Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расщепление ароматических углеводородов

    По-видимому, стабильность масла к окислению улучшилась в значительной стеиени в результате частичного расщепления ароматических углеводородов с конденсированными ядрами [c.247]

    При переработке высокоароматизированного сырья превалирующее значение имеет реакция гидрирования ароматически колец. С увеличением давления степень гидрирования ароматических углеводородов возрастает. Наличие большого количества гидрированных кольчатых структур, в свою очередь, влечет за собой увеличение степени их расщепления. Следовательно, повышение давления положительно влияет как на глубину гидрирования, так и на степень расщепления ароматических углеводородов. Кроме того, повышение давления благоприятно сказывается на стабильности катализатора, так как протекает более глубокое гидрирование дезактивирующих катализатор соединений [53]. [c.315]


    Описано расщепление ароматических углеводородов и эфиров через молекулярные соединения с оптически активными нитросоединениями, в частности с нитросоединением Х1У . [c.413]

    Крекинг-процесс в общем включает не только реакции расщепления, в которых под влиянием теплового воздействия образуются смеси низко-молекулярных углеводородов, но и реакции, приводящие к образованию смесей углеводородов, кипящих при более высокой температуре, чем исходный материал, и богатых ароматическими углеводородами. Таким образом, суммарный эффект крекинга измеряется не только образованием низкокипящих продуктов в результате расщепления исходного сырья, но также и количеством вновь образовавшихся продуктов, кипящих при температурах более высоких, чем исходное сырье и являющихся результатом реакций конденсации. [c.38]

    Процесс, при котором образуются более высоко кипящие продукты, чем исходное сырье, можно рассматривать как результат вторичных реакций при крекинге. В результате этих вторичных реакций по большей части и идет образование кокса. Образование кокса при крекинге в общем тем больше, чем тяжелее исходное сырье. Это связано с повышенным содержанием ароматических углеводородов в сырье и, следовательно, с его обеднением водородом, что ведет к образованию высококонденсированных, не растворимых в углеводородах веществ. Кокс не является чистым углеродом — оп содержит еще некоторое количество водорода и летучих соединений. С другой стороны, крекинг идет тем труднее, чем ниже пределы выкипания фракций. Поэтому, если очень широкая фракция подвергается крекингу в условиях, обеспечивающих расщепление ее наиболее низкомолекулярной части, то одновременно более высококинящая часть ее, расщепляясь, дает много кокса. Чтобы этого избежать, необходимо крекинг-сырье предварительно разделять на фракции, кипящие в относительно узких пределах, и каждую из фракций подвергать крекингу в наиболее подходящих для нее условиях (селективный крекинг). [c.38]

    Сырье (крекинг-сырье). Высокомолекулярные соединения расщепляются легче низкомолекулярных, причем парафины нормального строения отличаются наибольшей склонностью к расщеплению далее следуют изопарафины, олефины, нафтены и ароматические углеводороды. [c.16]

    При каталитическом риформинге углеводороды нефтяных фракций претерпевают значительные превращения, в результате которых образуются ароматические углеводороды. Это—дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилированных пятичленных нафтенов и дегидроциклизация парафиновых углеводородов одновременно протекают реакции расщепления и деалкилирования ароматических углеводородов, а также их уплотнения, которые приводят к отложению кокса на поверхности катализатора. Для предотвращения закоксовывания катализатора и гидрирования образующихся при крекинге непредельных углеводородов в реакторе поддерживается давление водорода 3—4 МПа при получении высокооктанового бензина и 2 МПа — при получении индивидуальных ароматических углеводородов. [c.41]


    Крек ИНГ алифатической боковой цепи. При термическом крекинге алкилированных ароматических углеводородов в отсутствии активных катализаторов происходит интенсивное расщепление боковых цепей, первичных и вторичных алкильных групп, в то время как третичные алкильные группы большей частью деалкилируются. Добрянский и сотрудники [8] нагревали этил-, изопропил-, и-бутил и третичный бутилбензол от 600 до 650° С и, основываясь на составе полученных продуктов, сформулировали следующие правила, применимые к общему случаю термического разложения алкилированных ароматических углеводородов, [c.106]

