Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция риформинга нефти

    V. РЕАКЦИЯ РИФОРМИНГА НЕФТИ [c.51]

    Таким образом было получено пять образцов катализатора с различной степенью потери дегидрирующей активности. Каждый образец был испытан в реакции риформинга нефти. [c.656]

    Реакции, лежащие в основе каталитического риформинга, эндо-термичны, а это требует применения сравнительно высоких температур. В этих условиях наряду с образованием ароматических углеводородов в результате более глубоких процессов деструкции на катализаторе откладывается кокс, что приводит к отравлению катализатора. Для того чтобы этого избежать, каталитический риформинг проводят под давлением водорода. В результате каталитического риформинга доля аренов, которая в исходном нефтяном сырье не превышает 10-15%, возрастает до 50—65%. Каталитический риформинг важен еще и в том отнощении, что за счет роста содержания ароматических углеводородов в продуктах риформинга резко возрастает октановое число бензина, используемого в двигателях внутреннего сгорания. Индивидуальные арены — бензол, толуол, ксилол и другие — вьщеляют при перегонке продуктов риформинга на высокопроизводительных ректификационных колоннах. В настоящее время около 90% бензола и его гомологов получается в промышленности в результате каталитического риформинга нефти. [c.373]


    Каталитический риформинг нефти в высокооктановый бензин заключается в получении парафинов и ароматических углеводородов из парафиновых и нафтеновых компонентов нефтяного сырья. В то время как ароматические углеводороды образуются из нафтенов с шестичленными циклами при их непосредственной дегидрогенизации, для образования ароматических углеводородов из нафтенов с пятичленными циклами требуется, кроме того, изомеризация в шестичленные циклы перед дегидрогенизацией в ароматические углеводороды. Платиновые катализаторы риформинга эффективно катализируют эти реакции. Данные катализаторы характеризуются наличием платины, связанной с твердой подложкой, относящейся к классу веществ, имеющих кислотные свойства (например, кремнезем, промотированный окисью алюминия, окись алюминия, содержащая галоген, и т. д.). Миле и сотрудники [1], которые предположили, что механизм изомеризации состоит в дегидрогенизации — гидрогенизации насыщенных углеводородов в промежуточные олефины и в скелетной перегруппировке, претерпеваемой промежуточными олефинами, назвали эти катализаторы бифункциональными . [c.649]

    Активность в реакции риформинга определялась по стандартизованной прямогонной фракции канзасской нефти с интервалом т. кип. 110—182° (46% парафинов, 51% нафтенов, 3% ароматических углеводородов). Это нефтяное сырье пропускали над 75 см катализатора при скорости 2 объема жидкости/объем катализатора/час и общем давлении 35 ат в присутствии водорода, вводимого в молярном соотношении водород углеводород = 10 1. Использование трехсекционной (с независимой ре- [c.654]

    На рис, 2 приведена кривая зависимости активности в реакции риформинга этих и необработанного образцов катализатора от дегидрирующей активности, определенной в опытах с циклогексаном. Эти результаты приводят к следующему выводу для того чтобы при стандартизованной методике риформинга нефти получить 98-октановый продукт, дегидрирующая активность, измеренная по циклогексану на свежеприготовленных катализаторах, должна превышать величину 100 мкмоль сек- г. Интересно, что активности, измеренные на различных продажных катализаторах риформинга, лежат, как было найдено, в интервале 500—1500 мкмоль сек- г (по циклогексану). [c.656]

    Кислородные соединения нефти (спирты, эфиры, перекиси, фенолы) и растворенный кислород в условиях гидроочистки переходят в воду. Повышенное содержание влаги в сырье риформинга приводит удалению галогенов из катализатора, что нарушает сбалансированное соотношение кислотных и металлических функций катализатора. В результате уменьшаются скорости реакции изомеризации, гидрокрекинга и ароматизации. Ввиду несовершенства способов анализа [c.25]


