Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор влияние активности на процесс

    Значительно многообразнее причины снижения активности твердых катализаторов. Под влиянием условий процесса твердые катализаторы претерпевают как физические, так и химические изменения. Физическим изменениям подвергаются макро- и микроструктуры катализатора. При длительном воздействии температуры, при которой катализатор работает, происходит рекристаллизация металлов, приводящая к уменьшению удельной поверхности катализатора или числа активных каталитических центров на единице его поверхности. Механические и термические воздействия на катализатор приводят к постепенному разрушению его частиц. В ряде случаев для повышения устойчивости катализатора к рекристаллизации в его состав вводят небольшие добавки веществ, не обладающих собственной каталитической активностью или имеющих относительно небольшую активность, но резко уменьшающих скорость рекристаллизации активного компонента катализатора. [c.136]


    В процессе Мет-х катализатор крекинга реактивируют с помощью ионообменных смол. При контакте с ионообменной смолой металлические примеси хорошо удаляются с катализатора. Влияние различных параметров очистки на активность катализатора и его коксообразующий фактор изучалось в работе [364]. Опыты проводили на алюмосиликатном катализаторе следующего химического состава (в вес. %) окись алюминия 14,2 натрий 0,31 железо 0,18 никель 0,011 ванадий 0,021. В качестве ионообменной смолы применяли пермутит, пропущенный через сито 30 меш. Из сухого загрязненного катализатора, смолы и воды приготовляли суспензию (0,5 г катализатора на 1 мл смолы) количество смягченной воды брали из расчета 0,55 г катализатора на 1 мл. воды. Ионообменную смолу обрабатывали 10%-ной серной кислотой (из расчета 544 кг на 1 м смолы) с последующей промывкой [c.225]

    Активность катализатора является независимым параметром и подобно температуре, давлению и времени контакта оказывает влияние главным образом на конверсию. Поэтому активность катализатора может быть использована для регулирования в некоторой степени остальных указанных параметров. В настоящее время могут быть получены катализаторы с индексами активности от 50 до 70, причем они могут изготовляться и промышленным путем. Однако на практике применяются промышленные катализаторы с индексами активности от 22 до 32. Применение более активных катализаторов должно способствовать проведению крекинга в более мягких условиях. Но в то же время более активные катализаторы алюмосиликатного типа в жестких условиях промышленного каталитического крекинга малостабильны. Их активность быстро снижается до нормальной, а в некоторых случаях даже нин е нормальной, что зависит от состава и метода приготовления таких катализаторов. Для очень активных катализаторов характерны высокие отложения кокса при рабочих температурах. Контроль за образованием кокса и его удаление представляют собой важные проблемы при конструировании промышленных крекинг-установок, так как частая регенерация катализатора намного удорожает процесс. [c.154]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]


    Проведены опыты гидрогенизации двух типов углей в пилотной установке. Исследовано влияние параметров процесса и найдены условия получения котельного топлива. Найдено, что при времени контакта 0,45 ч активность катализаторов изменяется в рядах Зп [c.21]

    Более сложен механизм гетерогенного катализа. В этом случае существенную роль играет поглощение поверхностью катализатора реагирующих частиц. Процесс также протекает в несколько стадий. Начальными стадиями являются диффузия частиц исходных реагентов к катализатору и поглощение частиц его поверхностью (активированная адсорбция). Последний процесс вызывает сближение молекул и повышение их химической активности, прн этом под влиянием силового поля поверхностных атомов катализатора изменяется структура электронных оболочек молекул н, как следствие, понижается активационный барьер. В результате на катализаторе происходит реакция. Затем продукты взаимодействия покидают катализатор и, наконец, в результате диффузии переходят в объем. Таким образом, в гетерогенном катализе образуются промежуточные поверхностные соединения. [c.225]

    На скорость полимеризации, выход и свойства полиэтилена оказывают влияние активность катализатора, температура и давление процесса. [c.9]

