Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высшие олефины пиролиз

    Страны, не располагающие собственными источниками нефти и газа, имеют в настоящее время возможность получать этилен, являющийся основой нефтехимической промышленности, из легкотранспортируемых продуктов, например из определенных фракций нефти. Эта задача решается в первую очередь пиролизом нефтяных фракций в присутствии водяного пара при 600 — 700°. Водяной пар служит одновременно разбавляющей средой и теплоносителем и уменьшает коксообразование. Процесс во многом подобен паро-фазпому крекинг-процессу. При этих процессах до 30% всего вводимого сырья превращается в газообразные продукты, в большинстве с высоким содержаниел олефинов, которые в недавнем прошлом считались нежелательными. Целевым продуктом являлся бензин. Процесс пиролиза, имеющий целью получение олефинов, о котором здесь идет речь, должен проводиться таким образом, чтобы обеспечить максимальный выход олефинсодержащих газов и минимальный — жидких продуктов, кипящих в интервале температуры кипения бензина. Выход последних может быть различным в зависимости от состава сырья и условий пиролиза. [c.54]


    Термическое разложение алканов (чаще низкомолекулярных) при высоких температурах (от 600 до 1000 °С). Обычно используется для получения прежде всего олефинов. Пиролиз процесс также сложный (ограничимся только общей схемой), но практически важ1гый, поскольку это крупнотоннажньш вариант получеш1я олефшюв. На АО "Уфаоргсинтез" проводят пиро шз легких алканов в трубчатых печах при температуре около 800 С. [c.45]

    Физико-химическая характеристика реакции получения ацетилена из метана. При нагревании метана и других углеводородов до очень высоких температур (пиролиз) образуется газовая смесь, в которой содержатся водород, этилен и другие олефины, ацетилен и высшие ацетиленовые углеводороды, ароматические углеводороды и непрореагировавший метан. Получается также сажа. Многочисленность продуктов указывает, что этот дроцесс сложный. Он включает, очевидно, ряд реакций, протекающих как параллельно, так и последовательно. Выделим из них реакцию образования ацетилена  [c.250]

    Эти олефины содержатся в большом количестве в крекинг-газах находятся они там в качестве побочного продукта. Первоначально эти газы были относительно богаче этиленом. С совершенствованием крекинг-нро-цесса содержание этилена в продуктах крекинга уменьшается и вследствие этого затраты на его извлечение постоянно возрастают. Это вынуждает к поиску иных источников получения этилена и других газообразных олефинов. Таким является прежде всего пиролиз природного газа, содержащего пропан, который нри этом расщепляется на этилен и метан. Затем следует приобретающий первостепенное значение процесс пиролиза этана. При нагреве до высокой температуры этан расщепляется на этилен и водород (термическое дегидрирование). [c.35]

    Жидкие продукты пиролиза содержат часто до 60% и больше ароматических углеводородов, выделение которых очень сложно. Можно, однако, при определенных условиях ведения процесса пиролиза повысить долю ароматических углеводородов в продуктах пиролиза до 95%, что, копечно, связано с определенным уменьшением выхода олефинов. Из таких высоко-ароматизированных фракций чистые ароматические углеводороды могут быть выделены сравнительно легко. [c.55]

    Термическое разложение алканов (чаще низкомолекулярных) при высоких температурах (от 600 до 1000 °С). Обычно используется для получения прежде всего олефинов. Пиролиз - процесс также сложный (ограничимся только общей схемой), но практически важный, поскольку это крупнотоннажный вариант получения олефинов. [c.48]


    Производство низших олефинов пиролизом различного углеводородного сырья характеризуется одновременным получением большой гаммы ценных непредельных углеводородов, диеновых, ароматических, производных ацетилена. Эти углеводороды содержатся в соответствующих фракциях в количествах, достаточных для их экономически обоснованного выделения в чистом виде с целью получения товарной продукции для органического синтеза. К таким углеводородам относятся ацетилен, аллен, метилацетилен, цикло- и дициклопентадиен, бензол, нафталин и др. Кроме того, низкая стоимость, высокая концентрация целевых продуктов, малое содержание сероорганических и практически отсутствие других гетероорганических соединений создают хорошие технологические и экономические предпосылки для переработки побочных продуктов пиролиза. Себестоимость вырабатываемых из пиролизного сырья продуктов (например, дициклопентадиена, бензола) на 15—25% ниже себестоимости. аналогичных продуктов, полученных традиционными процессами [c.27]