    Производные 1-го типа характеризуются большей склонностью к термическому разложению, чем производные 2-го типа, и обычно пиролиз их проходит с расщеплением простой связи между кольцами, что приводит к образованию родственного ароматического углеводорода и ненасыщенного нафтена. [c.111]

    Отличительная особенность крекинга замещенных ароматических углеводородов заключается в том, что первичное расщепление происходит в точке присоединения заместителя к кольцу  [c.129]

    Сырье крекинга — нефтяная фракция — представляет собой смесь углеводородов приблизительно одинакового молекулярного веса. Эти углеводороды относятся к различным гомологическим рядам в небольшом количестве содержатся парафины, конденсированные, многоядерные нафтеновые или ароматические углеводороды основную массу составляют алкилированные одно- и многоядерные нафтеновые и ароматические углеводороды, а также алкилированные нафтено-ароматические углеводороды. Длинные парафиновые цепи расщепляются сравнительно легко, значительно труднее идет разрыв олефиновых цепей по месту двойной связи. Описать точно расщепление сложных молекул весьма трудно, но представляется целесообразным для пополнения наших представлений сравнить реакции основных классов соединений, имеющихся в нефти. [c.299]

    Содержание ароматических соединений в бензине каталитического крекинга можно объяснить либо дегидрированием производных циклогексана, либо более просто отщеплением алкильных групп от молекул замещенных ароматических углеводородов, содержащихся в сырье. Малая дегидрирующая активность алюмо силикатов и тот факт, что толуол не обнаруживается в продуктах каталитического крекинга гептана при весьма жестких условиях, заставляют еще более сомневаться в возможности образования ароматических соединений при каталитическом крекинге в больших количествах благодаря дегидроциклизации. Представляется вполне вероятным, что ароматические соединения образуются из низших олефинов, которые всегда содержатся в реакционной массе при расщеплении цепей парафиновых углеводородов. Это подтверждается, например, идентификацией простых одноядерных ароматических углеводородов в продуктах, полученных из пропилена, и-бутенов, пентенов и гексенов. [c.333]

    Ароматические углеводороды. Скорость каталитического крекинга ароматических соединений значительно выше, чем скорость термического процесса. Крекинг ароматических углеводородов характеризуется полным отрывом от колец боковых цепей без расщепления самих колец. Например, этил-, изопропил-, н-бутил-и амилбензолы крекируются при 500° С с почти количественным выходом бензола [260]. Простые кольца вполне устойчивы к расще- [c.334]

    Мазуты содержащие 15,8—4,0% асфальтенов, 1,86— 2,04% серы и 0,27—0,84% азота и кислорода, гидрировали на плавающем и стационарном катализаторах. Показаны преимущества замены плавающих катализаторов стационарными, а также возникающие при этом трудности, связанные с отравлением катализатора Изучалось влияние условий процесса на скорости реакций гидрирования и расщепления. Достаточно глубокое гидрирование ароматизированного сырья происходит при давлениях 200 кгс/см и выше, скорость зависит от химического состава сырья и может изменяться в широких пределах. Гидрирование полициклических соединений протекает последовательно, наиболее медленной ступенью является гидрирование моноциклических ароматических углеводородов [c.50]

    Среди ароматических углеводородов, как видно из рис. 12 и 13, обращает на себя внимание явное преобладание структур с одним гидрированным кольцом. Объяснение этой закономерности нужно искать в отношении скоростей гидрирования и расщепления колец. [c.169]

    Как видно из данных, приведенных в табл. 34, в ряду анизол — т.рег/1-бутилфениловый эфир уменьшаются отношения количеств бензола и фенола, а также отношения суммы ароматических углеводородов к сумме фенолов. Следовательно, по мере усложнения алкильного остатка все больше доминирует разрывно связи 2. Это подтверждается также величинами энергий расщепления связей 2 и 2 в соответствующих простых эфирах фенолов (табл. 35). [c.186]

