Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение концентрации реагента или растворителя

    Скорость реакции и = /г [КХ] [ "]. Бимолекулярный закон может нарушаться в некоторых случаях, например, при образовании ионных пар в растворе, при изменении свойств растворителя с изменением концентраций реагентов и т. д. [c.123]

    Мы проверили возможность проведения реакций в конических колбочках с обратным воздушным холодильником в виде полой стеклянной трубки, в стеклянных стаканчиках с обратным холодильником Либиха на шлифах и пр. Однако из-за потерь растворителя и, следовательно, изменения концентрации реагентов воспроизводимые результаты не были получены. Дальнейшие поиски привели к конструкции специальных реакционных колб, обратных холодильников и стеклянных лодочек для взятия навесок (рис. 1), которые оказались надежными в работе и устранили указанные недостатки.  [c.216]


    По нашему мнению, положение Челинцева о системе растворитель— растворенное вещество содержит в завуалированном виде необходимость изучения элементарного акта химического взаимодействия в растворе. Челинцев попытался затем рассмотреть влияние различных органических растворителей на образование оксониевых дибромидов простых эфиров (196, стр. 9. При этом он обнаружил, что с изменением концентрации (реагентов. — В. К.) существенным образом изменяется и тот порядок, в котором располагаются растворители по силе их задерживающего влияния на течение химической реакции [249, стр. 644]. [c.69]

    Большинство реакций, катализируемых ферментами, являются бимолекулярными, включающими, например, перенос группы между двумя субстратами или гидролиз субстрата. Однако на основании исторических данных можно сказать, что при кинетическом рассмотрении ферментативных реакций на ранних стадиях исследования преобладало формулирование кинетических уравнений, учитывающих только субстрат. В широко изучавшихся реакциях гидролиза вода как реагент находится в таком большом избытке, что ее концентрация изменяется незначительно, оказывая очень слабое влияние на скорость реакции только в концентрированных растворах хорошо растворимых в воде субстратов, подобных сахарозе, или в смешанных растворителях изменения концентрации воды становятся достаточными для того, чтобы влиять на скорость реакции [31]. Если скорость гидролиза не зависит от концентрации растворителя, можно написать схему реакции с образованием промежуточного комплекса между субстратом и ферментом. [c.115]

    Как указано в гл. 22, многие органические реагенты пригодны для селективного разделения и анализа методом осаждения. Эффективность применения эти.х реагентов можно повысить, используя технику жидкостной экстракции. Как правило, экстракция протекает быстро и может быть применена как в анализе следов, так и в определении макроколичеств веществ. Селективность разделения может быть улучшена выбором условий, например pH, концентрации реагента, растворителя, введением маскирующего агента и даже изменением скорости экстракции. [c.463]

    Из уравнения (65) видно, что экстрагируемость металла при использовании данного реагента и данного органического растворителя существенно зависит от концентрации органического реагента. Чем выше [НА]орг, тем выше коэффициент распределения, и кривая экстракции сдвигается в кислую область, обеспечивая тем самым экстракцию из более кислых растворов. Таким образом, использование высокой концентрации реагента весьма полезно, особенно для экстракции металлов, которые легко гидролизуются. Однако практические соображения часто ограничивают возможные изменения концентрации реагента. Верхний предел определяется раствори- [c.39]


    Полимеризация жидкого мономера в блоке зависит от давления, поскольку оно влияет на только что рассмотренные элементарные стадии полимеризации. Процессы, которые до сих пор не рассматривали, обычно включают передачу цепи на полимер и передачу цепи на растворитель или примеси. Изменение концентрации реагентов, являющееся результатом сжатия жидкости, здесь не учитывается, так как оно минимально в пределах давлений, обычно используемых при экспериментах. [c.114]

    Если время реакции больше 2 ч или меньше 10 с, то можно использовать один из простых методов изменения скорости реакции так, чтобы период полупревращения изучаемой реакции лежал в интервале времен, практически ограниченном скоростью медленных реакций. Такими методами могут быть А. Изменение температуры реакционной системы. Б. Изменение концентрации реагентов. В. Изменение растворителей или ионной силы раствора, в котором осуществляется реакция. [c.18]

    Б. ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ РЕАГЕНТА ИЛИ РАСТВОРИТЕЛЯ [c.94]

    В качестве растворителей могут использоваться вода и такие органические вещества, как глицерин, этиленгликоль, безводная уксусная кислота, спирты, метилформамид и др. Роль растворителя в процессах травления весьма многообразна. С одной стороны, он может быть использован для изменения концентрации реагентов, для изменения вязкости среды. Оба фактора отражаются на скорости процесса диффузии. С другой стороны, он влияет на силу растворенных электролитов, на их окислительное действие, оказывая тем самым влияние на скорость протекания химических процессов. [c.283]