    В общем все процессы, позволяющие из низкомолекулярного или иа высокомолекулярного исходного сырья получать газообразные олефины,. основаны на процессах пиролиза, т. е. на процессах, при которых газ или нефтяная фракция короткое время нагревается до высокой температуры, предпочтительно в присутствии водяного пара. [c.46]

    Простейшие олефины так же действуют, как диенофилы, по требуют сравнительно более высоких температур. Например этилен и бутадиен при 200° дают циклогексен с выходом 18% [31]. С другими диенами были получены лучшие выходы, например с 2,3-диметилбутадиеном (50%) и циклопентадиеном (74%) [31]. При более высокой температуре такие реакции обратимы и пиролиз циклогексена является одним иа хороших лабораторных методов получения бутадиена. Винилацетат, хлористый винил, другие хлорзамещенные этилены и различные аллильные производные такн е вступают в реакцию конденсации с реакционноспособными диенами при 100—200°, однако известно, что все эти реакции должны проводиться при сравнительно высоких давлениях [27]. Стирол и другие фенилзамещенные этилены, по-видимому, в некоторых случаях вступают в реакцию, и, как будет показано ниже, молекулы диенов могут конденсироваться одна с другой, например, при димеризации бутадиена в ви-нилциклогексен [35]. Эта специфическая реакция весьма услон няет работу с бутадиеном. Конденсации такого рода в качестве побочной реакции возможны при любой из реакций Дильса-Альдера  [c.177]

    Ароматические углеводороды, полученные по методу Эделеану, часто дополнительно рафинируются серной кислотой и содой с целью удаления из них ненасыщенных соединений (олефинов и диолефи-иов). Таким образом получаются ароматические соединения высокой чистоты [83]. Из ароматических углеводородов, полученных путем каталитического крекинга (пиролиза) нефти, выделяются бензол, толуол и ксилолы 75, 92]. [c.402]

    Ранее провддились исследования. по использованию не1 от ор111х катализатрров, содержащих оксиды металлов пережженной валентности, для интенсификации процессов пиролиза углеводородного, сырья е получением низкомолекулярных олефинов. Прказана высокая эффективность применения указанных катализаторов для каталитического пиролиза различных нефтяных фракций в среде водяного пара [1.50, 1.51]. При каталитическом пиролизе тяжелых нефтяных фракций (вакуумных газойлей, мазутов), кроме получения низкомолекулярных олефинов, исследовалась возможность получения легких дистиллятных продуктов — компонентов моторных топлив или нефтехимического сырья (ароматических углеводородов) [1.52, 1.53]. [c.18]

    Не было недостатка в попытках искусственно состарить кероген. Однако искусственное старение (созревание) керогена и осуществление главной фазы нефтеобразования в лабораторных условиях по своим результатам заметно отличны от процессов, проходящих в земной коре. Дело в том, что деструкция керогеновой матрицы и образование углеводородов требуют (в условиях лаборатории) значительно более высоких температур, поэтому при искусственном пиролизе керогена приходится прибегать к нагреву до 400° С и выше, в то время как процессы нефтеобразования в земной коре происходят при 130—150° С, но длятся, вероятно, многие миллионы лет. Отсюда ясно, что состав продуктов пиролиза керогена отличен от состава углеводородов нефти хотя бы потому, что в продуктах пиролиза обычно в значительных количествах присутствуют олефины, в частности алкены-1, чего никогда не наблюдается в нефтях . В общем состав высокотемпературного пиролиза керогена несколько напоминает состав продуктов пиролиза некоторых сланцев. В то же время при длительном низкотемпературном нагреве керогена углеводороды образуются постепенно. Здесь успевают происходить процессы перераспределения водорода (об этом подробнее см. дальше), характерные для превращений органических соединений, адсорбированных на алюмосиликатах (глинах), и, как результат, образуются насыщенные и ароматические углеводороды, т. е. образуются углеводородные смеси, по составу более близкие к нефтяным. [c.186]


