Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зародыш кристаллический определение

    При соприкосновении гидратирующихся минералов с водой на их поверхности происходит разрушение кристаллической решетки и образование промежуточных аквакомплексов. Эти комплексы способны определенное время существовать самостоятельно, образуя пересыщенный по отношению к кристаллическим продуктам гидратации раствор. В этом растворе возникают зародыши новой кристаллической фазы, которая после достижения предельного пересыщения кристаллизуется из раствора. [c.102]


    С точки зрения возможности появления твердой макрофазы важно не только количество образующейся дисперсной фазы, но и особенно размеры образующихся частиц. При кристаллизации размеры кристаллов определяются прежде всего скоростью образования центров кристаллизации. Статистическая вероятность возникновения центров кристаллизации, представляющих собой достаточно крупные группировки молекул, вблизи температуры насыщения очень мала. Кристаллические зародыши начинают появляться лишь по достижению в результате переохлаждения определенного пересыщения раствора. Связь между скоростью образования центров кристаллизации и переохлаждением системы выражается зависимостью /31/ [c.50]

    Признанная многими мультиплетная теория Баландина (стр. 139)> вводит в представления об активных центрах фактор геометрического и энергетического соответствия между поверхностью и реагентами. Активные центры являются кристаллическими зародышами, скоплениями атомов, ориентированных на твердой поверхности и обладающих избытком свободной энергии. Они воспроизводят узлы кристаллической решетки металла, что облегчает протекание гетерогенных реакций. А. А. Баландин пишет ...каталитически активные центры—это атомная группа с определенной конфигурацией и с определенными энергетическими свойствами. Этот активный центр способен деформироваться под влиянием соседних атомов, природы их, числа и расположения, т. е. своего окружения. Деформированный центр имеет измененную связь с решеткой катализатора, меняется его энергия сублимации и способность притягивать и деформировать посторонние молекулы [21]. [c.111]

    Образование кристаллических зародышей, особенно на чужеродной поверхности катода, всегда сопряжено с затратами некоторой работы, необходимой для преодоления указанных выше кристаллизационных затруднений. Ее величина зависит от пересыщения, т. е. связана с определенным отклонением системы от равно- [c.336]

    Современные теории образования зародышей основаны на взглядах Д. Гиббса, развитых в дальнейшем М. Фольмером. В СССР этот вопрос плодотворно разрабатывался Я- И. Френкелем. Теория Гиббса сводится к следующему. Образование кристаллических зародышей происходит при переходе системы из метастабильного состояния в устойчивое. Примерами метастабильного состояния являются состояния пересыщенного пара, пересыщенного раствора, переохлажденной или перегретой жидкости. В метастабильном состоянии данная фаза может существовать неопределенно долгое время без всяких изменений, пока в этой фазе не появится зародыш другой фазы, например капелька жидкости в пересыщенном паре, центр кристаллизации в переохлажденной жидкости или пересыщенном растворе. Такое состояние может быть названо относительно устойчивым. Переход метастабильной фазы в стабильную всегда сопровождается уменьшением свободной энергии, всегда является самопроизвольным за исключением стадии образования зародышей. Возникновение зародышей связано с затратой свободной энергии на создание новой поверхности раздела фаз стабильной и метастабильной. Так как процесс перехода метастабильной фазы в стабильную на стадии образования зародыша сопровождается увеличением свободной энергии, то он не может происходить самопроизвольно до тех пор, пока зародыш не достигнет определенной величины. После этого переход совершается сам собой. Таким образом, для того чтобы вывести метастабильную фазу из относительно устойчивого состояния, необходимо затратить некоторую работу. Гиббс нашел способы для вычисления такой работы. [c.231]


    В разных условиях скорость роста определенной грани кристалла может быть различной. Поэтому одно и то же вещество, имеющее определенную кристаллическую решетку, может образовывать кристаллы разных габитусов. В вязких средах, при недостаточном перемешивании, наиболее доступны для диффундирующих из раствора зародышей и их блоков вершины и ребра кристалла, что обеспечивает их преимущественный рост. Вследствие этого кристаллы приобретают иглообразную или дендритную (древовидную) формы [210]. [c.246]

