Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы на границе металл — раствор электролита

    При опускании металлического электрода в раствор своих ионов при отсутствии тока металл и раствор взаимодействуют и становится возможным переход некоторого количества ионов металла в электролит и обратно. Через некоторое время на границе металл — раствор устанавливается равновесие, обусловленное равенством химических потенциалов вещества в обеих фазах. Достижение равновесного состояния совсем не означает, чго в системе не протекают никакие процессы. Обмен ионами между твердой и жидкой фазами продолжается, но скорости таких переходов становятся равными. Равновесному состоянию отвечает определенный равновесный потенциал. Очевидно, что равновесие на границе металл — раствор соответствует условию [c.10]


    Таким образом, отличительным признаком всякого электрохимического процесса, протекающего на границе фаз электрод — электролит 1В гальванических элементах или электролитных ваннах, является непременное участие электрона. Электрохимия— отрасль химической науки, изучающая наиболее общие законы прев ращения веществ в электролитах и на границе фаз электрод — электролит при поглощении либо отдаче молекулами, атомами или ионами электронов. Именно электронный переход и реакция между ионами и электронами на границе металл— раствор определяют наблюдаемые при электролизе превращения электрической энергии в новые химические вещества в электролитных ваннах либо глубокие качественные превращения вещества на полюсах элементов с возникновением электрического тока. Нетрудно заметить, что механизм электрохимических процессов существенно отличается от обычной картины химического превращения материи. [c.12]

    В противовес теории Вольта В. Нернст выдвинул теорию, согласно которой на границе двух различных металлов скачок потенциала не возникает, а э. д. с. цепи обусловлена алгебраической суммой скачков потенциала в ионных двойных слоях на границах раствора с обоими электродами (см. рис. 62, б). По теории Нернста вольта-потенциал на границе двух металлов равен нулю, а гальвани-потенциал на границе электрод — раствор обусловлен только образованием ионного двойного слоя. Если на одном из электродов ионный двойной слой отсутствует, то, согласно теории Нернста, разность потенциалов на концах цепи равна абсолютному электродному потенциалу (т. е. гальва-ни-потенциалу) второго электрода. Если же оба электрода находятся при потенциалах нулевого заряда в поверхностно-неактивном электролите, то разность потенциалов на концах такой цепи по теории Нернста должна была бы равняться нулю. Иначе говоря, потенциалы нулевого заряда в растворах поверхностно-неактивных электролитов (так называемые нулевые точки), согласно Нернсту, должны быть одинаковыми на всех металлах. Экспериментальные данные по нулевым точкам, приведенные в табл. 12, показывают, что выводы теории Нернста находятся в противоречии с опытом, несмотря на то, что эта теория дает количественную интерпретацию зависимости э. д. с. от концентрации веществ, участвующих в электродных процессах. [c.159]


    При приложении к электродам постоянного напряжения V на границе металл-электролит образуется двойной электрический слой, в пределах которого протекают основные электрохимические процессы. Данный слой рассматривают как плоский конденсатор, обкладками которого являются поверхность электрода и слой ионов, расположенных вблизи поверхности электрода и имеющих противоположный знак заряда. По мере прохождения тока одного направления ионы, соприкасаясь с электродами, разряжаются и выделяются на них в виде атомов. Это приводит к постоянному уменьшению силы тока через раствор, что рассматривается как заряд конденсатора, образованного двойными электрическими слоями. Описанное негативное явление называют поляризацией электродов. Оно приводит к нелинейности вольт-амперной характеристики ячейки (рис. 6.6, б). [c.514]

    Например, при погружении металла в раствор электролита ионы металла переходят в раствор, и на границе металл — электролит протекает ток. Этот процесс длится до образования двойного электрического слоя, обусловливающего возникновение межфазной разности потенциалов и препятствующего дальнейшему возрастанию концентрации ионов металла в электролите. [c.33]