    Предложен нефтехимический вариант процесса нефтепереработки [14], обеспечивающий максимальные выходы основных продуктов нефтехимического сырья олефинов (47,4—52,2%) и ароматических углеводородов (9,8—10,9%), сырья для производства сажи и игольчатого кокса (смесь пиролизной смолы и тяжелого дистиллята каталитического крекинг-мазута). Строго говоря, этот вариант нельзя отнести к процессам переработки тяжелых нефтяных остатков, это скорее процесс безостаточной комплексной переработки нефти, как бы в обход процессов, ведущих к созданию тяжелых остатков. В основе его лежит несколько модифицированных технологических процессов, широко применяемых в современной нефтеперерабатывающей промышленности. Конечный (хвостовой) продукт процесса прямой перегонки пефти (мазут) становится сырьем для второго процесса — процесса каталитического крекинга. Продукты прямой атмосферной перегонки, выкипающие до 343° С, подвергаются пиролизу для получения олефинов. Прямогонный (60%-ный) мазут подвергается каталитическому крекингу на цеолитном катализаторе с резко выраженной крекирующей (и слабее — дегидрирующей) активностью. Обычно в качестве сырья для каталитического крекинга берут дистиллятные фракции нефти, чтобы избежать интенсивного закоксовывания катализатора, обусловленного наличием в сырье смолисто-асфальтеновых веществ нефти. Здесь не боятся интенсивно протекающего процесса коксования, так как выжиг кокса служит источником энергии для компенсации затрат энергии на осуществление процесса крекинга, а также для производства технологического пара. Кроме того, интенсивно протекающий процесс коксования в сильной степени освобождает сырье от асфальтенов и конституционно связанных с ним атомов металлов (V и N1). Процесс крекинга мазута осуществляется в системе флюид. Он характеризуется высокими выходами пропилена и бутиленов, а также легких и средних дистиллятных фракций, которые после гидроочистки и освобождения от содержащихся в них ароматических углеводородов поступают на пиролиз. Тяжелые дистилляты могут быть использованы как ко- [c.251]

    Из-за опасности пиролиза вряд ли целесообразно проводить хлорирование при температурах выше 600° при этом вследствие более легкого дегидрохлорироваиия 2-хлорпропана должно было бы наступать обогащение продуктов реакции 1-хлорпропаном. Такое обогащение одним продуктом за счет другого происходит особенно легко, когда при хлорировании образуются третичные хлориды. В этих случаях всегда следует считаться с возможностью пиролиза. При высоких температурах он может наступить даже в стеклянной аппаратуре, причем в результате указанного обоганхения содержание более стабильных продуктов превышает величину, получающуюся при отсутствии селективного хлорирования. Степень пиролиза можно легко установить, определяя выделившийся при хлорировании хлористый водород и сравнивая его количество с количеством прореагировавшего хлора. Если выход хлористого водорода иэ прореагировавшего хлора превышает теоретический, это происходит вследствие пиролиза. При этом в отходящих газах должны присутствовать олефины, а в продуктах реакции, если работают по рециркуляционному методу, содержится больше дихлоридов, чем это должно быть при таком же отношении углеводорода к хлору и прн нормально протекающем хлорировании. [c.546]

    Выбор ЭТИХ нефтей для пиролиза обусловлен тем, что содержание большого количества в них парафинов благоприятно сказывается на получении высоких выходов олефинов, а также перспективными возможностями вовлечения аналогичных сырых нефтей в сферу производства олефинов пиролизом [50 55]. [c.124]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]