    Приведем несколько примеров. Так, при окислении метанола в формальдегид в комбинированном реакторе значительное влияние на технологический режим в трубчатой части аппарата оказывают неоднородности температуры хладоагента и активности катализатора . Это справедливо для всех трубчатых реакторов при осуществлении в них сильно экзотермических процессов. В адиабатической части аппарата температура на выходе из слоя катализатора и избирательность процесса зависят главным образом от неоднородностей начальной степени превращения метанола перед слоем и активности катализатора (особенно от соотношения констант полезной и побочной реакций). Очень чувствительны к неравномерному распределению температуры и концентраций контактные аппараты с адиабатическими слоями неподвижного катализатора и промежуточным отводом тепла, предназначенные для окисления двуокиси серы в производстве серной кислоты. Значительное влияние на достижение высоких конечных степеней превращения оказывают неоднородности в последних слоях этих реакторов. Сказанное выше справедливо и для других процессов, когда необходимо приблизиться к равновесию или достигнуть высокой степени превращения. [c.504]

    В процессе крекинга наряду с газообразными углеводородами, бензином и другими целевыми продуктами образуется кокс, который накапливается на поверхности катализатора. Вследствие экранизации активных центров алюмосиликата коксовыми отложениями активность катализатора быстро снижается. Эта дезактивация является обратимой, так как после окислительной регенерации первоначальная активность катализатора полностью восстанавливается. Влиянию продолжительности цикла крекинга (или длительности работы катализатора) на показатели процесса посвящены исследования [87, 119—120]. Под терминами продолжительность цикла крекинга , длительность работы катализатора или продолжительность использования катализатора понимается время от начала до окончания контакта катализатора в реакторе с парами сырья и реагирующей смеси. В системах с движущимся слоем это время совпадает с продолжительностью пребывания частицы катализатора в реакционной зоне. В этом случае длительность работы катализатора зависит от объема реакционной зоны и количества циркулирующего катализатора. В реакторах со стационарным слоем катализатора длительность его работы совпадает с продолжительностью цикла крекинга. [c.95]

    Для катализаторов, у которых длительности обеих стадий близки, в первую очередь необходимо решать проблему быстрого удаления кокса с целью скорейшего возвращения регенерированного катализатора в основной процесс. Выжиг кокса можно интенсифицировать, повышая содержание кислорода в газе и температуру регенерации, а также путем введения в состав катализатора промоторов окисления, которые не оказывают заметного влияния на его активность и селективность. [c.3]

    Стабильность катализатора риформинга зависит от применяемого в процессе" давления. В промышленных условиях, по мере снижения активности катализатора, повышают температуру процесса с тем, чтобы октановое число получаемого риформата оставалось постоян-ным. Подобный подход был принят в работе [274] для количественной оценки влияния параметров процесса на стабильность катализатора. Средняя скорость подъема температуры (в °С/сут) служила критерием скорости дезактивации катализатора. Очевидно, чем больше эта величина, тем больше и скорость дезактивации катализатора. В качестве стандартного катализатора был принят полиметаллический катализатор КР-108 (массовое содержание платины 0,36%). Сырьем служила бензиновая фракция 85—180 °С с массовым содержанием ароматических углеводородов 14,8% и нафтенов 24%. Риформинг проводили под давлением 1,5 МПа и при молярном отношении водород углеводород = 5, продолжительность каждого испытания 10 сут. [c.146]


    Влияние температуры и активности катализатора на скорость процесса, проходящего в кинетической области, определяют уравнением Аррениуса [c.81]

    На процесс синерезиса влияют, в первую очередь, температура и характер среды. Все этапы мокрой термической обработки катализатора определяют пористую структуру его, а, следовательно, и такие характеристики как активность, избирательность и механическую прочность. При прочих равных условиях повышение температуры от 40 до 65° С при синерезисе приводит к увеличению удельного объема пор и снижению насыпного веса катализатора. В литературе приведены данные по влиянию температуры синерезиса на различные характеристики катализатора. Влияние температуры синерезиса на активность, удельную поверхность и плотность катализатора приведены на рис. 121—123. Из рис. 121—123 можно заметить, что падение активности катализатора с ростом температуры симбатно уменьшению удельной поверхности его. Падение удельной поверхности с температурой, цо-видимому, вызвано появлением пор большего размера. Уменьшение активности с температурой синерезиса менее интенсивно, чем уменьшение удельной поверхности. Эта объясняется тем, что удельная активность широкопористых катализаторов выше тонкопористых, так как в последних сказывается внутридиффузионное торможение. Пористая структура оказывает влияние и на стабильность катализатора. Замечено, что широкопористые [c.235]