    Направление радикального присоединения тиолов можно регулировать изменением концентрации реагента, температуры, растворителя. Большую роль играет и природа тиола. Ниже при- [c.66]

    Кинетический метод позволяет установить зависимость скорости реакции от нуклеофильной реакционной способности и концентрации реагента. Если скорость реакции возрастает при увеличении концентрации и нуклеофильной силы реагента, то можно утверждать, что реакция преимущественно или исключительно протекает по механизму 5м2. Напротив, если скорость реакции не меняется при изменении концентрации и нуклеофильной силы реагента и существенно зависит от природы и свойств протонного растворителя, следовательно, реакция протекает преимущественно или исключительно по механизму 5м1. [c.135]

    В лимитирующей стадии реакции могут участвовать реагенты А и В, хотя в уравнении скорости появляется только [А]. Это происходит при наличии большого избытка В, скал<ем, в 100 раз превышающего А по молярному объему. При этом на реакцию с А расходуется только 1 моль В, а 99 молей В остаются неизрасходованными. В таких случаях очень трудно измерить изменение концентрации В во времени, и это редко пытаются делать, особенно если В одновременно является растворителем. Поскольку концентрация избыточного реагента В практически не меняется во времени, реакция имеет кажущийся первый порядок по А, хотя в действительности и А и В участвуют в лимитирующей стадии. Такие реакции часто называют реакциями псевдопервого порядка. Псевдопорядок реакции возникает также в тех случаях, когда одним из реагентов является катализатор, концентрация которого не меняется во времени, так как он регенерируется так же быстро, как и расходуется, или когда реакцию проводят в среде, где поддерживается постоянная концентрация реагента, например в буферном растворе, где реагентами являются Н+ или ОН . Условия псевдопервого порядка часто используются в кинетических исследованиях для удобства проведения экспериментов и расчетов. [c.290]

    Если концентрации реагентов в смеси очень высокие или если смесь состоит из жидких веществ без растворителя, то изменение концентрации одного компонента приводит к изменению концентраций других компонентов. В этом случае входные величины связаны между собой уравнением [c.520]

    Химическая кинетика занимается изучением скоростей реакций, а также механизмов их протекания. Механизм — это детальное описание отдельных стадий реакции. Для выяснения механизма реакции исследуют влияние на ее скорость изменений концентраций исходных веществ, продуктов реакции, катализаторов и ингибиторов. Важная информация может быть также получена при изучении влияния на скорость реакции изменений температуры, природы растворителя, концентрации электролита и изотопного состава реагентов. Механизм представляет собой гипотетическую схему, создаваемую для объяснения некоторой совокупности экспериментальных фактов, и потому не является однозначным, даже если хорошо описывает все факты но в то же время на основа-иии кинетических данных некоторые механизмы могут быть полностью исключены. [c.283]


    Объектом исследования химической кинетики является химический процесс превращения реагентов в продукты. Можно возразить, что химическая реакция является предметом исследования и ряда других химических дисциплин, таких как синтетическая и аналитическая химия, химическая термодинамика и технология. Следует отметить, что каждая из этих дисциплин изучает химическую реакцию в своем определенном ракурсе. В синтетической химии реакция рассматривается как способ получения разнообразных химических соединений. Аналитическая химия использует реакции для идентификации химических соединений. Химическая термодинамика изучает химическое равновесие как источник работы и тепла и т. д. Свой специфический подход к химической реакции имеет и кинетика. Она изучает химическое превращение как процесс, протекающий во времени по определенному механизму с характерными для него закономерностями. Это определение нуждается в расшифровке. Что именно в химическом процессе изучает кинетика Во-первых, реакцию как процесс, протекающий во времени, ее скорость, изменение скорости по мере развития процесса, взаимосвязь скорости реакции с концентрациями реагентов - все это характеризуется кинетическими параметрами. Во-вторых, влияние на скорость и другие кинетические параметры реакции условий ее проведения, таких как температура, фазовое состояние реагентов, давление, среда (растворитель), присутствие нейтральных ионов и т. д. Конечный результат таких исследований - количественные эмпирические соотношения между кинетическими характеристиками и условиями проведения реакции. В-третьих, в кинетике изучают способы управления химическим процессом с помощью катализаторов, инициаторов, промоторов, ингибиторов. В-четвертых, кинетика стремится раскрыть механизм хи- [c.15]