    Распад на элементы — не единственная реакция пиролиза метана. Сокращением длительности нагревания и регулированием скорости oxJ[aждeния продуктов реакции из метана можно получить также газообразные и жидкие углеводороды. При 850— 1200 С, пропуская метан с большой скоростью через нагретые фарфоровые и кварцевые трубки, получают конденсат, содеря<а-щий непредельные углеводороды, бензол, толуол, нафталин и тяжелую смолу, содержащую высшие ароматические углеводороды. В газообразных продуктах обнаруживают этилен, ацетилен и бутадиен. Некоторые катализаторы (SiOj, W, Mo, Sn) ускоряют эпу реакцию, другие (железо, графит) — замедляют. Максимальный выход олефинов наблюдается при температурах до 1000 °С, ароматических углеводородов — при 1000—1200 С, а ацетилена — при 1500 С. Образование всех этих продуктов объясняют возникновением нри высоких температурах кратковременно су1цествующих свободных радикалов, например метиленового радикала Hg  [c.411]

    Сравнительные данные по пиролизу различного газообразного сырья показывают, что выход ароматических углеводородов наиболее высок при пиролизе олефинов это подтверждает их роль в образовании ароматических углеводородов. Аналогичное явление можно наблюдать и при пиролизе бензинов, содержащих непредельные углеводороды. [c.110]

    В промышленных условиях высокий выход олефинов достигается в результате пиролиза бензиновых фракций прямой перегонки нефти, а также газовых бензинов при разбавлении сырья водяным паром в количестве 50—70% от веса сырья. При пиролизе газооб- )а. ных фракций разбавление водяным паром влияет значительно меньше. Так, при пиролизе пропана выход этилена увеличивается при степени разбавления ло 20% от веса сырья, а затем почти не изменяется (рис. 5). Еще менее эффективно разбавление водяным паром этановой фракции. Выход этилена возрастает при добавке водяного пара в количестве не более 10—15% от сырья. Таким образом, значительное разбавление сырья паром целесообразно лишь при пиролизе бензиновых фракций. [c.21]

    Наиболее существенным фактором в проведении процесса пиролиза с высокой эффективностью является быстрый подвод к углеводородному сырью значительных количеств энергии, необходимой для осуществления реакций пиролиза, протекающих с высоким эндотермическим эффектом. Необходимость быстрого подвода тепловой или иной энергии к сырью диктуется характерными кинетическими закономерностями реакций пиролиза, требующими сочетания высоких температур с малыми временами контакта и давлениями для обеспечения максимально возможных выходов олефинов. Поэтому сравнительная эффективность реакционных устройств, характер проведения процесса и конструктивное оформление их во многом зависят от принятого способа подвода энергии. [c.24]

    Как показали кинетические исследования, энергия активации (следовательно и температурный коэффициент скорости реакции) в реакциях крекинга значительно больше, чем в реакциях уплотнения. Применительно к последовательным реакциям пиролиза это означает, что с повышением температуры должно расти отношение скоростей образования олефинов в первичных реакциях крекинга и образования жидких ароматизированных продуктов по вторичным реакциям уплотнения. Отсюда следует вывод о том, что пиролиз углеводородного сырья с максимальным выходом целевого олефина следует проводить при технически возможных высоких температурах и оптимальном времени контакта. Необходимо однако иметь в виду, что при чрезмерно высоких температурах пиролиза увеличивается выход таких нежелательных продуктов глубокого дегидрирования сырья, как ацетилен и пироуглерод. [c.607]

    Помимо газообразных продуктов при пиролизе получают жидкие продукты, выход которых сильно зависит от качества сырья. Например, выход жидких продуктов при пиролизе керосино-газой-левой фракции равен 40—50%. Таким образом, около половины сырья превращается в жидкие продукты, для которых характерна высокая концентрация ароматических углеводородов. В легких фракциях присутствуют преимущественно бензол и толуол, в меньших концентрациях — углеводороды Сз, что объясняется большей термической стабильностью бензола. Кроме того, в жидких продуктах находятся олефины, циклоолефины, диены. [c.65]