    Кинетика реакции разложения метана на никелевом катализаторе. Каталитическое разложение метана на элементы является очень интересным объектом исследования кинетики гетерогеннокаталитических реакций. Своеобразие этой реакции состоит в том, что один из ее продуктов (углерод) накапливается на активной поверхности катализатора, влияя на его активность. Скорость реакции и отложения углерода связаны стехиометрическим соотношением, что облегчает изучение механизма отравления катализаторов отложившимся углеродом. Исследования кинетики разложения метана на никелевом, кобальтовом и железном катализаторах показали, что отложение углерода снижает их активность лишь на первом этапе науглероживания [53]. На втором этапе этого процесса отсутствует какое-либо влияние отложений углерода на активность катализаторов. В связи с этим было принято, что на активной (металлической) поверхности катализатора имеются активные каталитические центры, блокирующиеся и не блокирующиеся отложившимся углеродом АКЦ-1 и АКЦ-2. В этом случае число свободных (действующих) АКЦ-2 остается постоянным, а количество таких АКЦ-1 уменьшается в результате блокирования их углеродом по следующему закону  [c.107]

    Давление оказывает следующее влияние на процесс. Выше 150—200 ат реакции уплотнения молекул и коксообразования, сопровождающиеся блокированием активной поверхности катализаторов углистыми отложениями, термодинамически подавляются и практически почти полностью устраняются при давлениях выше 300 ат они обычно прекращаются. Поэтому окислительной регенерации катализаторов не требуется, а необходима лишь их замена через 2—3 года из-за рекристаллизации. При высоком давлении все реакции, харак терные для гидрокрекинга, протекают стабильно с неизменной интенсивностью, присущей применяемым катализаторам в течение длительного времени. Особенно сильно интенсифицируется при высоких давлениях гидрирование ароматических углеводородов вследствие устранения химико-термодинамических ограничений и облегчения подвода водорода к активной поверхности катализатора. [c.52]

    В работе [105] подробно рассмотрена гидроизомеризация парафинов С22—С32, получаемых при депарафинизации рафинатов селективной очистки масляных фракций. Было установлено, что процесс сопровождается реакциями крекинга и дегидроциклизации, приводящей к образованию нафтеновых и ароматических углеводородов. Существенное влияние на скорость основных реакций оказывает гидрирующая и расщепляющая активность катализаторов. Наиболее селективно процесс протекает над алюмоплатиновым катализатором под давлением 50 ат при температуре 430—440° С и удельной [c.287]

    Влияние активности катализатора на результаты процесса крекинга изучено достаточно подробно. Так падение активности приводит к уменьшению выхода бензина и газа и к увеличению выхода дизельной фракции (195—350° С). [c.32]

    При гидрогенизации эфира жирной кислоты наблюдается отчетливая тенденция к преимущественному гидрированию одной из двойных связей этому способствует применение селективных никелевых катализаторов. Если активный катализатор применяется в виде суспензии в реакторе с перемешиванием, то селективной гидрогенизации благоприятствуют очень низкие концентрации водорода на поверхности катализатора, т.е. низкие давления водорода, малые скорости перемешивания и высокая температура /24/. И наоборот, неселективный процесс легче протекает при низкой температуре, высоком давлении и хорошем перемешивании. Влияние параметров процессов на ход реакции ясно видно на следующих примерах. [c.210]

    С целью изучения влияния активности катализатора А на выходы бензина и кокса был проведен активный эксперимент на пилотной установке. В процессе эксперимента изменяли значения Л, 7 и V при постоянных = 8 и качестве сырья. На постоянном уровне (18 кг/ч) поддерживали также производительность установки. Каждый опыт проводили в течение одних суток. При этом из рассмотрения исключали первые 6 ч работы установки после перехода на новый режим. [c.109]

    В реальных каталитических процессах эти условия чаще всего нарушаются процессами переноса (диффузии) вещества и теплоты, а также изменением размера и химического состава поверхности. Исследование вопроса о влиянии диффузии и теплопередачи на наблюдаемые количественные характеристики гетерогеннокаталитической реакции являются предметом ряда специальных монографий [7, 14, 15] здесь мы рассмотрим лишь диффузионные ограничения (или ограничения со стороны массообмена), особенно резко искажающие кинетику каталитических процессов и часто существенно влияющие на такие характеристики катализаторов, как активность и избирательность действия. [c.84]