    Получение ароматических углеводородов. Так как образование ароматических углеводородов является одной из основных реакций каталитического риформинга, логично использовать этот процесс для получения некоторых ароматических углеводородов. Действительно, в настоящее время таким образом получают из нефти значительное количество бензола, толуола и ксилолов. [c.186]

    Подробно рассматриваются такие вопросы, как химический состав нефтей и нефтяных фракций очистка нефтяных фракций физическими и химическими методами теория термо-ката-литических процессов нефтепереработки (крекинг, пиролиз, риформинг, гидрирование, алкилирование) теоретические аспекты применения и эксплуатационных свойств нефтепродуктов. При этом большое внимание уделяется термодинамическим и кинетическим закономерностям, механизма реакций, теории катализа, теории сорбционных процессов и процессов экстракции, явлениям детонации, стабильности нефтепродуктов. [c.4]

    Водород как газификационный агент можно применять для газификации таких сложных углеводородов, как сырая нефть, остаточное топливо и уголь, но в этом случае условия реакции настолько жесткие, что требуют первоначального частичного окисления сырья. Таким образом, для газификации обычных видов ископаемого топлива применяют следующие методы паровой риформинг легких фракций гидрогазификацию газойля и остаточного топлива частичное окисление остаточного топлива или угля. [c.20]

    Результаты работ [79, 81—83] по риформингу фракций 62— 180 °С из восточных нефтей СССР на катализаторе АП-64 при 25—35 ат позволили заключить следующее. Процесс получения бензина с октановым числом 95—100 по исследовательскому методу идет достаточно удовлетворительно при его осуществлении в три ступени реакции, с распределением катализатора по реакторам установки в соотношении 1 2 4. Однако указывается [81], что при работе на нафтеновом сырье необходимо снизить загрузку катализатора в первом реакторе, т. е. в этом случае необходимо другое соотношение катализатора, загружаемого в реакторы. [c.48]

    Процесс риформинга протекает в присутствии алюмоплатинового катализатора АП-56 при 480—520 °С, 20 ат, объемной скорости подачи сырья 1—2,0 ч и циркуляции газа 1300—1500 м 1м сырья. Катализатор регенерируется периодически через 3—4 месяца [3, 25]. Основные показатели процесса при риформировании фракций 62—85 и 62—105°С из восточных нефтей СССР с целью получения бензола и толуола были приведены в табл. 22 (см. стр. 91) [3, 18]. Дальнейшие исследовательские работы по изучению риформинга фракций 62—85 и 62—105°С показали, что выход бензола за счет более интенсивного протекания реакций де- [c.101]

    Стадия подготовки сырья для процесса риформинга с целью выделения ароматических углеводородов g (технического ксилола) из жидких продуктов реакции путем обычной ректификации изучалась на фракции 115—169 °С нефти Кувейта, содержащей углеводороды (в вес.%) парафиновые 58 нафтеновые 29,3 ароматические 12,7 [61]. Сырье фракционировали в ректификационной колонне при кратности орошения 5—10 1. При к. к. сырья 126—130 °С (минимальное содержание в сырье парафиновых и нафтеновых углеводородов g) в результате риформинга получают жидкие продукты с октановым числом около 90 по исследовательскому методу. Из них ректификацией на колонне с погоноразделительной способностью 60 т. т. выделяют технический ксилол, не содержащий парафиновых и нафтеновых углеводородов. При к. к. сырья выше 130 °С или снижении четкости погоноразделения в процессе отбора целевой фракции (сырья риформинга) содержание парафиновых и нафтеновых углеводородов С, во фракции возрастает. В этом случае недостаточное глубокое превращение этих углеводородов не позволит выделить ксилол нужного качества. [c.25]

    Снижение рабочего давления, а следовательно, и парциального давления водорода, смещает равновесие реакций дегидрирования и дегидроциклизации в сторону ароматических углеводородов и способствует увеличению скорости их образования. На рис. 52 показано влияние давления на выход ароматических и газообразных углеводородов при риформинге фракции 105—140 °С из сернистой нефти-. Как видно из этих данных, со снижением давления не только увеличивается выход ароматических углеводородов, но и снижается выход газообразных углеводородов, увеличивая таким образом селективность каталитического риформинга. Эта закономерность сохраняется и при риформинге более широких фракций для получения бензина с высоким октановым числом. [c.164]