    При понижении температуры плотность жидкостей растет, молекулы сближаются и возрастает энергия межмолекулярного взаимо- действия при вполне определенном значении температуры (температура кристаллизации или плавления) вещество переходит в твердое состояние, которое характеризуется упорядоченным расположением частиц в пространстве — кристаллическим строением. Для зарождения кристаллов необходимы некоторые условия переохлаждение жидкости ниже температуры плавления (доли градусов), появление субмикроскопических центров кристаллизации — зародышей выше критических размеров, которые, постепенно увеличиваясь, превращают жидкость в кристаллическую массу (центрами кристаллизации могут явиться и твердые частицы примесей). Кристаллизация протекает с выделением энергии, но менее значительным, чем при конденсации. Процессом кристаллизации можно управлять, и этим. пользуются в технологии, получая мелкокристаллические или крупнокристаллические структуры, а также выращивая монокристаллы. При очень большом переохлаждении жидкости с большой вязкостью (кремнезем, силикаты и алюмосиликаты) могут перейти в стекловидное состояние, в котором сохраняется неупорядоченная структура. Этим, например, пользуются при изготовлении стекол или ситаллов (частично закристаллизованное стекло)  [c.94]

    Кристаллизация является одним из явлений в обширном классе процессов фазовых превращений, играющих очень важную роль в металлургической технологии. Общая теория таких процессов впервые была разработана В. Гиббсом, и затем М. Фольмером. В нашей стране ее плодотворно развивали Я. И. Френкель, Л. Д. Ландау, В. И. Данилов. Согласно этой теории в обычных условиях зародыши новой фазы (например, капли жидкости в пересыщенном паре, пузырьки пара в перегретой жидкости, кристаллики в растворе и т.д.) становятся из-за большой удельной поверхности устойчивыми только после достижения ими определенного критического размера. Пока такой зародыш ие достиг критического размера, его рост сопровождается увеличением энергии Гиббса. Процесс роста зародыша все же возможен благодаря флуктуациям (см. гл. ХП1, 12). Увеличение энергии Гиббса при возникновении и росте зародыша обусловлено тем, что затрачивается энергия на создание поверхности раздела между новой и старой фазами. Пусть молярная энергия Гиббса жидкости а твердой фазы 02. Объем кристаллического зародыша обозначим V, а его поверхность а. Поверхностное натяжение на границе твердой и жидкой фаз равно о. [c.499]

    Рассмотрим кинетику особенно важных для техники процессов закалки и отпуска стали. Их скорости определяются процессами образования и роста зародышей. При помощи определенных режимов закалки и отпуска получают сталь с различными свойствами в соответствии с условиями ее эксплуатации. В основе такой обработки лежит свойство железа н стали изменять свое кристаллическое состояние при изменении температуры. [c.516]

    Определение работы образования кристаллического зародыша проводится на основании анализа, подобного анализу процесса конденсации из паровой фазы. Форма образующегося кристалла принимается сферической. Работа образования устойчивого зародыша А складывается из работы, необходимой для образования поверхности раздела фаз, оР, и работы образования массы зародыша АР И, где Р и И — поверхность и объем кристалла, АР — дав- [c.136]

    Текущий размер определенной группы зародышей зависит не только от времени т, прошедшего от начала кристаллизации, но также от момента возникновения данной группы и изменения пересыщения в интервале времени % — т. Кристаллический продукт в любой момент времени оказывается в общем случае полидис-персным. [c.143]

    Перейдем к определению количества частиц в аппарате. В объеме раствора, не содержащего кристаллических частиц, скорость образования зародышей определяется зависимостью /(ю). В каждой порции жидкости число возникших зародышей увеличивается равномерно во времени, поскольку в непрерывном процессе при полном перемешивании вещества пересыщение в аппарате постоянно как по объему, так и во времени. [c.150]

    Иначе обстоит дело с блокированием граней алмаза выделяю-Ш.ИМСЯ графитом, образующим на них трехмерные зародыши одинаково растущие как в толщину, так и в направлении граней. Образующиеся трехмерные зародыши графита, в отличие от двухмерных зародышей алмаза, не способны замостить грань одноатомным слоем графита, поэтому блокирование каждой грани происходит под совокупным действием кристаллических зародышей графита, последовательно образующихся и растущих на ней бок 6 бок. Вследствие этого время, по истечении которого процесс блокирования практически прекращает или в определенной степени замедляет эпитаксиальный рост алмаза, не зависит от размера кристалла и не укорачивается с его увеличением. Отсюда понятно, почему в наших опытах с большими кристаллами (3—4 мм) можно было получать большую линейную скорость роста, чем для порошков. [c.99]