    Действие катализатора в гетерогенных процессах связано с адсорбцией реагирующих веществ на его поверхности. В этих случаях адсорбция носит ясно выраженный специфический характер, т. е. в большой степени зависит от природы катализатора и реагирующего вещества. Под влиянием силового поля катализатора электронные оболочки адсорбированных молекул деформируются, а сами молекулы становятся более активными и реакционноспособными. Для того чтобы реакция началась, потребуется меньшая энергия активации, чем для той же реакции, но без катализатора. [c.88]

    Влияние параметров процесса на активность, селективность и стабильность работы катализатора [c.142]

    Углерод не является каталитическим ядом [139]. Однако, отлагаясь внутри частиц катализатора, он разрушает последний и увеличивает его объем. Содержание углерода на поверхности катализатора не выше 50% не снижает активность катализатора (К. А. Королева и Д. И. Орочко). Углерод даже оказывает некоторое благоприятное влияние на процесс, обеспечивая равномерное распределение катализатора по реакционному объему и [c.566]

    Опыт показывает, что скорость электродных процессов с участием органических соединений можно изменить на катализаторе одной и той же химической природы за счет изменения структуры электрода-катализатора. Влияние структурных факторов наиболее ярко проявляется при сравнении кинетических параметров процесса на различных гранях монокристалла. Значительные различия в форме волн и величин токов (до одного порядка) электроокисления НСООН и СН3ОН в ходе линейных разверток потенциала установлены для граней (100), (110) и (111) монокристалла платины. Изменение активности связывают с разной адсорбцией на разных гранях частиц типа НСО, ингибирующих реакцию электроокисления по основному маршруту. [c.295]

    Желаемую пористую структуру можно достичь также регулированием как рн, так и продолжительности процесса старения гидрогеля, т. е. регулированием факторов, определяющих прочность скелета гелей [102—104]. Для проверки влияния продолжительности процесса старения и pH среды на прочность и активность полученного на его основе катализатора был приготовлен алюмосиликагель [c.147]

    По данным большого числа исследователей основная роль в реакциях гидрообессеривания в алюмокобальтмолибденовом катализаторе принадлежит активному комплексу М082, промотированному активным кобальтом. В каком виде входет кобальт в активный комплекс и какова его роль в активировании и каталитическом процессе пока однозначно не выяснено. Утверждается [69], что кобальт оказывает существенное влияние на способ взаимодействия соединений молибдена с поверхностными гидроксилами оксида алюминия. В присутствии кобальта происходит реакция ОН-групп с молибденсодержащими соединениями, приводящая к появлению молибдена в специфических центрах иа поверхности оксида алюминия. [c.96]

    Для того, чтобы установить, какую роль играет диффузия в. каждом отдельном случае, необходим только прямой эксперимент. Кайзер и Хельшер показали, что многие промышенные катализаторы настолько активны, что очень часто диффузия является стадией, определяющей суммарную скорость процесса. Они считают, что если величина ОрО , влияние диффузии будет весьма значительно. Так, например, они показали, что скорость диффузии определяет скорость гидрирования пропилена над палладированной окисью алюминия . Хельшер продолжил исследования в этой области. Саттерфилд, Резник и Вентворт обнаружили, что скорость диффузии определяет скорость процесса разложения перекиси водорода в пустой трубке (на стенки кото.рой был нанесен слой катализатора) вплоть до значений 0/(1=10 000, где внутренний диаметр трубки в случае заполнения трубки слоем из сферических твердых частиц влияние диффузии преобладает до 0 0/(1=200. [c.222]

    Видно, что селективность особенно падает, когда фактическая степень конверсии приближается к равновесной, т. е. когда r i близка по величине к Г[. Разбавление иаром, увеличивая равновесную степень конверсии, сгюсобствует росту селективности, но влияние температуры является двояким. С одной стороны, при ее повышении тоже растет равновесная степень конверсии, но, с другой, становятся более существенны некоторые побочные реакции, н том числе закоксовывание катализатора, снижающее его активность. В результате имеется некоторый оптимум температуры дегидрирования для этилбензола 580—600°С, для более реакцион-носпособного изопропилбеизола 530—550°С. Кроме того, нри каждых степени разбавления водяным паром и температуре имеется оптимум фактической степени конверсии, определяемый экономическими соображениями. Надлежащий выбор катализатора и условий процесса позволяет получить селективность a907o- [c.480]