    В отношении растворенных реагентов этот вывод является не более чем приложением правила материального баланса к переходному состоянию. В отношении растворителя он отражает тот факт, что степень связывания растворителя любым растворенным веществом является неизвестной величиной (разд. 2.16). Точнее говоря, он соответствует тому факту, что определить порядок реакции по любому реагенту можно только путем наблюдений за изменениями скорости, вызываемыми изменениями концентрации этого реагента в условиях разбавленного раствора. Однако невозможно существенно изменить концентрацию ра< тбЧ  [c.144]

    Пигменты важно получать с оптимальной величиной и формой частиц наилучшие размеры частиц азопигментов 1—2 мкм. Более крупные частицы менее ярки и обладают меньшей красящей силой, а более мелкие частицы легко образуют агломераты кроме того, мелкие частицы пигмента менее светопрочны, так как у них поверхность, наиболее чувствительная к действию света, относительно больше, чем у более крупных частиц. По этой же причине при слишком малых размерах частиц устойчивость пигментов к органическим растворителям снижается — они частично растворяются. Азопигменты могут получаться в процессе синтеза в различных таутомерных формах, азо- или гидразонной (см. стр. 266), точнее, смеси двух таутомеров, с преобладанием одного из них. Цвет и другие свойства таутомеров различны. Кроме того, возможно образование пигментов в различных кристаллических модификациях, также обладающих разными свойствами. Изменение условий синтеза (особенно, pH раствора, концентрации реагентов при сочетании, скорости перемешивания реакционной массы), а также наличие примесей в сырье, отступление от рекомендованных температур в процессе синтеза и при сушке, другие отклонения от установленного режима производства могут привести к получению нежелательных таутомеров, не оптимальной кристаллической модификации пигмента, или к образованию более крупных его частиц и, в конечном итоге, к ухудшению его потребительских свойств. [c.312]

    На рис. 39 представлено несколько теоретических кривых, показывающих зависимость экстракции (в %) от pH. согласно уравнению (14-19) для Vo=Vw Из рисунка видно, что крутизна кривых тем больще, чем больще величина п — заряд иона металла. Значение рН д. для данной системы зависит от константы устойчивости хелата и от избыточной концентрации реагента, но не от концентрации ионов металла [см. уравнение (14-20)]. Для различных металлов при использовании той же системы реагент— растворитель изменение величины рН1/, определяется в основном константой образования хелата Кс, так как величины Рг И Ка обусловлены только свойствами реагента, а значения Рс хелатов различных металлов отличаются друг от друга незначительно. [c.291]

    Почти все распространенные хелатообразующие реагенты неизбирательны, поэтому выбор условий экстракции имеет большое значение. Основными приемами, которые применяются для обеспечения условий успешного разделения элементов, являются изменение величины pH и использование маскирующих комплексообразующих веществ. Можно также изменять растворители, концентрацию реагента, использовать различную скорость экстракции и особенно различный состав и зарядность комплексов эти факторы избирательности будут подробнее рассмотрены ниже. [c.8]

    На рис. 40, 41 в качестве примера показано изменение расхода реагента и растворителя, а также продолжительности процесса получения одной из форм анионита АВ-17 в динамических условиях в зависимости от концентрации раствора я скорости его фильтрования. [c.96]

    Чтобы реакция была пригодна для кинетического анализа, ее скорость не должна быть ни слишком высокой, ни слишком низкой. Быстрыми реакциями считаются те, равновесие которых (при глубине протекания отвечающей нескольким полупериодам) устанавливается уже в период смешивания реагентов. Для аналитических измерений удобны полупериоды реакций от 0,1 до 1000 с для реакций первого порядка, хотя использование системы смешивания методом остановленной струи расширяют этот предел до нескольких миллисекунд. Если полупериод реакции выходит за эти пределы, необходимо модифицировать условия эксперимента. Скорость реакции может быть модифицирована путем изменения таких переменных величин, как концентрация, температура, растворитель, или путем добавления катализатора или ингибитора. В типичных растворителях с низкой вязкостью при обычных температурах константа скорости реакций второго порядка с контролирующим диффузионным фактором составляет величину порядка 10 ° л/моль-с. Хотя для реакций первого порядка верхнего предела констант нет, но фактически ограничение накладывается частотой внутримолекулярных колебаний, которая равна примерно 10 с-.  [c.434]

    Фазовое состояние катализаторов определяется не только исходным составом системы, но и природой растворителя, наличием и природой модификаторов, температурой, концентрацией реагентов и при изменении условий полимеризации может изменяться. [c.9]