    Существует правило, согласно которому при температуре, наиболее благоприятствующей образованию олефинов пиролизом газообразных углеводородов, увеличение продолжительности пребывания веществ в зоне нагрева, а также увеличение температуры при сохранении оптимального времени реакции приводит к ароматизации. В лабораторных условиях оптимальными условиями ароматизации являются температура 800—1000° и время реакции — несколько секунд. Срок (в секундах), в течение которого газ держат при высокой температуре, рассчитывают на основании реакционного объема и количества газа, прошедшего через печь. Если через печь емкостью в 100 л пропускать газ со скоростью 50 л сек, то время реакции будет составлять 2 сек. Но в действительности срок этот значительно короче, потому что газ при нагревании сильно расширяется (нагрев газа до 300 при первоначальной температуре 25 приводит примерно к двукратному увеличению объема) и, кроме того, объем увеличивается в результате образования продуктов пиролиза. [c.100]

    В Японии в 1967 г. запатентован способ непосредственного получения олефинов пиролизом газообразных (кроме метана) и жидких углеводородов в смеси с водородом при температуре 600— 1000 С [14], а в Великобритании в 1971 г. предложен усовершенствованный двухстадийный способ получения этилена [15], заключающийся в том, что пиролизу подвергается смесь углеводородов при условиях, обеспечиваюпщх высокий выход этана. Этан подвергается на второй стадии пиролизу до этилена. [c.191]

    Результаты, представленные в таблице, показывают, что качественный состав газообразных продуктов пиролиза всех рассмотренных нефтяных фракций одинаков. Наибольшее содержание олефинов С -С в газах пиролиза, газообразование, а, следовательно, и выход олефинов достигнут при пиролизе прямогонного бензина. (Составы газов пиролиза керосина и дизельного топлива отличаются ненамного, что связано с тем, что данные фракции достаточно близки по пределам выкипания и групповому углеводородному составу. Для пиролиза вакуумного газойля характерно следующее содержание этилена и пропилена в газе ниже, а содержание бутенов - выше, чем при пиролизе других фракций. Поэтому суммарное содержание сшефинов С -С в газах меньше, чем при пиролизе других фракций, ненамного. Однако для пиролиза вакуу много газойля характерно более низкое газообра ювание по сравненизо с пиролизом других фракций. Это, возможно, связано с большим коксоотложением на поверхности катализатора и снижением его активности. Тем не менее, достаточно высокие выходы низкомолекулярных олефинов, как это видно из таблицы, свидетельствуют о возможности привлечения в процесс пиролиза тяжелого сырья - вакуумного газойля, при использовании цеолитсодержащих катализаторов. [c.166]

    С пятидесятых годов как в СССР, так и за рубежом разрабатываются различные технологические системы пиролиза, для которых повышенное коксообразование не препятствует непрерывной переработке тяжелых нефтепродуктов и сырых нефтей с высоким выходом олефинов и других продуктов пиролиза. Наиболее перспективными из вновь разрабатываемых процессов являются контактные процессы пиролиза с применением различных теплоносителей (водяного пара, движущихся твердых порошкообразных или гранулированных материалов и других), которые подробно рассмотрены в последующих главах. [c.24]

    Характерно, что чем выше температура пиролиза бутана, тем больше отодвигается место его распада по С —С —связи к краю молекулы. На это указывает непрерывное возрастание содержания метана в газообразных продуктах реакции вплоть до 900 °С. Аналогичные реакции распада характерны для термолиза более высо — комолекулярных алканов. Для них при умеренных температурах (400 — 500 °С) наблюдается симметричный разрыв молекулы с обра — зованием олефина и парафина приблизительно одинаковой молекулярной массы. При более высоких температурах в продуктах их термолиза обнаруживаются низшие алканы и высокомолекулярные алкены и арены, вероятно, как результат вторичных реакций. [c.32]

    Несмотря на высокий выход непредельных углеводородов при пиролизе бензино-лигроиновой фракции, вследствие ее более высокой цены себестоимость получаемых из этой фракции олефинов Сз—С4 оказалась самой высокой. В то же время себестоимость олефинов, получаемых пиролизом гудрона и сырой нефти (табл. 65), соответственно ниже на 10 и 8%, чем себестоимость олефинов, получаемых из бензино-лигроиновой фракции. [c.163]