    Установлено [104], что определяющее влияние на процесс регенерации оказывает содержание ионов Сг в исходных образцах. В каталитическом выгорании углерода наиболее активное участие принимают как раз эти ионы хрома, способные легко менять валентность между Сг и Сг и катализировать окисление углерода по стадийному механизму. С увеличением количества Сг повыщается доля ионов хрома, принимающих участие в каталитическом выгорании углерода что и ускоряет процесс регенерации. Каталитическое окисление углерода происходит при попеременном окислении-восстановлении катализатора за счет образования и восстановления высщих оксидов хрома, вероятней всего СЮ3. Добавление к Сг Оз щелочных металлов приводит к образованию хроматов этих металлов и увеличению содержания ионов Сг в образцах, что ведет к ускорению выгорания углерода. Промотирование СГ2О3 щелочными металлами увеличивает количество ионов хрома, способных легко менять валентность, и облегчает возможность восстановления катализатора при зауглероживании и окисления его при регенерации. Индукционный период регенерации при промотировании СгзОз сокращается. Возрастание концентрации щелочного металла ведет к увеличению содержания ионов Сг в катализаторе [109]. [c.47]

    Снижение активности и селективности катализаторов риформинга вызвано главным образом побочными реакциями, приводящими г к образованию на их поверхности бедных водородом углеродсодер-,, жащих отложений, которые- обычно называют кйксом. Одновременно, закоксовывание катализаторов приводит к значительному сокращению продолжительности реакционного периода. Влияние отложений кокса на свойства катализаторов, применяемых в процессах превращения углеводородов, химическая природа таких отложений, механизм образования кокса и ряд других, относящихся сюда вопросов, явились предметом многих исследований [92—941. Ниже будут рассмотрены некоторые данные и зависимости, характеризующие процесс отложения кокса на бифункциональном алюмоплатиновом катализаторе в условиях риформинга. Чтобы сохранить необходимую последовательность изложения, мы обсудим в следующей главе вопрос о влиянии металлических промоторов на процесс коксообразования. [c.50]

    Таким образом, он указывает на роль катализатора как активного участника процесса, вопреки взглядам В. Оствальда и других идеалистически настроенных ученых, утверждавших, что катализатор является смазкой , зрителем и не принимает участия в реакции. Н. Д. Зелинский развивает концепцию о катализе как результате деформации молекул реагентов под влиянием поверхности катализатора. В полном согласии с идеями Д. И. Менделеева он пишет ...отсюда видно, что в более сложных случаях каталитических реакций, имеющих место среди углеродистых соединений, изменение формы молекул непосредственно связано с изменением под влиянием катализатора в характере движения частиц и атомов, их составляющих . Он сопоставляет движение материи катализатора с движением атомов в молекулах реагентов и не сводит катализ только к предварительной адсорбции, но считает, что катализ неразрывно связан с адсорбцией, благодаря чему молекулы находятся в ином химическом состоянии. [c.125]

    Катализаторы принимают активное участие в химических процессах, образуя промежуточные соединения или оказывая влияние на разрушение связи между атомами в молекуле. Эти процессы приводят к снижению энергии активации системы, тем самым ускоряют химический процесс. Если предположить, что для реакций в газовой фазе при одинаковых внешних условиях значения пред-экспоненциальных множителей каталитического и некаталитического процессов близки, то скорость каталитической реакции по отношению к скорости Уиск некаталитической реакции будет больше [c.30]

    Более сложен механизм гетерогенного катализа. Однако бесспорно, что в этом случае существ12нную роль играет поглощение поверхностью катализатора реагирующих частиц. Процесс также протекает в несколько стадий, но здесь их больше и они иные за счет диффузии частицы исходных реагентов подводятся к катализатору и его поверхность поглощает их (активированная адсорбция). Этот процесс сопровождается сближением молекул и повышением — под влиянием силового поля поверхностных атомов катализатора — их химической активности изменяется структура электронных оболочек молекул и, как следствие, понижается активационный барьер. В результате на катализа- [c.135]