    При высоких степенях пересыщения размер критического зародыша весьма мал и из-за своей малости не соответствует определенной кристаллической фазе в результате фаза выделяется структурно неупорядоченной (аморфной). Для кремнезема энергетическое различие между аморфным и кристаллическим состоянием мало, а перестройка силоксановых связей в системе требует высокой энергии активации. Поэтому золи и гели кремнезема устойчивы и не кристаллизуются. [c.105]

    При коррозионном растрескивании материалов анионы адсорбируются преимущественно на подвижных дислокациях или других несовершенствах структуры, выходящих на подвергающуюся агрессивному воздействию поверхность. Т. к. адсорбция протекает с конечной скоростью, дефекты кристаллической решетки на поверхности, которые могли бы служить зародышем стресс-коррозионной трещины, должны существовать в течение определенного времени. Примеси в [c.65]

    О механизме образования зародышей пока нет единой точки зрения. По-видимому, наиболее вероятным следует считать предположение о возможности образования зародышей за счет срастания определенных кристаллических образований — блоков того или иного размера (одно- и двухмерных зародышей по терминологии И. Странского). Действительно, при столкновении и сращивании хотя бы двух, но достаточно крупных блоков, может образоваться кристаллическая частица, равная или даже превосходящая по своим размерам величину равновесного зародыша. Встреча и срастание таких блоков является результатом их броуновского движения, взаимного притяжения и ориентации. [c.361]

    Рассматривая возникновение устойчивых кристаллических зародышей как флуктуационное явление, М. Фольмер получил следующее выражение для определения скорости их образования  [c.361]

    Отложение металла на катоде можно рассматривать как процесс кристаллизации. Когда ион разряжается, он становится на определенное место в кристаллической решетке, представляющей упорядоченную структуру, присущую твердому сплаву. Зародышей кристаллизации одновременно образуется много, и от всех таких центров идет рост кристаллов, пока не произойдет их встреча. [c.77]

    Кристаллизация начинается из определенных центров, а рост кристаллов происходит путем отложения материала на первично образовавшихся субмикрокристалликах, называемых зарод ыша-м и. Поэтому различают две связанных одна с другой стадии этого процесса возникновение зародышей кристаллической фазы и их последующий рост. [c.349]

    Присутствие жидких малоциклических ароматических углеводородов из-за наличия в их молекулах коротких боковых цепей не влияет на структуру и размер кристаллов парафиновых углеводородов. Повышенное их содержание приводит к увеличению размеров этих кристаллов вследствие уменьшения концентрации последних в растворе, что связано с облегчением условий роста кристаллов. Полициклические ароматические углеводороды в концентрации >25% (масс.) на смесь способствуют уменьшению размеров кристаллов парафинов, что объясняется повышением вязкости раствора, из которого проводится кристаллизация. Процесс кристаллизации твердых углеводородов из полярных и неполярных растворителей протекает в форме монокристаллических образований образуется структура, состоящая из кристаллов определенной формы, причем каждый монокристалл развивается из одного и того же центра. При такой форме кристаллизации отдельные кристаллы могут быть как разобщены между собой, так и образовывать в растворе пространственную кристаллическую решетку. С помощью электронного микроскопа при увеличении в 13 000 раз удалось проследить практически все стадии роста кристаллов от момента возникновения зародышей (центров кристаллизации) до полностью оформленного кристалла [25, 26]. Такое постадийное изучение процесса роста кристаллов проведено на примере пента-контана ( пл = 93°С) при кристаллизации в углеводородной среде (рис. 39, а—г). [c.131]

    При понижении температуры ниже температуры плавления, как следует из уравнения (VIII, 257), вероятность W образования зародыша увеличивается, а скорость О доставки веш,ества к зародышу уменьшается (рис. 98), Таким образом, при некотором определенном переохлаждении жидкости скорость образования зародышей становится максимальной. Опыты подтверждают эти теоретические соображения. Например, для органической жидкости пиретрип максимальная скорость образования кристаллических зародышей наблюдается при температуре на 90 ниже температуры плавления (т. пл. 129°). [c.379]

