. Образуется алюминиевая таблетка, в которую запрессован тонкий слой непроводящей пробы. При наложении напряжения наступает пробой не только вакуума, но и слоя диэлектрика. Анализ проводится так же, как и анализ компактных проводящих объектов. [c.212]

    Экспериментальный масс-спектр состоит из набора цифровых данных — масс ионов и интенсивностей соответствующих им пиков, которые могут быть представлены в виде таблиц или графиков. Однако для получения групповых масс-спектров, выделения аналитических характеристик, качественного анализа такой способ для сложных смесей не очень удобен. Масс-спектры нефтяных фракций или продуктов нефтепереработки и нефтехимии целесообразно дать в виде таблицы-сетки гомологических рядов ионов. Такое представление облегчает качественный анализ, выбор аналитических характеристик и подготовку данных для количественного анализа, помогает выявить ошибки (табл. 1). [c.62]

    При изучении ионных реакций методически было бы правильно молекулярные формы уравнений вообще не писать, так как в этих формах представлено и то, что есть в растворе (молекулы HF, например), и то, чего в нем нет (NaF, H l, Na l). В этом смысле молекулярные формы можно понимать как подготовку к анализу, когда в правой части написаны те соединения, которь1е надо проверить не слабые ли это электролиты или не малорастворимые ли соли. [c.158]

    Стойка напуска газов (рис. 10), входящая в состав масс-спектрометров МИ1309, МИ1311 и МХ1304, предназначена для подготовки к анализу и ввода в источник ионов проб газов и паров веществ, находящихся при давлениях ниже критического, т. е. обладающих физическими свойствами газов. Стойка может быть использована также в качестве самостоятельного откачного поста йля вакуумирования различных объемов. [c.16]

    Все эти факты позволяют заключить, что эффект диамагнитных солей сказывается за счет изменения структуры раствора и связанной с ней подвижности молекул воды, а также изменений, вызызаехмых ими в ближайших гидратных сферах парамагнитных ионов. Однако вызываемые изменения при этом не велики, и, следовательно, колебания концентрации диамагнитных солей, возможные в процессе анализа, не могут внести дополнительные погрешности в из.меряемое в присутствии парамагнитных солей время релаксации ядер. Если же в процессе подготовки к анализу растворов использовать соли калия, то это влияние вообще полностью исключается. [c.66]

    Для искровой масс-спектрометрии особо чистая вода могла бы использоваться в качестве связующей добавки при подготовке к анализу дисперсных материалов. Однако в условиях высокого вакуума искрового ионного источника воду можно сохранить только в замороженном состоянии. Однако при замораживании до температуры жидкого азота ее диэлектрическая проницаемость уменьшается до трех, что не обеспечивает получения интенсивных ионных токов. Следовательно, задача заключается в том, каким образом можно получить высокую диэлектрическую проницаемость водного раствора с предварительным рас-тво1рением анализируемой пробы без внесения посторонних примесей и осуществить ее анализ зондовым методом а масс-спектрометре с искровым ионным источником. [c.144]

    Многие из соединений группы тетрапиррола могут выполнять роль фотосенсибилизаторов в процессах перехода кислорода из основного триплетного состояния в синглетное. Поскольку двойные связи конъюгированных ароматических систем, а также ненасыщенные боковые заместители способны взаимодействовать с кислородом в синглетном состоянии, целесообразно — по меньшей мере в тех случаях, когда неизвестны химические свойства компонентов анализируемой смеси, — осуществлять хроматографическое разделение в отсутствие света (обычно достаточно обернуть колонку или хроматографическую каме-ру алюминиевой фольгой) и защищать вещество от воздействия света до и после хроматографирования. Кроме того, ароматический характер тетрапирролов способствует как одноэлектронному окислению циклической части молекулы, так и аутоокислению периферических заместителей, протекающему через промежуточное образование радикалов типа бензила. Когда молекулы адсорбированы на большой поверхности неподвижной фазы, скорость указанных реакций может существенно возрасти под действием света или окислителей, например присутствующих в растворителях пероксидов. Таким образом, как и в случае большинства других хроматографических экспериментов, для разделения рассматриваемых соединений следует использовать растворители подходящей квалификации. В силу того что тетрапирролы обладают высоким сродством к ионам металлов, необходимо позаботиться о том, чтобы растворители и сорбент не содержали примесей ионов тяжелых металлов, способных образовывать комплексы с хроматографируемыми соединениями. На практике, когда проводят выделение достаточно больших количеств вещества, это свойство тетрапирролов, как правило не создает особых проблем. Однако при работе на аналитическом уровне, особенно если соединения экстрагированы из природных источников, будь то биологические ткани или геологические образцы, необходимо отдавать себе отчет в том, что присутствие ионов металлов может привести к некоторому искажению хроматографической картины. Не существует никаких других удобных и общих способов избежать этого, кроме как свести к минимуму вероятность контактов образца с ионами металлов или металлами в ходе его экстракции, подготовки к анализу и хроматографирования (следует отметить, что даже никелированный шпатель может оказаться источником загрязнения образца). Поскольку константы связывания порфиринов с ионами металлов часто соизмеримы по своей величине с константами, характерными для таких хелатирующих агентов, как ЭДТА, использование последних при низкой концентрации с [c.203]