    В условиях подземной коррозии металлы обычно находятся не в растворах их солей, а в растворах других электролитов, поэтому в процессах на границе металл-электролит могут принимать участие также ионы других металлов или ионы водорода. При этом на величину потенциала влияет не столько концентрация собственных ионов, сколько концентрация ионов водорода (водородный показатель pH), а также различные совместно протекающие процессы (выделение водорода, образование ионов 0Н , реакции, приводящие к появлению пленок). В таких случаях установившийся равновесный потенциал будет отличаться. от нормального. Его называют стационарным. [c.201]

    Электролитический механизм проявляется как при взаимодействии жидкостей и твердых тел, так и при разделении твердых тел, поверхности которых находились в соприкосновении. Например, при погружении металла в раствор электролита ионы металла переходят в раствор, и на границе металл — электролит протекает ток. Этот процесс длится до образования двойного электрического слоя, обуславливающего возникновение межфазной разности потенциалов и препятствующего дальнейшему возрастанию концентрации ионов металла в электролите. [c.30]

    Первая количественная теория адсорбции органических соединений на границе электрод — раствор, объясняющая форму электрокапиллярных кривых, была развита Фрумкиным [20]. Согласно Фрумкину, совершаемая при процессе адсорбции работа, зависящая от наличия двойного электрического слоя на границе металл — электролит и приходящаяся на единицу поверхности, при полном покрытии может быть выражена в виде суммы двух членов  [c.174]

    Электродами в гальванотехнике называют аноды и катоды, т. е. те находящиеся в электролите металлы, через которые проходит электрический ток от металлического проводника к проводнику 2-го рода (электролиту). Однако в понятие электроды необходимо включить электролит, окружающий металл. При всех наблюдениях над электродными процессами металл, погруженный в раствор, должен быть рассмотрен в свя зи с электролитом. Электродные процессы совершаются не в металлической фазе, а всегда на границе металл — электролит. [c.9]

    Теоретические представления о свойствах двойного электрического слоя на границе электрод/раствор электролита количественно соответствуют экспериментальным данным, полученным на ртути и некоторых жидких амальгамах II ]. Естественно поэтому, что для определения границ применимости указанных представлений к твердым электродам и выяснения вопроса о влиянии природы металла на свойства двойного слоя сравнивают основную характеристику двойного слоя — его емкость — на твердых металлах и ртути в различных условиях. Емкость двойного слоя на твердых металлах, так же как и на ртути, может быть определена путем измерения импеданса границы электрод/электролит. Однако при первых попытках определения емкости двойного слоя на твердых электродах из измерений импеданса возникли большие трудности. Причина этих трудностей в том, что в отличие от ртути многие твердые электроды способны адсорбировать водород и бывают идеально поляризующимися лишь в сравнительно узком интервале потенциалов, чаще же в большинстве электролитов вообще не обладают таким свойством. В результате этого электрическая эквивалентная схема границы твердый электрод/электролит содержит наряду с емкостью, эквивалентной двойному слою, одну или несколько электрических цепей, импеданс которых характеризует электрохимические процессы, и первой задачей является выделение емкости, эквивалентной двойному слою, из суммарно измеряемого импеданса. [c.5]


    Выравнивание (положительное) возникает, если затруднения в доставке материала из глубины электролита к поверхности катода касаются выравнивающих добавок, специально вводимых в электролит и непрерывно расходующихся в процессе электролиза. Расход добавок может быть обязан как их электрохимическому восстановлению, так и механическому захвату растущим осадком. Убыль добавки у границы электрод — раствор непрерывно восполняется доставкой ее из глубины электролита диффузией и конвекцией. Облегченная доставка поверхностно-активных веществ к микровыступам неровностей обусловливает здесь их большую поверхностную концентрацию, чем в микровпадинах. Повышенная концентрация добавок создает дополнительное сопротивление акту разряда и вызывает перераспределение тока таким образом, что металл легче осаждается во впадинах, чем на выступах микрорельефа. Условия, благоприятствующие эффекту положительного выравнивания, созд отся тогда, когда концентрация разряжающихся ионов достаточно велика, а содержание выравнивающей добавки в растворе не велико. [c.149]