    В качестве примера кристаллизационных структур дисперсных систем, возникающих как новые фазы в результате переохлаждения и пересыщения расплавов, можно назвать металлы и сплавы. В твердом состоянии все металлы и сплавы имеют кристаллическое строение. Переход из жидкого расплава в твердое состояние при охлаждении начинается с возникновения зародышей атомы металла ориентируются определенным образом в пространстве, образуя кристаллическую решетку зародыша. В сплавах компоненты могут сокристаллизоваться, а химические соединения между ними образуют свою кристаллическую решетку. В качестве центров кристаллизации могут выступать не только возникающие зародыши из самого металла, но и мельчайшие шлаковые и неметаллические включения. Рост числа и размеров кристалликов приводит к их срастанию и образованию поликристаллической структуры. Так как процесс кристаллизации развивается одвовременно из многих [c.386]

    При охлаждании насыщенных растворов в отсутствии твердой фазы кристаллические зародыши начинают выделяться только при достижении определенного насыщения. Разность между температурой насыщения раствора и температурой, при которой начинают выделяться первые кристаллы, называется максима л ьньп/ переохлаждением или, в переводе на концентрацию, максимальным пересыщением. [c.6]

    Формирование частиц мыльного загустителя проходит через следующие стадии образование центров кристаллизации (зародышей), рост и развитие этих центров. Первичный центр кристаллизации мылнной частицы представляет собой определенную комбинацию молекул мыла (ассоциат), дальнейший рост которого и образование частицы оптимальных размеров осуществляются в результате диффузии молекул мыла из пе1ресыщенного раствора к поверхности кристаллического зародыша. Таким образом, формирование структуры мыльных смазок связано с образованием ми-.целл, последующего построения из них волокон (надмицеллярных структур) и формирования структурного каркаса смазки, придающего ей пластичность и другие характерные свойства. [c.364]

    Надмолекулярная организация, или морфология полимеров, рассматривается с целью сопоставления и определения элементов их неоднородности. Наиболее существенная неоднородность связана с тенденцией многих полимеров к (частичной) кристаллизации. Более или менее хорошо определенные кристаллические ламеллы найдены в виде монокристаллов, нагроможденных и (или) выращенных, как показано выше, друг на друге в виде осевых или связанных в пучки слоевых структур, таких, как скрученные агрегаты в сферолитах, а также в виде сэндвич-структур в высокоориентированных волокнах [1—3]. Радиальносимметричный рост скрученных ламелл (рис. 2.4) из нескольких зародышей, который приводит к сферолитной структуре, показан на рис. 2.5. Это свойственно для образцов, выращенных преимущественно из расплава. [c.29]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    В этих работах в качестве подложки использовались монокристаллы, например, платины, на которые осаждали серебро, свинец или ртуть. На электрод накладывался двойной импульс потенциала. Высота первого импульса длительностью подбиралась такой, чтобы на поверхности электрода могли возникать трехмерные кристаллические зародыши. В ходе второго импульса, называемого импульсом проявления , эти кристаллики выращивались до таких размеров, чтобы их можно было обнаружить под микроскопом. Таким образом, потенциал второго импульса был достаточным для роста образовавшихся, но не для возникновения новых зародышей. Для проверки теории, выбрав определенную длительность Tj первого импульса, постепенно увеличивали его высоту, пока, наконец, не достигали такого перенапряжения tij, при котором образовывался лишь один зародыш. Затем увеличивали длительность импульса до и снова определяли перенапряжение TI2, при котором такх<е образовывался один зародыш, и т. д. Так как в ходе первого импульса возникал каждый раз лишь один зародыш, что требовало затраты одного и того же количества электричества <7 = /iTj = /2Т2. .. = onst, то [c.332]