    Первый шаг в подготовке пробы к анализу состоит в пропускании воды через фильтр с порами 0.45 мкм для отделения часгиц q/спензии Затем фильтрат подкисляют соляной кислотой до pH 2 для предотвращения адсорбции определяемых ионов на сгенках посуды. При этом многие комплексные формы распадаются вследствие диссоциации. Однако в пробах воды практически всегда содержатся органические соединения, которые способны образовывать довольно усто№швые комплексы с ионами металлов и адсорбироваться на поверхности индикаторного электрода, препятствуя процессам электрохимического концентрирования и растворения. Для устранения мешающего влияния органических компонентов применяют облучение гфоб УФ-светом, электрохимическое окисление или кислотное разложение. На рис. 7.3 приведена общая схема пробоподготовки воды при определении в ней токсичных металлов с применением ИВА. Стадии фильтрации и УФ-облучения могут быть пропущены, если вода не содержит в заметных количествах органических компонентов и твердых частиц. [c.279]

    Подготовка пробы к анализу. Растворимые соединения железа, например квасцы, после взвешивания растворяют в воде, подкисленной а ютной кислотой. Нерастворимые в воде соединения железа часто можно перевести в раствор, обрабатывая их кислотами. Из обычно применяемых для этой цели кислот быстрее всего действует соляная кислота. Соляная ki слота, как всякая сильная кислота, растворяет окисел металла, но в данном случае быстрому растворению способствует связывание образующихся ионов железа в малодиссоциированный хлоридный комплекс. Если в исследуемом образце содержится закисиое железо, для растворения пользуются смесью соляной и азотной кислот. [c.155]

    Подготовка ионита. Для проведения анализа анионит переводят в ОН-форму. Для этого необходимое количестно коммерческого препарата ионита (обычно в С1-форме) оставляют на ночь для набухания. Затем его заливают в стакане 1 н. раствором едкого натра, тщательно перемешивают в течение 10 мин и отсасывают на фильтре со стеклянной пористой пластинкой G = 3. Эти операции повторяют до тех пор, пока в фильтрате будут обнаружены лишь следовые количества хлорид-иона. Затем ионитом равномерно заполняют колонку (20X1,5 см), в которой находится NaOH и промывают [c.253]

    Достоинства И х низкие пределы обнаружения ионов (до 10 мкг мл а с применением спец колонки для предварит концентрирования-до 10 -10 мкг/мл), высокая селективность возможность одновременного определения неорг и орг ионов, экспрессность (за 20 мин можно определить до 20 ионов) широкий интервал определяемых концентраций (О 01мкг мл- 100 мг/мл), малый расход пробы (0,1-0,5 мл), простота подготовки пробы к анализу [c.258]

    Для H.a. примешпот методы рентгенофлуоресцентного, активационного, рентгенорадиометрич. анализа и др. Когда спец. подготовки образца х анализу не требуется, H.a. можно проводить методами локального анализа (ионный микроанализ, электронно-зондовые методы, методы фотоэлектронной и рентгеноэлектронной спектроскопии, масс-спектрометрия вторичных ионов и др.). [c.220]

    Для того чтобы достичь высокого пространственного разрешения следует анализировать либо частицы малого размера, либо тонкие образцы на прозрачных для электронов подложках (тонкая углеродная фольга на медной сетке). Подготовку таких образцов осуществляют срезыванием слоя с последующим ионным либо электрохимическим травлением, при этом для каждого материала процедуру оптимизируют. Toлш нa образца в аналитической области находится в пределах от 10 до 100 нм. Энергия первичных электронов в АЭМ составляет от 40 до 400 кэВ. Более низкие энергии предпочтительны для рентгеновского микроанализа, более высокие—для получения изображения с высоким разрешением. Необходимо получить максимальную интенсивность пучка при его малом диаметре, поскольку практически все аналитические сигналы пропорциональны току зонда. С использованием электронных источников высокой яркости (автоэмиссионные катоды) можно получить ток зонда до 1 нА при диаметре зонда всего 1 нм. Это является основой чувствительного нано-анализа и всестороннего анализа межфазных границ. [c.338]

    Объекты, в которых необходимо определять натрий, весьма разнообразны как по происхождению, составу, так и по диапазону концентраций натрия и сопутствующих ионов. В связи с этим нет унифицированных способов вскрытия натрийсодержащих объектов и подготовки их к анализу. В данной главе приведены объекты, определяемые содержания натрия, методы определения и литература. В зависимости от поставленной задачи аналитик может выбрать наиболее приемлемый метод и воспроизвести его по оригиналу. [c.154]