    Коррозионные процессы, являясь гете рогенными электрохимическими реакциями, протекающими на границе металл—электролит могут быть количественно оценены, а скорость процесса выражена в различных единицах в зависимости от степени коррозии и ее характера. Количественное выражение скорости коррозионного процесса является важнейшей его характеристикой. Чаще всего коррозию оценивают количеством металла, перешедшего в раствор в единицу времени с единицы поверхности [c.20]

    Известно, ЧТО адсорбция анионов на границе раздела фаз электрод — электролит создает благоприятные условия для электровосстановления катионов. В связи с этим степень необратимости процесса электрокристаллизации металлов из растворов простых солей закономерно уменьшается при увеличении положительного заряда поверхности металла [1]. При катодном выделении большинства металлов поляризация зависит от природы аниона и уменьшается в следующей последовательности [1—3]  [c.38]

    Если бы в этой системе не происходило никаких других электрохимических процессов, дальнейший переход ионов металла в раствор был бы невозможен и процесс коррозии прекратился бы. Однако границе металл — электролит свойственна электрохимическая неоднородность, обусловленная как различиями в физико-химическом состоянии отдельных участков поверхности металла, так, и даже незначительными колебаниями концентрации электролита и растворенных в нем газов, неодинаковостью физических условий в разных точках. Вследствие этого на некоторых участках металлической поверхности оказывается возможным взаимодействие избыточных положительных ионов раствора с избыточ ными отрицательными зарядами металла — электронами. Электростатическое взаимодействие заряженного раствора и металла при этом нарушается, и ионы металла вновь могут поступать в раствор. [c.115]

    При соприкосновении металла с электролитом происходит электрохимическое его растворение, т. е. переход положительных ионов металла в электролит. По мере накопления ионов металла в растворе начинается обратная реакция, обусловленная образованием отрицательно заряженной поверхности на паяемом металле по мере ухода с нее положительных ионов в электролит. При этом возникает разность потенциалов между металлом и электролитом, которая препятствует дальнейшему растворению металла. Такой двойной слой образуется практически мгновенно. Когда взаимодействие отрицательно заряженного металла и положительных ионов в электролите станет таким, что процесс ионизации (растворения) прекратится, наступит равновесие. Тем не менее, образование равновесного состояния на границе металл — электролит не означает прекращения процесса ионизации при нем скорости реакции ионизации и обратного процесса лишь равны. При этом устанавливается равновесный потенциал между слоем свободных зарядов на поверхности металла и слоем заряженных ионов в растворе. Если при этом не протекает других реакций на границе металл — электролит, скачок равновесного потенциала зависит от концентрации ионов и температуры, определяется по уравнению Нернста (для обычной реакции элемента)  [c.166]

    Многие проблемы химии окружающей среды связаны с поверхностными явлениями. Однако большинство исследований, посвященных поверхностным явлениям, относится к процессам, протекающим на границе раздела металл (электрод) — раствор (электролит). Сейчас исследования нужно ориентировать таким образом, чтобы последовательно перейти от исследования этих хорошо изученных систем к исследованию явлений на границе раздела полупроводник—раствор, и, наконец, к процессам на поверхности диэлектрика, т. е. полупроводника с малой концентрацией электронов в зоне проводимости, который соприкасается с раствором, содержащим ионы. Именно эта модель является ближайшей к биологическим системам и возможно она поможет глубоко понять некоторые важнейшие процессы. [c.651]