    При проведении многих реакций реагент используют и как растворитель (реакции сольволиза). Его берут в большом и 1бытке и учесть изменение концентрации реагента в процессе реакции сложно. Скорость таких реакций описывается кинетическим уравнением первого порядка, однако для определения их истинного механизма требуются дополнительные исследования. [c.92]

    В работе [95] учтено изменение концентрации реагентов поли-меризующейся среды, влияние соотнощения констант распада инициатора и роста цепи и обнаружено, что для большинства исследованных систем зависимость от конверсии выражается однотипными кривыми. Более того, учет изменения молекулярной массы размеров макромолекул) со временем полимеризации и качеством растворителя (мономера) позволил получить единую зависимость  [c.68]

    Так. как при этом реагент (спирт) является одновременно растворителем и, следовательно, применяется в большом избытке, то реакция протекает как псев1домономол кулярная, т. е. независимо от изменения концентрации растворителя. [c.385]

    До сих пор речь шла о процессах, сопровождающихся переносом протона от содержащегося в растворе протоно-донорного компонента, например ионов гидроксония или молекул растворителя, на непосредственно участвующие в электродной реакции молекулы или ионы органического вещества. Однако нередки случаи, когда само восстанавливающееся вещество одновременно выполняет роль наиболее сильного в данной системе донора протонов, что приводит к существенным изменениям кинетических характеристик процесса. В этих условиях может протекать реакция автопротонирования продуктов электродного процесса за счет отрыва протона от непрореагировавших молекул исходного вещества. Ее следствием является уменьшение приэлектродной концентрации реагента, частично превращающегося в трудно или вовсе не восстанавливающиеся анионы сопряженного исходному веществу основания. В результате понижается предельный ток соответствующей волны, а иногда, при более отрицательных зна- [c.243]

    Характер изменения концентрации pa твopяei югo компонента в случае одинакового порядка диффузионных и кинетического сопротивлений представлен на рис. 2.2, в, где концентрация целевого компонента на поверхности растворения гр ниже значения, соответствующего насыщению, а концентрация реагента на поверхности Ср. гр меньще его концентрации в основном потоке. Значения Сгр и Ср. гр могут быть определены из равенства скорости процесса перехода вещества из твердого состояния в раствор и скоростей диффузионного переноса растворителя и целевого компонента  [c.83]

    Пленки можно также получать, заливая раствор каучука в стеклянный каркас, плавающий на воде или чистой ртути. Концентрация раствора в этом случае должна бьггь меньше, чем для пластинок. Преимуществом такого способа, несмотря на его большую сложность, является то, что пленка получается двусторонней. Это может иметь значение при необходимости обработки пленки бромом, хлором или другими реагентами. Подобным же образом может быть приготовлена пленка из резиновой смеси. Следует учитывать, что ингредиенты, в первую очередь технический углерод, сильно увеличивают рассеяние, приводящее к потере прозрачности образца. Сера в количестве до 10-15 % в сырой смеси позволяет получать образцы, достаточно прозрачные для качественного анализа. Увеличить прозрачность образца можно за счет изменения скорости испарения растворителя, что влияет на размер кристаллов серы. [c.217]

    Оптическая активность продуктов реакции позволяет также обнаруживать изменения механизма процесса, обусловленные вариациями некоторых условий опыта, например характера растворителя и концентрации реагентов. При метанолизей-а-бромпропио -новой кислоты (л) в 1 н. растворе метилата натрия происходит обращение конфигурации, а в 0,1 н. растворе — рацемизация. [c.331]

    При фотометрическом опреде-лении примесей, а также при выделении радиоизотопов из облученной нейтронами мишени в ра-диоактивационном методе предпочтительнее избирательная экстракция одного определяемого элемента. Избирательность экстракции, как известно, достигается варьированием условий — изменением концентрации водородных ионов, выбором экстрагируемого соединения элемента и экстрагирующего растворителя, введением маскирующих веществ и т. д. Примером практически полной избирательности экстракции, обусловленной выбором экстрагируемого соединения, растворителя и кислотности среды, может служить извлечение германия четыреххлористым углеродом N НС1 в присутствии окислителя [20]. Экстрагирующийся одновременно осмий можно не принимать во внимание ввиду его обычного отсутствия в анализируемых на германий пробах. Кроме того, осмий и не реагирует с реагентами, применяемыми для определения германия. [c.7]