    Для изучения влияния изменения дегидрирующей (гидрирующей) активности на риформинг нефти ряд катализаторов, имеющих постоянный кислотный компонент, но различную дегидрирующую активность, определенную в реакции с циклогексаном, был исследован в реакции риформинга нефти. Для этого был выбран алюмосиликат с кислотной основой, который пропитывали воднь.м раствором Н2Р1С1б, в результате чего получали катализатор с содержанием 0,35 вес.% Р1. Высушенный, прокаленный и восстановленный катализатор имел дегидрирующую [c.655]

    На рис. 6.9 приведены данные по влиянию глубины ароматизации на показатели непрерывного риформинга широкой бензиновой фракции 85-180 С западно-сибирской нефти при конечном содержании кокса на платинооловянном катализаторе, равном 2% (мае.). Процесс проводили при давлении 1,1 МПа, объемной скорости 2,5 и соотношении водород сырье = 600 1. Глубину ароматизации меняли повышением температуры. Видно, что при увеличении содержания в катализаторе ароматических углеводородов с 60 до 80% (мае.) средняя температура растет с 490 до 510 С, снижается выход катализата с 82 до 72% (мае.) в два раза увеличивается выход кокса и соответственно кратность циркуляции катализатора. Характер изменения выхода кокса (в % на исходное сырье) в зависимости от глубины ароматизации свидетельствует о том, что процесс риформинга с непрерывной регенерацией выгодно применять при получении катализата с содержанием не менее 75% ароматических углеводородов. Селективность процесса с повышением степени ароматизации сырья убывает. Последнее обусловлено тем, что по мере повышения жесткости процесса в реакции риформинга начинают вовлекаться парафиновые углеводороды, ароматизация которых сопровождается более высоким выходом газа и кокса по сравнению с нафтенами. [c.148]

    Система циркуляции катализатора использована Французским институтом нефти в процессе риформинга, а также при осуществлении процесса аромайзинг. В этом процессе за счет изменения состава катализатора и проведения реакций в особо жестких условиях наряду с реакциями риформинга протекает деалкилирование гомологов бензола с накоплением в катализате бензола, толуола и ксилолов (табл. 5.30). Выход продуктов при переработке сырья разного фракционного состава приведен в табл. 5.31. Из катализата процесса аромайзинг бензол выделяют экстрактивной дистилляцией, а толуол и ксилолы — ректификацией. [c.172]

    Важной особенностью риформинга, значение которой прогрессивно возрастает в современной нефтепереработке, является возможность перераспределенпя водорода, содержащегося в исходной нефти. Принципиально основной задачей современной нефтепереработки является производство автомобильных л дизельных топлив. Водород, выделяющийся при реакциях риформинга, можно ввести в более тяжелые фракции нефти или непосредственным гидрокрекингом тяжелых фракций или гидрированием пх в более мягких условиях для получения высококачественных дизельных топлив, или облагораживания -сырья, направляемого на каталитический крекинг. В обоих случаях достигается уменьшение выхода остаточных топлив и увеличение выхода автомобильных и дизельных топлив с одновременным повышением их качества. [c.203]

    Главным источником ароматических углеводородов (аренов) в настоящее время является нефть, хотя в недалеком прошлом эту роль выполнял каменный уголь. В основе промышленного получения ароматических углеводородов лежат реакции дегидрирования циклоалканов и дегидроциклизации алканов. Зти процессы получили название каталитического риформинга нефти. В качестве катализатора обычно используют платину, нанесенную на окись алюминия высокой степени чистоты в количестве 0,5—1% по массе, из-за чего сам процесс часто называют гшат-формингом. Смесь паров бензиновой фракции углеводородов нефти и водорода пропускают над Р1/А120з при 450-550 С и давлении от 10 до 40 атм (1 10 — 4 10 Па). В этих условиях аро-матичесю.с углеводороды получаются в результате трех основных типов реакций  [c.372]