    Уже в первых работах с высокотемпературными сульфидными катализаторами было показано, что при деструктивной гидрогенизации ароматических углеводородов образуются не только цикло-гексаны, но и циклопентаны и парафины Протекание реакций изомеризации и расщепления было установлено в опытах гидрогенизации бензола и циклогексана Однако точный состав жидких продуктов не был установлен доказано присутствие только иетил- [c.225]


    Выходы продуктов изомеризации и расщепления при деструктивной гидрогенизации некоторых ароматических углеводородов и нафтенов приведены в табл. 58, 59. [c.240]

Таблица 58. Сравнение интенсивности реакций изомеризация и расщепления при деструктивной гидрогенизации ароматических углеводородов при 420 °С Таблица 58. <a href="/info/537665">Сравнение интенсивности</a> <a href="/info/20489">реакций изомеризация</a> и расщепления при <a href="/info/309764">деструктивной гидрогенизации ароматических</a> углеводородов при 420 °С
    Таким образом, процессы деметилирования представляют собой высокотемпературные процессы гидрокрекинга, в которых создаются максимально благоприятные условия для радикальных реакций расщепления и всеми мерами предотвращается гидрирование ароматических углеводородов., Разработано много модификаций как каталитических, так и некаталитических процессов деметилирования (см. гл. 1, а также обзоры ), различающихся сырьем и технологическими параметрами. Применение катализаторов позволяет снижать температуру процесса на 100—150 °С (500—550 против 650—700 °С), что в свою очередь снижает капитальные вложения вследствие применения более дешевых металлов для изготовления оборудования, но повышает стоимость эксплуатации из-за расходов на производство и регенерацию катализатора. В зависимости от конкретных экономических условий применяются и каталитические, и некаталитические процессы в настоящее время в ряде стран до 20—25% бензола и более 50% нафталина получают при помощи процессов гидродеалкилирования Все процессы протекают под давлением водорода. [c.327]

    Парафиновые углеводороды расщепляются с наибольшей скоростью по сравнению с углеводородами других групп. Нефтеновые углеводороды и.меют пониженную скорость расщепления. Ароматические углеводороды являются наиболее устойчивыми. Константа скорости реакции разложения этих [c.188]

    Для расщепления ароматических углеводородов, эфиров, аминов и других соединений электронодонорного характера можно использовать колоночную хроматографию, переводя их в комплексы с переносом заряда (КПЗ) с оптически активными нитросоединениями. Для этих целей используют (—) -а- [ (2,4,5,7-тетранитрофлуоренилиден-9) амино-окси] пропионовую кислоту (ТАРА) (88). [c.64]

    Различные процессы крекинга отличаются друг от друга видом п способом подвода тепла, температурой расщепления, временем контакта п доходным сырьем. Целью всех методов является по возможности дешевое получение необходимых для современной нефтехимии продуктов, в частности олефршов и ароматических углеводородов. [c.23]

    Расщепление углеводородов с образованием более легких молекул. Например, часть молекул углеводорода парафинового ряда бутана при высокой температуре расщепляется на пропилен и метан. От углеводорода, называемого нормальным бутилбензо-лом, отщепляется боковая цепочка атомов, как показано на фиг. За, и образуются ароматический углеводород бензол и олефин бутилен (на фиг. За, 36, Зв и Зг черными шариками обозначены атомы углерода, а белыми атомы водорода). При распаде молекул цетана JgH 34 получаются наряду с другшми углеводороды СдН а и СдН в. [c.16]