    Скорости электродных процессов рассматриваются обычно с применением тех же приемов, что и скорость химических реакций. Но при этом, однако, нужно иметь в виду сложность протекания большинства электрохимических превращений по сравнению с химическими, а также то, что решающая роль здесь принадлежит плотности тока . Процесс разряда ионов, как известно, происходит на фазовой границе электрод — электролит. Таким образом, электродные реакции являются гетерогенными процессами, кинетика которых определяется многими специфическими затруднениями. Помимо собственно разряда, т. е. перехода ионов из одной фазы (раствора) в другую (газ, металл), процесс обычно включает в себя миграцию, диффузию и конвекцию частиц, совместный разряд ионов примесей, некоторое растворение (коррозию) уже осажденного ранее металла и другие, сопутствующие процессу разряда явления, которые осложняют суммарный эффект. Реальная электрохимическая система не может быть правильно истолкована без учета всех явлений, предшествующих элементарному акту разряда и сопровождающих его. Электродная реакция может быть представлена рядом последовательных стадий, через которые она проходит. Такими стадиями являются  [c.240]

    Количественное изучение реакции ионизации водорода на нолу-логруженных электродах простейшей формы из металлов плати-мовой группы, хорошо адсорбирующих водород, было проведено в работах [1, 2] в связи с выяснением механизма токообразующих процессов в пористых электродах топливных элементов. При использовании высокоактивного платинового электрода (с фактором шероховатости а-—100) в растворах серной кислоты [1] и активного никелевого электрода в растворах щелочи [2] было установлено, что ток ионизации пропорционален периметру трехфазной границы металл — газ — электролит. Величина тока определяется интенсивностью потока диффузии газа сквозь мениск и пленку электролита к поверхности металла, где происходит адсорбция 1 Г0 и ионизация по схеме [c.84]

    Все электрохимические реакции происходят при протекании электрического тока в цепи. Эта цепь слагается из последовательно соединенных металлических проводников и раствора (или расплава) электролита. В металлических проводниках переносчиками тока являются электроны, в растворах электролитов — ионы. Непрерывность протекания тока в цепи обеспечивается только в том случае, если происходят процессы на электродах, т. е. на границе металл — электролит. На одном электроде происходит процесс приема электронов — восстановление, на другом электроде — процесс отдачи электронов — окисление. Особенностью электрохимических процессов в отличие от обычных химических является пространственное разделение процессов окисления и восстановления. Из этих со1р)яженных процессов, которые не могут происходить один без другого, и слагаются в целом химические процессы в электрохимических системах. [c.314]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    При злектроосадцении железа о анодными процессами связаны осаждение с применением растворимых и нерастворимых анодов и анодная подготовка поверхности чугунов и сталей под покрытие. Анодное растворение железа является сложным электрохимическим процессом, кинетика и механизм которого зависят от структуры металла, наличия легирующих добавок, обусловливающих особенности его поведения на границе металл - электролит, а также от физико-химических свойств эле тролитов, возможности всякого рода взаимодействий в растворе [272 -276]. [c.71]

    Механизм электролитической диссоциации, т. е. природа ионов, образующихся в системе электролит — растворитель и участвующих в переносе тока, стал предметом исследований лишь в последнее десятилетие. Причины несколько запоздалого обращения к столь важной проблеме заключаются, по-видимому, в том, что природа ионов, образующихся при электролитической диссоциации в водных растворах, часто представлялась априорно очевидной, и эта очевидность механически переносилась на неводные растворы. Углубленное изучение схемы возникновения электролитного раствора, в частности термодинамические исследования, показало, что даже в водных растворах установление чисел гидратации, границ ближней и дальней сольватации имеет решающее значение для полного описания электролитного раствора. В неводных же средах, где, в отличие от большинства водных растворов, в системе электролит — растворитель присутствует намного больше равновесных форм (см. схему (1—14)), определение природы и состава ионов имеет первостепенное значение для понимания процессов, происходящих в системе. Очевидно также и прикладное значение проблемы природы ионов в неводных растворах вряд ли процесс электроосаждення металлов из неводных растворов можно эффективно осуществлять, если не известна эта важнейшая характеристика системы. [c.57]