    От катализаторов синтеза углеводородов требуются как гидрогенизационная и полимеризационная активность, так и активность к внедрению СО, необходимая для построения углеродных цепочек. Образование сплавов или полиметаллических кластеров является обещающим путем для изменения каталитических свойств поверхности металла. Некоторое систематическое представление о поверхностных свойствах сплавов появляется из недавних работ по ряду металлов и реакций. Детальная оценка применимости систем на основе сплавов для синтеза углеводородов является задачей долгосрочных исследований. Подход, использованный Синфельтом с сотр. [19] при разработке катализаторов риформинга нефти, является хорошим примером. Эта группа начала с определения удельной активности широкого ряда нанесенных металлов для нескольких модельных реакций, что важно для понимания свойств металла в этих реакциях. Предложена модель процесса, связывающая кинетику реакций для одного металла с кинетикой для другого. Затем были испытаны комбинации металлов, каждый из которых способен ускорить или замедлить одну из стадий каталитического процесса. [c.268]

    Научные работы посвящены органическому катализу. Совместно с Н. Д. Зелинским впервые в СССР начал (1932) работы по получению хлоропренового каучука. Предложил каталитическую конденсацию ароматических аминов с ацетиленом и на ее основе создал удобный метод синтеза хинолино-вых оснований, названный его именем (реакция Козлова). Разработал новую реакцию гидроамини-рования органических соединений нитрилами, оксимами, гидразинами. Предложил MOHO-, би- и полиметаллические платинусодержаище катализаторы риформинга нефти, термостабильные и селективные катализаторы для дегидрирования, гидрирования и изомеризации углеводородов. [6] [c.246]

    При исследовании влияния содержания пиридина в бензине ромашкинской нефти на качество и выход катализата при риформинге (480—515 °С, Р = 3,5 МПа) на катализаторе Р0-150 установлено, что добавки пиридина подавляют гидрокрекинг, почти не оказывая влияния на остальные реакции риформинга [412]. Авторы считают, что пиридин следует вводить в сырье на свежем катализаторе для снижения его кислотности, что способствует уменьшению коксообразования. В случае использования бензина ромашкинской нефти следует добавлять 3 ррм азота в сырье. По мере дезактивации катализатора и необходимости повышения температуры реакции следует увеличивать количество добавляемого азота (рис. 40). Это вызвано тем, что при повышении температуры равновесие адсорбция—десорбция сдвигается в сторону десорбции. Данные о применении этого метода в условиях промышленного риформинга отсутствуют. [c.158]

    Результаты данных исследований представлены на рис. 17 для трех уровней эффективной кислотности (У), а именно при одном Pt-компоненте и двух смесях с частицами в 500и и 5 г. Для удобства сравнения этих трех случаев суммарная степень превращения отложена по абсциссе. Отметим сходство для второго и третьего случаев с данными, рассчитанными для аналогичных случаев регулирования селективности, описанных в разделе II, Г, 2 полученные результаты представлены на рис. 6, а и б для двух уровней активности компонента У. Максимальная изомеризационная активность зависит от эффективности кислотного компонента У и в его отсутствие почти равна нулю. По-видимому, стадия, катализируемая кислотными центрами, обычно определяет скорость реакции в бифункциональном катализе углеводородов над платиновым катализатором это было показано Вейсом и Претером [28] для условий риформинга нефти, Келемансом и Воге [29], исходившими из косвенных данных при изучении ароматизации различных нафтенов, и Син-фельтом и др. [30], изучавшими изомеризацию парафинов. [c.51]