    Авторы [124] рассмотрели влияние АС на процессы двухступенчатого гидрокрекинга тяжелых нефтяных дистиллятов. На первой ступенн, на которой подготавливалось и очищалось сырье для второй ступени, использован алюмо-кобальт-молибденовый катализатор процесс протекал при 425 С, объемной скорости подачн сырья 1 ч , давлениях водорода 50, 150 и 250 ат. Гидрогенизат после первой ступени представлял собой исходное сырье для второй ступени, на которой использовали бифункциональный (цеолитпый) катализатор на носителе. Характеристика исходного сырья представлена в табл. 115. Трн исходных образца содер-я али 0,06 0,01% и менее азота это позволило выявить его влияние на процессы крекинга па второй ступени. Из полученных экспериментальных данных следует, что АС значительно влияют па расщепляющую активность и стабильность работы катализатора (рис. 58). Увеличение содержания АС уменьшает выход бензина. Авторы [124] попытались нейтрализовать вредное влияние АС на процессы гидрокрекинга (рис. 59). При повышении давления от 5 до 15 МПа выход бензина увеличивается до 6о% при некотором, однако, уменьшении октанового числа. Отмеченная возможность изменения показателей процесса за счет изменения условий гидрокрекинга может дать значительный эффект лишь на относительно короткий период и не задерживает уменьшения активности катализатора при продолжительных процессах. При переработке о,1рья с 0,06% N активность катализатора заметно снижается даже при 15 МПа. [c.172]

    На основании сказанного, при проектировании подобных реакторов необходимо разумно выбирать фактор KyF)l V pg p) и руководствоваться также рассмотренным ранее влиянием диаметра труб реактора. Поэтому при слишком большой поверхности часть холодного питания байпасируется (Я < 1) и вводится непосредственно в слой катализатора. Поскольку поверхность теплообмена загрязняется или поверхность катализатора становится в процессе реакции менее активной, то Я постепенно увеличивают для поддержания степени превраш,ения на постоянном уровне. [c.364]

    Азот или аммиак, образующиеся из азотистых соединений, воздеххствуют на активные центры платины в катализаторе, снижая таким образом изо-меризующую и гидрокрекирующую активность и почти не оказывая влияния на дегидрирующую активность. Сера полностью подавляет дегидрирующую активность таких катализаторов. Мышьяк, содержащийся в некоторых видах сырья, необратимо отравляет платиновые катализаторы. Установлено, что кобальтмолибденовые катализаторы позволяют проводить процесс гидроочистки сырья с высокой полнотой удаления указанных отравляющих примесей. Труднее всего удаляется азот необходимость его удаления и определяет требуемую жесткость условий гидроочистки [5 ]. При этих условиях обычно достигается вполне достаточная полнота обессеривания фактически максимальная активность катализатора устанавливается лишь после перевода его в сульфидную форму. Удаление таких микропримесей, как мышьяк, свинец, медь и кремний, очевидно, основывается на адсорбционных явлениях. При обычно применяемых условиях гидроочистки легко осуществляется и сравнительно полное удаление кислорода. [c.189]

    Подобно цеолитам, содержащим катионы непереходных элементов, соединения щелочных, щелочноземельных и редкоземельных металлов, г.е. катализаторы киспотноюсновного типа, также проявляют активность не только в реакциях гидрирования—дегидрирования, но и в реакциях с участием кислорода в окислении и окислительном дегидрировании углеводородов. В этой связи следует отметить, что в случае катализаторов, содержащих соединения переходных металлов, их ки-слотноюсновные свойства также оказывают существенное влияние на поведение катализаторов в окислительных реакциях [357]. Такой взгляд на роль кислотно-основных свойств катализаторов в этих процессах последовательно развивался в работах Ли [358-364]. Было показано, что активность и селективность катализатора в окислительных реакциях зависят от соотношения кислотно-основных свойств исходных веществ, продуктов реакции и поверхности катализатора. Эти вопросы подробно обсуждаются в обзоре [365]. [c.126]

    Вышеназванные катализаторы илн активаторы хлорирования не все одинаковы по своему значению и влиянию на процесс. При их выборе и применении нужно принимать во внимание их свойства в отношении реакционной смеси так, самым удобным для применения был бы такой катализатор, который растворяется в хлорируемом веществе или образует с ним однородную смесь, — этим вероятно и обусловливается большая активность иода. Далее, нужно считаться с индизидуальными качествами каждого отдельного ка- [c.100]


Смотреть страницы где упоминается термин Катализатор влияние активности на процесс: [c.92]    [c.180]    [c.56]    [c.199]    [c.27]    [c.523]    [c.92]    [c.250]    [c.523]   
Химия технология и расчет процессов синтеза моторных топлив (1955) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатора активность

Катализаторы активные



© 2025 chem21.info Реклама на сайте