    Экспериментальное изучение каталитического 1 рекинга показало, что при обычных режимах и одинаковых условиях процесса наиболее устойчивыми являются незамещенные ароматические углеводороды. За ними следуют парафиновые углеводороды. Значительно легче крекируются нафтено-ароматические и высокораз-ветвлейные парафиновые углеводороды и еще быстрее — нафтено-гые, а также заыеп1енные арома Ические углеводороды. Олефины наименее стойки в условиях каталитического крекинга. Образующиеся при расщеплении парафинов нормального строения л й-новые углеводороды легко изомеризуются и дальше часть их превращается в результате реакций перераспределения водорода в изопарафины. Скорость крекинга парафиновых и нафтеновых углево дородов быстро растет с увеличением молекулярного веса соеди-ненив. [c.34]

    В работе [274] подробно исследованы механизм и кинетика деалкилирования толуола с водяным паром на алюмородиевом катализаторе. Авторы пришли к выводу, что толуол и вода адсорбируются на разных центрах углеводород, вероятно, адсорбируется на ЯЬ-центрах, а вода — на А12О3. Второй важный вывод заключается в том, что при выборе кинетической модели деалкилирования толуола с водяным паром необходимо учитывать роль продуктов реакции, в частности СО. Полагают, что образование СО сильнее тормозит реакцию расщепления ароматического ядра, чем процесс деалкилирования. Квантовохимическое рассмотрение механизма деметилирования толуола на нанесенных металлах УП1 группы проведено в работе [275]. [c.178]

    В зависимости от характера углеводорода и степеии чистоты его от ядов необходимая для гидрогенизации температура колеблется в пределах от значительно более низкой, чем комнатная, до 200°, а давление — от атмосферного до 100 ат. Для быстрой гидрогенизации беизола, алкилбензолов, нафталина и алкилнафталинов требуются температура 150— 200° и давление выше атмосферного, хотя при нрименении активных катализаторов процесс идет хорошо и в гораздо менее жестких условиях. При всех видах гидрогенизации необходимо держать температуру реакции возможно низкой, исходя из желаемой скорости реакции, чтобы избежать реакций расщепления п изомеризации. Циклоолефины и ароматические углеводороды гидрогенизуются в циклопарафиновые углеводороды, а последние при более высоких температурах расщепляются с образованием парафинов реакция сопровождается изомеризацией циклопарафинов, например циклогексана в метилциклопентан, и наоборот. Подобная же изомеризация идет и в случае циклогситана и циклооктана. [c.270]

    Ароматические углеводороды. При относительно низких температурах, которые характерны для термического крекинга, ведущегося с целью получения бензина, ароматические углеводороды почти не синтезируются. И если в продуктах такого крекинга и присутствуют простейшие ароматические соединения, то это можно объяснить скорее расщеплением смешанных ароматических молекул исходного сырья. К числу последних относятся простейшие алкилированные одноядерные компоненты, подвергающиеся деалкилированию или более сложные смешанные молекулы, которые содержат нафтеновые кольца и конденсированную аро-матику. Экспериментальным подтверждением этого положения могут служить ранние работы Брукса (Brooks [58]), который подвергал крекингу при 425° С облегченное сырье в составе бензиновых продуктов имелись простейшие ароматические углеводороды. При этом не было получено такого количества водорода, [c.301]

    В отличие от термического и каталитического крекинга при гидрокрекинге, осуществляемом при высоких давлениях, образуются только продукты распада, а реакции уплотнения подавляются воздействием водорода. Насыщаются водородом и содержащиеся в сырье коксообразующие компоненты асфальтены, смолы, полициклические ароматические углеводороды. При глубоком превращении сырья протекают реакции расщепления, изомеризации, алкилирования и др. Образующиеся при распаде парафинов олефины изомеризуются с последующим насыщением водородом до изопарафинов. Преимущественное образование легких изопарафинов благоприятно влияет на состав головных фракций бензинов гидрокре-кинга  [c.62]