    Р. Каишев, Е. Будевский и сотрудники показали, что уравнения (УИ1.101) и (УП1.Ю2) выполняются только при особых условиях проведения электрокристаллизации (монокристаллические бездислока-ционные грани, электролиз с использованием импульсов тока или потенциала определенной длительности и формы). На реальных элект-)одах стадия образования зародышей не является лимитирующей. 3 зависимости от условий скорость электроосаждения определяется диффузией ионов к поверхности электрода, стадией разряда ионов, поверхностной диффузией разрядившегося иона (такой ион называют адионом или адатомом) или стадией встраивания адиона в кристаллическую решетку. Особую роль в процессах электрокристаллизации играет наличие винтовых дислокаций, ступеней атомной высоты и макроступеней. Часто при электрокристаллизации используют не простые, а комплексные элактролиты. В таких условиях могут оказаться медленными химические стадии диссоциации комплексных ионов, предшествующие процессу осаждения металла. [c.208]

    Рассмотрим процесс кристаллизации расплава индивидуального вещества, пренебрегая содержащимися в нем примесями. При охлаждении расплава до температуры плавления соответствующего ему твердого вещества в нем возникают флуктуации плотности, которые представляют собой относительно большие скопления частиц (молекул, атомои или ионов) вещества с ориентированным расположением, приближенно подобно тому, как это имеет место в кристаллической решетке. Такие скопления можно рассматривать как некие комплексы, агрегаты или ассоциаты их иногда называют дозародышевыми образованиями. Но они еще не являются стабильными образованиями число частиц в них вследствие теплового движения в расплаве различно и не постоянно. Сталкиваясь друг с другом, такие конфигурации групп частиц могут укрупняться или распадаться в зависимости от соотношения действующих в них межмолекуляр-ных сил и воздействия на эти частицы молекул расплава. При дальнейшем понижении температуры расплава, т. е. при его переохлаждении, преобладающее влияние будет проявлять первый из указанных эффектов. Размеры образований при этом в целом будут увеличиваться до некоторой критической величины. В результате в расплаве начинается образование зародышей кристаллов ( критических кластеров ), которые и становятся центрами кристаллизации. Скорость их образования определяется заданным переохлаждением расплава. По достижении определенного переохлаждения расплава после образования в нем зародышей кристаллов на последних начинается выделение твердой фазы, характеризующееся той или иной скоростью роста образующихся кристаллов. Одновременно может [c.106]

    Следует отметить, что даже для тщательно обеспыленных полимерных систем наиболее типично гетерогенное зарождение кристаллизации. В расплаве или растворе полимера в определенном интервале температур всегда присутствуют агрегаты макромолекул, характеризующиеся достаточно большими временами жизни. Они и выполняют роль гетерогенных зародышей. Кристаллизация на гетерогенных зародышах начинается уже при небольших переохлаждениях системы и характеризуется относительно короткими периодами индукции. Скорость гетерогенного зародышеобразова-ния в значительной степени зависит от температурной предыстории системы. Если кристаллический полимер с определенной надмолекулярной структурой многократно расплавлять и расплав нагревать до одной и той же температуры, не слишком превышающей Тпл, то при последующем его охлаждении и кристаллизации исходная морфологическая картина каждый раз в точности повторяется. Эта память расплава объясняется тем, что кристаллизация каждый раз начинается на одних и тех же зародышах, которые в условиях опыта не разрушаются и вследствие высокой вязкости расплава за время опыта даже не успевают существенно переместиться в пространстве. Однако если тот же расплав сильно перегреть, то гетерогенные зародыши разрушаются и последующая кристаллизация уже характеризуется гомогенным зарождением. Она начинается при относительно больших переохлаждениях системы и характеризуется большими индукционными периодами по сравнению с таковыми при кристаллизации на гетерогенных зародышах. Гомогенный зародыш, по всей вероятности, представляет собой одну макромолекулу, принявшую в результате флуктуации кристаллоподобную складчатую конформацию. [c.188]

    Наряду с существованием некристаллизующи. ся кластеров предполагают существование так называемых кристаллических. Если поли.чср имеет молекулярное строение, обеспечивающее при определенных условиях трехмерную упорядоченную структуру в кластере, то такие кластеры способны кристаллизоваться н и.меть кристаллическую структуру Если размер кристаллических образований меньше так называемых критических размеров зародышей кристаллизации, то кристаллизация на этих кластерах развиваться не будет и пoли 5ep в целом останется аморфным. При достаточных размерах кристаллического кластера неронтно образование тех или иных кристаллических форм надмолекулярных структур. [c.54]

    Стадия 1. При достижении определенной величины переохлаждения, в объеме жидкого метадла самопроизвольно появились кристаллические зародыши размером выше критического, число которых с течением времени стремительно увеличивается. [c.24]