    Замедленный водородный обмен в аммонийных ионах изучен очень подробно и количественно. Свейн с сотрудниками [131] определил скорость водородного обмена в ионах аммония с гидроксильной группой спиртов и показал, что она определяется концентрацией ионов водорода. Первая серия опытов была поставлена с бромистым аммонием и метанолом, растворенными в диметилформамиде. Сделанные выводы подтверждены и на других объектах. Реакция имеет первый порядок по отношению к каждому из реагентов. Скорость обмена обратно-пропорциональна концентрации ионов водорода (в форме протонизованной молекулы растворителя). Произведение иа константы скорости обмена на концентрацию кислоты остается постоянной величиной даже при изменении концентрации кислоты в 100 раз. Энергия активации обменной реакции с триэтил-аммонийхлоридом в метанольном растворе варьирует от 22 ккал при концентрации хлористого водорода, равной 0,69 М до 15 ккал в 0,016 М растворе кислоты. Таким образом, торможение реакции кислотой строго доказано. По Свейну, кинетическим данным соответствует тримолекулярный механизм обменной реакции. Протон (из иона аммония или молекулы спирта) присоединяется к молекуле растворителя, возникает комплекс, в котором аммиак (или амин) и спирт соединены водородной связью  [c.94]

    Метод изменения концентраций в двух фазах. Иногда вследствие повышенной реакционной способности реагента лучше проводить реакцию с раствором этого реагента в нейтральном растворителе и водным раствором мочевины. Из величин концентраций гостей и хозяев в соответствующих фазах можно рассчйтать константу равновесия. Для применения метода, предполагающего изменение концентрации раствора мочевины, необходимо знать состав комплекса . [c.475]

    На фиг. 53 приведены кривые изменения [аЬ и Ьо при добавлении диоксана в водный раствор р-лактоглобулина. Изменение происходит в два этапа сначала отрицательное вращение увеличивается, а затем уменьшается. Одновременно с уменьшением [а]в увеличиваются отрицательные значения Ьо. Добавление реагентов, образующих водородные связи с белком, в частности мочевины или формамида, способствует увеличению вращения (но не уменьшению его или изменению Ьо). Это позволяет предположить, что сначала происходит развертывание большей части нативной структуры, стабилизируемой гидрофобными связями, для которой характерно малое число спиральных форм, а затем (при отсутствии растворителя, конкурентного в отношении образования водородных связей) молекула свертывается, образуя спиральную структуру. Таким образом, при переходе от начальной нативной структуры к конечной конформации с высоким содержанием спиральных форм молекула проходит через более хаотическую промежуточную конформацию. Уменьшение отрицательного вращения, наблюдаемое на второй стадии при высоких концентрациях органического растворителя, обусловлено, по-видимому, образованием а-спиралей. Начальное увеличение вращения связывают е нерехедом -тедрофобного окружения— к водному или с вкладом р-структур, но число данных, которые позволили бы решить, какое нз этих предположений правильно, [c.292]

    Таким образом, на простейшем примере показана возможность тонкого регулирования скорости окислительно-восстановительной реакции изменением природы полилиганда, концентрации координационно-активных групп в полимере и состава координационной сферы металла. Каталитическая активность ионитного комплекса является функцией концентрации реагента Ск, ионов металла в фазе ионита М, лигандных групп ионита Ь, природы и концентрации низкомолекулярных лигандов, входящих в состав первой координационной сферы Ь, природы растворителя 5, ионной силы раствора значением его рн, температуры Т, природой и концентрацией контролируемых х и неконтролируемых у примесей. [c.317]

    Непрерывное снижение константы скорости реакции с увеличением мольной доли ацетона установлено при исследовании гидролиза ацетанилидакоторый, как и этилацетат, хуже растворим в воде, чем в органическом растворителе. Можно полагать, что замедление реакции связано не только со снижением диэлектрической проницаемости среды, но и с происходящим по мере роста концентрации ацетона изменением коэффициента распределения реагента между твердой и жидкой фазами. Постепенное повыщение концентрации ацетона ведет к увеличению относительного количества воды, логлощаемого ионитом, а это затрудняет -проникновение молекул реагента в твердую фазу и тем самым замедляет их превращение. В том же направлении влияет снижение набухаемости катионитов при увеличении концентрации органического растворителя. Следует, однако, подчеркнуть, что далеко не всегда наблюдается простая связь между скоростью реакций гидролиза и количеством введенного индифферентного растворителя, и, следовательно, диэлектрической проницаемостью реакционной смеси. [c.57]


Смотреть страницы где упоминается термин Изменение концентрации реагента или растворителя: [c.223]    [c.368]    [c.6]    [c.174]    [c.28]    [c.85]    [c.75]    [c.331]    [c.123]    [c.291]    [c.43]    [c.289]    [c.17]    [c.43]   
Смотреть главы в:

Кинетика в аналитической химии -> Изменение концентрации реагента или растворителя




ПОИСК







© 2025 chem21.info Реклама на сайте