    Нафтено-ароматические углеводороды могут вступать в реакции гидрирования и гидродециклизации. При гидрировании образуются нафтеновые углеводороды, превращения которых более подробно рассмотрены далее. Продуктом гидродециклизации являются ароматические углеводороды, способные вступать во все реакции, описанные выше. Представление об этих превращениях нафтено-ароматических углеводородов дает схема, показанная на стр. 297 (реакции 2, 3 и последующие). Помимо перечисленных возможны реакции изомеризации, крекинга, дегидрирования. Расщепление и дегидрирование нафтено-ароматических углеводородов удается свести к минимуму, ведя процесс при невысоких температурах и повышенном давлении водорода. Глубокая гидроге-низационная переработка дистиллятного сырья под давлением 5 МПа (50 кгс/см2) обеспечивает превращение нафтено-ароматических углеводородов на 85%, причем более половины продуктов превращения составляют алифатические и нафтеновые углеводороды [2]. [c.299]

    Соотношение между реакциями крекинга и изомеризации вы-сокоюипящих парафиновых углеводородов в значительной мере зависит от типа применяемого катализатора. Применяя катализатор с высокой изомеризующей способностью, можно, как показано выще, получать преимущественно продукты изомеризации при подчиненном образовании продуктов расщепления. Такой подход лежит в основе процесса пидроизомеризации различного парафинсодержащего сырья [3—12]. Кроме того, используя селективный катализатор, избирательно расщепляющий нормальные и мало-разветвленные парафиновые углеводороды, можно удалять такие компоненты сырья в виде легких фракций при практическом отсутствии реакции изомеризации. На этом основан процесс каталитической депарафинизации нефтяного сырья [13]. Наряду с реакциями изомеризации и крекинга возможно дегидрирование части парафинов с последующей циклизацией образующихся непредельных углеводородов (реакция дегидроциклизации). Часть полученных таким образом нафтеновых углеводородов может, в свою очередь, подвергаться дегидрированию с образованием ароматических углеводородов. Указанные продукты реакций дегидроциклизации и дегидрирования обнаружены в тяжелой фракции гидроизомеризата технического парафина [6]. [c.302]

    При более жестком режиме гидрирования, т. е. при повышении температуры или уменьшении скорости подачи сырья, получают масла с меньшим содержанием ароматических углеводородов и более высоким индексом вязкЛти. Одновременно возрастает степень расщепления сырья, что приводит к уменьшению выхода масла и снижению его вязкости. В последнее время в жестком режиме гидрирования производят высокоиндексный компонент всесезонного моторного масла с индексом вязкости 100— 105. На этой основе вырабатывают масло 5АЕ 2(Ш 50 для всесезонного применения в форсированных дизельных и карбюраторных двигателях. Условия гидрирования дистиллятного сырья и данные о качестве получаемых масел [29] приведены ниже  [c.308]

    Гидрирующий катализатор должен быть селективным, т. е. он должен ускорять гидрирование би- и полициклических ароматических углеводородов, но быть умеренно активным по отношению к ценным моноциклическим ароматическим углеводородам. В продуктах гидрокрекинга содержание парафиновых углеводородов изостроения выше, чем должно быть по термодинамическому равновесию Это является следствием того, что расщеплению сырья предшествует его глубокая изомеризация на катализаторах гидрокрекинга. Новые катализаторы гидрокрекинга позволили уменьшить удельные капиталовложения при сооружении установок в среднем на 20%. Внесено много технологических и инженерных усовершенствований применяются большие реакторы диаметром до 4,5 м, улучшены их конструкции, удешевлена аппаратура за счет применения биметаллов, упрощены отделения дистилляции и выделения Единичные мощности установок выросли до 12,7 тыс. м в сутки, т. е. —4,5 млн. т в год Было разработано несколько модификаций гидрокрекинга, из которых наиболее распространенными стали процессы изомакс , разработанный фирмами UOP и hevron, и юникрекинг , разработанный фирмами Union Oil п Esso. Суммарная мощность установок гидрокрекинга в настоящее время быстро растет. Если в 1960 г. она составляла только 159 в сутки, то к началу 1970 г. — более 180 тыс. в сутки Очень быстро развиваются и другие процессы гидрогенизации. [c.12]