    Полагают, что при риформинге нефти над катализаторами риформинга, полученными на основе Pt, наиболее важной является способность превращать различные углеводороды в ароматические углеводороды. В результате дегидрирующей активности смешанного катализатора шестичленные нафтены превращаются в ароматические углеводороды, однако высокоактивные катализаторы риформинга должны иметь способность к ароматизации циклопен-танов, т. е. к изомеризации пятичленных структур в щестичленные наряду с максимальной ароматизацией. Механизм превращения через промежуточные олефины, предложенный Милсом. Хайнеманном,. Милликеном и Обладом, можно выразить в терминах кинетики последовательных стадий реакции. Для измерения констант скоростей, характеризующ.чх отдельные стадии реакции, т. е. величины дегидрирующей активности и кислотной активности в стадии изомеризации, разработаны модельные реакции. Показано, что зависимость активности при риформинге нефти от величины активностей для этих отдельных процессов находится в соответствии с кинетикой последовательных реакций. Активность в реакции риформинга зависит от дегидрирующей активности только ниже некоторой величины, выше которой достигается стационарная концентрация промежуточного вещества, и скорость реакции определяется кислотной активностью. [c.649]

    Прежде, чем перейти к детальному рассмотрению реакций, имеющих место в процессах термического и каталитического риформинга, необходимо рассмотреть состав бензинов и лигроинов прямой гонки. На первой стадии развития процессов риформинга о составе применявшегося для переработки сырья было известно очень мало. Обычно указывалось только на более или менее нафтеновый характер исходных продуктов. Например, калифорнийская нефть рассматривалась как высоконафтеновая, а пенсильванская и мичиганская как парафиновые. Нефти Мид-Континента и Голфкоста занимали по этой классификации промежуточное положение между этими двумя типами. Даже в настоящее время наши знания о составе дистиллятов прямой гонки остаются далеко не удовлетворительными, хотя за 20 лет и были достигнуты значительные успехи. Наиболее изучен [c.162]

    Данные по риформингу двух тяжелых бензинов венесуэльской и кувейтской нефтей при различных условиях процесса показывают, что получение ароматических углеводородов из нафтенового венесуэльского бензина может быть объяснено в основном дегидрированием нафтенов. С другой стороны, получение ароматики из алканового кувейтского бензина составляет от 140 до 157% от потенциально возможного количества, получаемого при конверсии нафтенов. Это доказывает, что реакция дегидроциклизации алканов имеет преимущественное значение для получения высокого выхода ароматики [164]. [c.54]

    Реакции каталитической ароматизации занимают исключительно важное место в современных методах переработки нефти. На пих основаны процессы получения бензола, толуола, ксилолов и аролгатизированных бензинов каталитического риформинга. Бензо и толуол получают методом пиролиза нри весьма жестких термических условиях процесса (порядка 700° С) с низким выходом целевых продуктов па исходное сырье. [c.486]

    Процесс деалкилирования с водяным паром аквадель (НПО Ленне( яехнм — Французский институт нефти). В качестве сырья используются фракции ароматизованных бензинов пиролиза и риформинга. Селективность образования бензола может превышать 100% (мол.), так как наряду с деалкилированием алкилбензолов протекают реакции ароматизации насыщенных углеводородов. [c.277]

    Ранее простейшие гомологи бензола выделяли из фракций каменноугольной смолы, но возрастающие требования промышленности к количеству и качеству сырья для его-- дальнейшей переработки привели к поискам новых источников их получения. Алкилароматические углеводороды могут быть выделены из тяжелых смол пиролиза нефти, сверхчеткой ректификацией фракций риформинга, с помощью реакции Вю ца—Фиттига, ацили-рованием ароматических углеводородов и последующим восстановлением образующихся при этом кетонов и т. д. Все эти методы значительно уступают процессу алкилирования ароматических углеводородов олефинами ввиду высоких технико-экономических показателей его. Это обусловлено обеспечением процесса доступным и дешевым сырьем, производимым крупнотоннажными производствами, глубокой проработкой его химизма, довольно простым оформлением и получением больших выходов целевых продуктов при высокой селективности процесса.  [c.5]