    Метод дифференциальной емкости. В разбавленных растворах электролитов потенциал минимума дифференциальной емкости ртутного электрода совпадает с максимумом электрокапиллярной кривой, полученной в том же растворе. Хотя непосредственные измерения емкости двойного слоя при наложении переменного тока проводились еще в прошлом столетии, но лишь в 1935 г. М. А. Про-скурнин и А. Н. Фрумкин разработали условия, при которых этот метод дал надежные результаты. Они показали, в частности, что при соблюдении этих условий (в первую очередь, высокой чистоты раствора и ртути) емкости, измеренные непосредственно и рассчитанные из электрокапиллярных кривых, совпадают между собой в пределах ошибок опытов. Тем самым была подтверждена справедливость второго уравнения Липпмана. Измерение дифференциальной емкости двойного слоя оказалось полезным не только при изучении структуры двойного слоя и адсорбционных явлений на границе металл—электролит, пои кинетики электродных процессов. [c.254]

    В гл. V, VI и VII было показано, что э. д. с. обратимого элемента измеряет величину максиммьной работы химической реакции, совершающейся в нем при замыкании на бесконечно большое сопротивление. Нас в этом случае интересовали суммарный скачок потенциала на границе металл — электролит для каждого из электродов, а также другие скачки потенциала в элементе, алгебраическая сумма которых представляет э. д. с. Но если мы переходим от рассмотрения термодинамических равновесий к изучению скорости процессов, протекающих на электродах при неравновесных потенциалах, то уже нельзя ограничиться представлением о некотором суммарном скачке потенциала на границе электрод — раствор. [c.343]

    При погружении в раствор электролита металлического электрода на границе раздела электрод—электролит возникает двойной электрический слой, образованный электрическими зарядами в металле и ионами противоположного знака, расположенными в электролите у поверхности металла. Электрохимические процессы протекают в приэлактродном слое на границе раздела электрод электролит. [c.10]

    Если в процессе взаимодействия металла и электролита участвуют не только ионы данного металла, но и чужеродные ионы и атомы, то возникающий на границе раздела фаз потенциал называется неравновесным, или необратимым. При этом анодный процесс обусловлен обменом собственных ионов металла, а катодный — другими ионами или молекулами, присутствующими в электролите. Необратимый потенциал возникает, например, при погружении цинка в раствор серной кислоты 2п/Н2504. Значения необратимых потенциалов определяют опытным путем, так как их нельзя рассчитать по уравнению Нернста. Устойчивое значение необратимого потенциала в результате равенства суммарных скорос- [c.16]

    Центральным и преимущественно развивающимся разделом современной электрохимии является кинетика электродных процессов. При обсуждении этого раздела в учебниках и учебных пособиях ПО электрохимии основное внимание уделяется строению двойного электрического слоя на границе металл — электролит, диффузионной и собственно электрохимической кинетике. При этом химические стадии электродных реакций и химические реакции в растворах, в которых участвуют реагирующие на электроде частицы, обычно рассматриваются как дополнительные осложнения. Между тем в настоящее время стало очевидным, что подавляющее большинство эл.ектродиых реакций включает химические стадии, которые предшествуют или следуют за собственно электрохимическими стадиями, либо осложнено химическими реакциями в объеме электролита. Это в первую очередь относится к электродным реакциям, протекающим с участием ионов металлов или органических соединений в растворах электролитов, которые широко используют на практике (процессы электроосаждения и анодного растворения металлов, электросинтез и анализ органических и неорганических соединений и др.). Электрохимические методы исследования (потенциометрия, полярография, различные варианты вольтамперометрии) в настоящее время широко применяются при количественных исследованиях химических реакций в растворах (равновесия и кинетика реакций комплексообразования, реакций органических соединений). Поэтому они представляют значительный интерес для физико-химиков, не-органиков, органиков и тех, кто занимается электроаналитиче-скими методами. [c.3]