    Процесс кристаллизации характеризуется двумя видимыми периодами 1) образованием мельчайших кристаллйческих зародьпней - центров кристаллизации - метастабильное состояние системы, или период индукции 2) ростом образовавшихся зародышей - период массовой кристаллизации. Величина и форма кристаллов в обоих периодах зависят от скорости протекания процессов. Чем больше образуется в начальном пе жоде кристаллических зародышей, тем больше получится конечных кристаллов и тем меньше будут их размеры, так как определенное количество кристаллической массы распределится на большее число кристаллов. Поэтому для получения крупных кристаллов необходимо создать в начальном периоде кристаллизации такие условия, при которых число образующихся в растворе кристаллических зародьпней не будут чрезмерно большим. [c.123]

    Двумерным аналогом фибриллярной схемы Стэттона должна быть система небольших кристалликов, из которых выходит множество проходных цепей, равномерно распределенных по направлениям в определенной плоскости. Без специальных ухищрений реализовать такую систему, например, простой перпендикулярной переориентацией невозможно. Но ухищрения могут быть того же типа, что обсужденные в связи с рис. XVI. 8. В этом случае переориентация становится возможной, хотя лучше провести двумерный холодный вариант ориентационной кристаллизации, при всестороннем двумерном растяжении, он может быть осуществлен, например, раздувом остывающего расплава, который уже перешел в высокоэластическое состояние с кристаллическими зародышами, играющими роль узлов вулканизации . Вероятно, возможны пути и горячей биаксиальной ориентационной кристаллизации, но они требуют иного технологического обрамления. [c.395]

    Гомогенное зародышеобразование. Для возникновения зародыша необходима затрата энергии на создание новой поверхности раздела двух фаз — расплава и твердой фазы. При гомогенном зародышеобразовании эта энергия изыскивается самой системой за счет поглощения теплоты из окружающей среды благодаря флуктуациям плотности. Если бы не было этих флуктуаций, переохлажденный расплав при отсутствии внешних воздействий существовал бы неопределенно долгое время без каких-либо признаков кристаллизации. В результате флуктуаций в отдельных точках расплава происходит сближение атомов и образование группировок с кристаллоподобной структурой, приближающейся к расположению атомов в кристаллическом веществе (предзародышевых групп в терминологии, предложенной А. И. Августиником). Вследствие теплового движения частиц предзародышевые группы могут вновь распасться или вырасти до определенных размеров, становясь зародышами кристаллов. Это определяется характером изменения свободной энергии системы. [c.349]

    Последней стадией катодной реакции при электроосаждении любого металла является адсорбция его атомов на поверхности катода с последующим внедрением их в кристаллическую решетку гальваноосадков. Эту стадию принято называть электрокристаллизацией. Ее следует расчленять на два этапа 1) образование на определенных местах катодной поверхности кристаллических зародышей или центров кристаллизации 2) их рост до кристаллитов, размеры которых в гальваноосадках в основном определяются условиями катодной реакции. [c.35]

    Допустим, что вследствие флюктуации адсорбированных атомов осаждаемого металла на грани AB D (рис. 7) любого кристалла на катоде кратковременно образовались два кристаллических зародыша маленький и значительно больше Ki- Для сохранения этих зародышей и их дальнейшего спонтанного роста необходима определенная энергия, которая может [c.35]

    Упругое тело, имеющее зародышевую трещину, деформируется при измельчении до определенных пределов, за которыми начинаются рост трешдны и разрушение. При наличии трещины или дефекта кристаллической структуры, который можно рассматривать как зародыш трещины, внутренняя энергия тела рассматривается как сумма энергии упругой деформации всего тела (за исключением участка, находящегося вблизи трещины), энергии упругой деформации, связанной с трещиной и обязанной своим существованием этой трещине, и поверхностной энергии самой трещины. [c.807]


Смотреть страницы где упоминается термин Зародыш кристаллический определение: [c.40]    [c.40]    [c.46]    [c.317]    [c.317]    [c.247]    [c.264]    [c.126]    [c.317]    [c.283]    [c.224]   
Кинетика образования новой фазы (1986) -- [ c.84 , c.85 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Зародыш

Зародыши определение



© 2025 chem21.info Реклама на сайте