    Для наиболее распространенного вида сырья — лигроинов прямой перегонки нефти, подвергаемых каталитичеакаму риформингу, основной задачей является глубокая очистка от серы и азота, небольшое дегидрирование парафинов и циклопарафинов и гидрокрекинг значения не имеют. Чтобы обеопечить максимальную скорость очистки, можно применять м аксимальные температуры 400—420 °С. При очистке авиационных керосинов недопустимо образование олефиновых и ароматических углеводородов, а иногда необходимо и неглубокое гидрирование последних (нафталинов). При применяемых обычно парциальных давлениях водорода термодинамически возможный выход нафталина при дегидрировании декалина и тетралина резко возрастает при температурах выше 370 °С, и очистку обычно проводят при 350—360 °С. Фракции, используемые в качестве дизельного топлива, можно очищать при температурах до 400—420 °С, при дальнейшем повышении температуры в результате дегидрирования би- и полициклических нафтенов снижается цетановое число, растет выход продуктов гидрокрекинга — газа и бензина и в результате реакций гидрокрекинга резко возрастает расход водорода. Нижний предел температуры очистки определяется в этом случае возможностью конденсации тяжелых фракций сырья появление жидкой фазы резко замедляет гидрирование из-за ограничения скорости транспортирования водорода к поверхности катализатора скоростью диффузии через пленку жидкости. [c.269]

    Отрегенерированный и восстановленный катализатор периодически загружается в реактор / ступени и затем последовательно проходит все реакторы. Транспорт между реакторами осуществляется ВСГ. Из последнего реактора катализатор поступаете бункер-накопитель, где отделяется от пневмоагента. Из бункера-накопителя катализатор периодически ссыпают в регенератор, где в неподвижном слое проводится окислительная регенерация и иные операции по подготовке катализатора к работе в цикле реакции. Единовременно регенерируется 5% общей загрузки катализатора. Система циркуляции катализатора использована Французским институтом нефти в процессе риформинга, а также при осуществлении процесса аро майзинг. Подобные установки могут сооружаться в два этапа [256] сначала монтируют обычную установку риформинга с реакторами, внутренняя конструкщгя которых приспособлена для движения катализатора, на втором этапе монтируют систему регенерации катализатора. При работе со стационарным слоем катализатора поддерживают более высокое давление и более высокую кратность циркуляции, после монтажа- системы регенерации давление снижают. [c.141]

    Бензиновые фракции большинства добываемых нефтей как советских, так и зарубежных, Содержат относительно немного нафтеноо (до 30—35%). Поэтому увеличение выхода ароматических углеводородов при каталитическом риформинге требует не только исчерпывающей ароматизации нафтенов, но и возможно более широкого вовлечения в реакцию дегидроциклизации парафинов, а также повышения селективности этой реакции. Как было показано в гл. 5, [c.181]

    Дегидрирование парафинов Q—Са не применяется для производства соответствующих олефинов, получаемых в настоящее время олигомеризацией олефинов Ся—Q в мягких условиях (например, процесс Димерсол , разработанный Французским институтом нефти, — см. гл. 10). Ароматизация парафинов Q— g является одной из важнейших реакций процесса каталитического риформинга (см. гл. 5). Дегидроциклизация индивидуальных парафинов (гексана в бензол и гептана в толуол) интенсивно изучалась с целью разработки технологического процесса (Казанский, Дорогочинский — в СССР, Арчибальд и Гринсфельдер — в США) в присутствии промотированного алюмо-хромового катализатора. При 550 °С выход бензола и толуола составлял 60—70% при использовании в качестве сырья индивидуальных углеводородов чистоты 98—99%. Разработан вариант процесса в подвижном слое катализатора, что позволило обеспечить непрерывность рабочего цикла и подвод теплоты, необходимой для компенсации эндотермического теплового эффекта дегидроциклизации (см. табл. 2.1). Однако перспективы его внедрения в настоящее время неопределенны и, вероятно, будут обусловлены экономической эффективностью по сравнению с современными модификациями риформинга жесткого режима [платформинг низкого давления в подвижном слое катализатора, разработан фирмой Universal Oil Produ ts—UOP (США) — см. гл. 5]. Наибольшую роль дегидроциклизация парафинов Q—Се играет в процессе Аромайзинг , разработанном Французским институтом нес и. По рекламным данным, процесс осуществляется в подвижном слое полиметаллического алюмо-платинового катализатора при давлении < 1 ЛШа (приблизительно 0,7 МПа) и температуре 540—580 X. Доля реакции дегидроциклизации парафинов в образовании ароматических углеводородов превышает 50% (см. гл. 5). [c.59]