    Приведены результаты гидроочистки различных нефтепродуктов легкий крекинг-бензин — содержание серы уменьшается с 0,065 до 0,0013%, бромное число с 56 до 5 г Вгг/ЮО г тяжелый газойль — соответственно с 0,26 до 0,002%, с 75 до 8,4 бензин соответственно с 0,51 до 0,008%, ароматизированный дистиллят с 0,08 до 0,003%, с 28 до 0,5. Расщепление практически не происходит, ароматические углеводороды не затрагиваются, обессеривание протекает несколько быстрее гидрирования олефинов, сохранить которые, однако, не удается При гидроочистке сырой нефти более активен катализатор I содержание серы снижается с 2,08 до 0,17%, тогда как в случае катализатора II — лишь до 0,32% Содержание серы в циркулирующем масле каталитического крекинга уменьшалось от 1,42 до 0,15%. При этом происходило заметное гидрирование ароматических колец (число ароматических атомов на молекулу при нейзменяющемся молекулярном весе 208—209 уменьшается с 11,5 до 8,8, неароматических — возрастает с 3,8 до 6,9), протекающее за счет бициклических ароматических углеводородов. Для полного насыщения ароматических углеводородов необходимо давление 200 кгс/см  [c.48]

    Было показано что скорость гидрирования ароматических углеводородов увеличивается с ростом числа колец (трициклические гидрируются быстрее бициклических, а бициклические — быстрее моноцнклических) и уменьшается с глубиной гидрирования. Наоборот, скорость расщепления возрастает с увеличением степени [c.169]

    При гидрировании полициклических углеводородов на промышленных катализаторах жидкофазного процесса расщ епление протекает настолько интенсивно, что в молекуле углеводорода, как правило, образуется не более одного гидрированного кольца. Типичной реакцией расщепления является разрыв гидрированного кольца в системе частично гидрированного ароматического углеводорода типа жАШ, где х = 1, 2, 3 и т. д. Простейшим углеводородом такого типэ является тетралин, на примере которого и уточнялся механизм реакции расщепления в условиях жидкофазного процесса. [c.181]

    При переработке нефтяных фракций протекают не только реакции собственно гидрирования, но и различные реакции изомеризации и расщепления. Большею частью они связаны между собой общностью механизма или общими промежуточными продуктами. Между тем в технологических целях важно обеспечить высокую селективность катализаторов в одних случаях они должны интенсивно гидрировать полициклические ароматические углеводороды и сохранять моноциклические (производство бензинов), в других — обеспечивать глубокую изомеризацию (производство низкозастывающих дизельных и реактивных топлив), в третьих — сохранять углеродаый скелет сырья без изомеризации и т. д. Очевидно, что для обеспечения селективности процесса нужно создавать катализаторы с различными сочетаниями гидрирующей, изомеризующей и расщепляющей активностей. Первым шагом на пути разработки таких катализаторов должно было явиться изучение химии превращений различных классов углеводородов в присутствии промышленных катализаторов. [c.225]

    Для гидрирования ароматических углеводородов необходимо поддерживать максимально возможное парциальное давление водорода и минимально возможную температуру при традиционной гидроочистке, протекающей при парциальном давлении водорода 3-3.5 МПа, выполнить эти условия сложно, так как возможности сдвига равновесия реакции гидрирования в сторону образования нафтеновых углеводородов повышением давления весьма ограничены. Авторами [104] сделана попытка воздействия на систему путем частичного расщепления нафтеновых углеводородов с помощью новых катализаторов, обладающих дополнительной гидрокрекирую- [c.43]


Смотреть страницы где упоминается термин Расщепление ароматических углеводородов: [c.286]    [c.46]    [c.519]    [c.17]    [c.88]    [c.127]    [c.330]    [c.54]    [c.112]    [c.452]    [c.42]   
Переработка нефти (1947) -- [ c.77 , c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Расщепление углеводородов



© 2025 chem21.info Реклама на сайте