    Ионообменная хпоматотаФия. Неподвижная фаза - ионит, характеризуемый различными константами ионообменного равновесия по отношению к компонентам разделяемой смеси. Применяется в анализе природных и сточных вод, атмосферных осадков, газовых выбросов, технологических растворов и материалов, фармацевтических препаратов, биологических жидкостей, продовольствия и др. [16]. Анализируемыми объектами могут быть жидкие, твердые и газообразные образцы (в последнем случае требуется соответствующая подготовка пробы). Метод может применяться для определения как низких, так и высоких концентраций ионов. [c.53]

    Наиболее распространенными объектами анализа в медащине являются кровь и моча, в которых, например, определяют содержание глюкозы при диагностике диабета. Поскольку химический и биохимический состав крови и мочи различаются, подготовка проб при химическом анализе для этих двух объектов тоже различна и в обоих случаях довольно сложна. Например, в моче могут содержаться белки, кетонные тела, билирубин, уробилиноген, лейкоциты, эритроциты, а в очень малых количествах — до тысячи компонентов, в том числе ионы металлов в виде комплексов. Химический состав крови не менее сложен. Объект анализа может претерпевать изменения в зависимости от времени и температуры, при которой он хранится перед анализом. Так, на состояние мочи оказывает влияние pH, значение которого определяется заболеванием. Разработаны тест-средства для определения глюкозы, холестерина, контроля лекарственных препаратов. В инструкциях по использованию тестов указана необходимая пробопод-готовка в зависимости от анализируемого объекта и определяемого компонента или показателя. [c.245]

    Подготовка ионита к анализу. Ионит должен быть свободен от примесей, растворимых в воде, щелочах, кислотах и органических растворителях, и механических примесей. Выпускаемые промышленностью иониты часто бывают загрязнены солями железа и других металлов, которые удаляют обработкой ионита кислотой. Помимо минеральных примесей, иониты обычно содержат низкомолекулярные органические вещества. Чтобы удалить их, иониты промывают растворами щелочей. В большинстве случаев катиониты применяют в Н-форме, а аниониты в ОН-форме. Навеску катионита 200 г с размерами зерен 0,25—0,50 мм заливают в химическом стакане не менее чем пятикратным объемом насыщенного раствора Na l и оставляют на 24 ч для набухания. Жидкость декантируют и катионит переносят в делительную воронку, промывают его пять раз не менее чем тридцатикратным (по объему) количеством 5%-ного раствора НС1 , оставляя каждый раз катионит в контакте с раствором кислоты в течение 2 ч при периодическом перемешивании. Затем катионит отмывают дистиллированной водой до нейтральной реакции по метиловому оранжевому. Отмытый от кислоты катионит в Н-форме отфильтровывают на воронке Бюхнера и подсушивают на воздухе до такого состояния, чтобы его зерна отделялись одно от другого. Подготовленный таким образом катионит хранится в банке с притертой пробкой. [c.23]

    Описано применение мультиэлектродного метода для анализа системы, содержащей свинец и кадмий, т, е, системы, для которой исключается применение прямого метода (градуировочного графика) и метода добавок. Такой способ дает возможность учитывать взаимное влияние нескольких видов ионов и фона на ЭДС ИСЭ и позволяет исключить предварительный этап подготовки пробы к анализу, включающий либо попеременное отделение ме-щающих ионов, либо их маскирование. Диапазон определяемых концентраций 10 —Ю М РЬ ( d). Относительная погрешность определения свинца(П) и кадмия(П), находящихся в растворе на соизмеримых уровнях, не превышает 27% (кадмий) и 10% (свинец). [c.197]

    Подготовка электродов. Стеклянный электро.д, чувствительный к изменению коицентрации ионов водорода, вымачивают перед анализом в дистиллир( ванной воде не менее 5 мин. Каломельный электрод — электрод сравнения заиол няют насыщеипым раствором хлористого калия. После каждого измерения об электрода тщательно промывают дистиллированной водой и перед измерение- pH вытирают фильтровальной бумагой. [c.219]


Смотреть страницы где упоминается термин Подготовка ионитов к анализу: [c.277]    [c.279]    [c.18]    [c.127]    [c.176]    [c.21]    [c.117]    [c.63]    [c.14]    [c.145]    [c.396]    [c.354]    [c.69]    [c.213]   
Смотреть главы в:

Руководство по ионообменной, распределительной и осадочной хроматографии -> Подготовка ионитов к анализу




ПОИСК





Смотрите так же термины и статьи:

Анализ ионов

Иониты подготовка



© 2024 chem21.info Реклама на сайте