    Образование на поверхности металла первичной монослой-ной окисной пленки приводит к тому, что скорость растворения металла резко (в 10 —10 раз) снижается, а плотность анодного тока при этом определяется процессами перехода катионов из металла в окисел, перемещением катионов или анионов окисла через окисел, переходом катионов из окисла в раствор. Кинетика каждого из этих процессов сильно отличается от кинетики выхода катиона в раствор из мест выступов решетки при активном растворении. Однако имеется и нечто общее для электродных процессов, протекающих как из активного, так и из пассивного состояний скорость любого из этих процессов зависит от напряженности электрического поля на границе металл—электролит, снижающейся по мере роста ее толщины. При постоянном потенциале ток пассивного растворения падает во времени и после очень длительного периода (многие недели) на очень стойких сплавах достигает чрезвычайно низких значений (Ю- А/см ). Наличие на поверхности пассивного металла фазовых окислов подтверждено экспериментально. Пассивная пленка на коррозионно-стойкой хромоникелевой стали имеет толщину 30—100 А [73]. Чаще всего такая пленка представляет собой кислородное соединение металла. Пассивное состояние металла поддерживается лишь в строго определенной области потенциалов. При смещении потенциала в область отрицательнее Фляде-потенциала за-пассивированный электрод реактивируется. Пассивная пленка на [c.10]

    Е с а на границе раствор — металл А написать не по часовой стрелке, а так же, как и для границы металла В, т. е. от металла к раствору, то Еав = Евс1—Е Ас т.е. разность абсолютных скачков потенциалов двух металлов на границе с раствором равна контактному потенциалу Вольта. Однако рабочие функции для различных металлов при их перенесении из вакуума в раствор будут меняться весьма существенно и неодинаково для двух взятых металлов вследствие различия электрохимических процессов обмена зарядов с раствором для разных металлов и также вследствие неодинаковой адсорбции заряженных ионов или диполей на их поверхностях раздела с раствором. Контактный потенциал Вольта в этом случае остается неуравновешенным на величину разности смещения абсолютных скачков потенциалов металла А и металла В, т. е. разности изменения их рабочих функций при переносе этих металлов из вакуума в электролит. Если новые величины абсолютных скачков потенциалов металлов на границе с электролитом обозначить через величины Ес,а и Евс, (см. рис. 63,б),тобудемиметь лв+д. с. 0. Таким образом, источником возникновения э, д. с. элемента является именно эта добавочная разность потенциалов, получающаяся в цепи вследствие контакта металлов с электролитом. Поэтому установление электродных потенциалов, т. е. дополнительных скачков потенциала на границе с раствором, вследствие обмена (перехода) зарядов между металлом и раствором, представляет интерес как основная причина, вызывающая появление э. д. с. гальванического элемента и в частном случае коррозионного гальванического элемента. [c.126]

    Электрохимические процессы очень часто приводят к образованию новых фаз. Так, при электролизе растворов щелочей у границы электрод — электролит образуется новая газообразная фаза (водород и кислород), возникшая в результате разложения жидкой фазы — воды, а электролиз растворов хлоридов приводит к выделению газообразных водорода и хлора. При электролизе растворов солей металлов на катоде идут процессы образования новых жидких (ртуть, галлий) или твердь[х (медь, цинк, свинец, никель и т. д.) металлических фаз. Во время заряда кислотного аккуму- [ятора твердый сульфат свинца па (одном из электродов превращается в металлический свинец, а па другом — в диоксид свинца. Число этих примеров можно было бы начительно увеличить, но и этого достаточно, чтобы понять, насколько часто следует считаться с воз-никиовением новых фаз в ходе электрохимических процессов. [c.332]


Смотреть страницы где упоминается термин Процессы на границе металл — раствор электролита: [c.166]    [c.118]    [c.285]    [c.7]    [c.55]    [c.119]    [c.10]    [c.6]    [c.12]    [c.314]    [c.326]    [c.333]    [c.326]    [c.333]    [c.145]    [c.76]    [c.31]    [c.44]   
Смотреть главы в:

Коррозия химической аппаратуры и коррозионностойкие материалы Издание 3 -> Процессы на границе металл — раствор электролита




ПОИСК





Смотрите так же термины и статьи:

Металлы растворов

Процессы, протекающие па границе металл — раствор электролита

Растворы электролитов

Растворы электролитов. pH растворов



© 2025 chem21.info Реклама на сайте