    Высокотемпературный термический крекинг нефтяного сырья— пиролиз осуществляется обычно с целью получения газообразных олефинов, в первую очередь этилена, а также пропилена и бута-диеыов. Наиболее распространенпой формой промышленного процесса является пиролиз в трубчатых печах. Наиболее освоенное сырье — газообразные продельные углеводороды (этан, пропан, к-бутан) и низкооктановые бензиновые фракции прямой перегонки нефти, рафинаты риформинга, легкие фракции газоконденсатов дают наибольшие выходы целевых олефинов при ограниченном кок-сообразовании (закоксовывании труб печи). Наилучшие результаты достигаются при сочетании высокой температуры и малой длительности контактирования. Это объясняется более эффективным действием температуры на скорость реакций разложения, чем на скорость реакций уплотнения (энергия активации последних значительно ниже). [c.143]

    Для производства синтетических материалов необходимы ароматические углеводороды — бензол, толуол, ксилол, нафталин и др. Пока не был разработан процесс каталитического риформинга, единственным промышленным методом получения ароматических углеводородов из нефти был пиролиз, при котором наряду с газом образуется жидкий продукт, содержащий как моноциклические (бензол и др.), так и полициклические ароматические углеводороды (нафталин, антрацен и др.). При каталитическом риформинге происходит дегидрогенизация шестичленных нафтенов, и образуются ароматические углеводороды. Происходят и другие реакции — дигидрогенизация парафинов, циклизация и др. [c.325]

    В целях увеличения ресурсов сырья для риформинга можно использовать бензины, полученные при вторичных процессах переработки нефти. Такие бензины нуждаются в очистке, так как содержат довольно много серы (0,3—1,6%), азота (до 0,005%) и непредельных углеводородов (до 60%). Данные [70] о подготовке бензинов прямой перегонки и термического крекинга к каталитиче-скому риформингу приведены в табл. 15. Опыты проводили на установке при повышенном давлении с рециркуляцией газообразных продуктов реакций. При гидроочистке использовали алюмоко-бальтмолибденовый катализатор, а при каталитическом риформинге— алюмоплатиновый. Подобранные условия гидроочистки (380°С, 5 МПа, циркуляция 500 л водородсодержащего газа на [c.120]

    Раньше реакцией Се-дегидроциклизации алкилбензолов занимались главным образом для изучения механизма реакции и влияния ароматического кольца на реакционную способность замещенных парафинов. В последнее время эта реакция приобрела практическое значение, особенно в отношении получения диметилнаф-талинов — сырья для производства термостойких полимерных материалов. Реакцию дегидроциклизации исследовали также, используя в качестве исходных материалов алкилдиарилы, диарил-алканы и алкилнафталины. Хотя реакция дегидроциклизации алкилароматических углеводородов изучена менее детально, чем парафиновых, имеющиеся уже сейчас результаты показывают, что эта реакция занимает большее место в различных каталитических процессах нефтепереработки, в том числе в каталитическом риформинге, чем, предполагалось раньше. По-видимому, немалая роль принадлежит этой реакции и при образовании отдельных групп углеводородов в нефти. [c.138]


Смотреть страницы где упоминается термин Реакция риформинга нефти: [c.53]    [c.655]    [c.658]    [c.213]    [c.213]    [c.43]    [c.111]    [c.11]    [c.21]    [c.45]    [c.148]   
Смотреть главы в:

Катализ полифункциональные катализаторы и сложные реакции -> Реакция риформинга нефти




ПОИСК





Смотрите так же термины и статьи:

Реакции нефти

Риформинг



© 2025 chem21.info Реклама на сайте