    Получение олефинов пиролизом сложных эфиров. Пиролиз сложных эфиров является одним из самых старых и самых лучших методов приготовления олефинов. Выходы олефинов, как правило, очень высоки, и побочные реакции изомеризации обычно протекают в меньшей си-пени,, чем в большинстве других методов. Сложные эфиры первичных спиртсв, например, с хорошими выходами превращаются в 1-олефины. [c.418]

    Высокотемпературный термический крекинг нефтяного сырья— пиролиз осуществляется обычно с целью получения газообразных олефинов, в первую очередь этилена, а также пропилена и бута-диеыов. Наиболее распространенпой формой промышленного процесса является пиролиз в трубчатых печах. Наиболее освоенное сырье — газообразные продельные углеводороды (этан, пропан, к-бутан) и низкооктановые бензиновые фракции прямой перегонки нефти, рафинаты риформинга, легкие фракции газоконденсатов дают наибольшие выходы целевых олефинов при ограниченном кок-сообразовании (закоксовывании труб печи). Наилучшие результаты достигаются при сочетании высокой температуры и малой длительности контактирования. Это объясняется более эффективным действием температуры на скорость реакций разложения, чем на скорость реакций уплотнения (энергия активации последних значительно ниже). [c.143]

    Проведенная технико-экономическая оценка показала высокую экономическую эффективность процесса пиролиза деарома-тизированного АГ, суммарного гидрогенизата глубокого гидрирования ВГ и фракции, выкипающей при температуре > 340°С, по сравнению с производством низших олефинов пиролизом прямогонного бензина [14]. [c.24]

    С. Д. Мехтиев и Ю. Г. Камбаров [309] исследовали возможность получения олефинов и диенов из нормальных алканов, шестичленных нафтенов состава Се—Св, а также узких нефтяных фракций, путем высоко-скоростного пиролиза в реакторе с внутренним электрообогревом. [c.135]

    Ранее простейшие гомологи бензола выделяли из фракций каменноугольной смолы, но возрастающие требования промышленности к количеству и качеству сырья для его-- дальнейшей переработки привели к поискам новых источников их получения. Алкилароматические углеводороды могут быть выделены из тяжелых смол пиролиза нефти, сверхчеткой ректификацией фракций риформинга, с помощью реакции Вю ца—Фиттига, ацили-рованием ароматических углеводородов и последующим восстановлением образующихся при этом кетонов и т. д. Все эти методы значительно уступают процессу алкилирования ароматических углеводородов олефинами ввиду высоких технико-экономических показателей его. Это обусловлено обеспечением процесса доступным и дешевым сырьем, производимым крупнотоннажными производствами, глубокой проработкой его химизма, довольно простым оформлением и получением больших выходов целевых продуктов при высокой селективности процесса.  [c.5]

    Сырье и продукция. Сырьем процессов полимеризации являются пропан-пропиленовая и бутан-бутиленовая фракции (ППФ и ББФ) каталитического крекинга, содержащие 30—37% олефинов, или пиролиза — с более высокой концентрацией олефинов Сз—С4. Прн производстве полимербензина его октановое число в зависимости от состава сырья и селективности процессов составляет 82—97 (м.м.). Продукты полимеризации ППФ, главным образом изогексены, имеют октановое число 81—84 (м. м.) и до 94—97 (и. м.). Сополимеры пропилена и бутилена обладают худшими октановыми характеристиками, чем октены, имеющие октановые числа до 100 (и. м.) и 85 (м. м.). [c.174]

    С дальнейшим углублением термического процесс.а, например при повышении температуры до температур пиролиза, в составе бензинов начинают преобладать ароматические углеводороды, помимо о.нефннов появляются ди-олефнн1,[, в том числе циклические, а количество парафинов снижается до незначительной величины. Наличие олефинов и ароматических углеводородов в составе бензинов различных форм крекинга и пиролиза обусловливает высокие антидетонационные свойства их по сравнению со многими природными бензинами. Почти все ароматические углеводороды имеют, как правило, [c.74]

    В СССР и за рубежом широко ведутся работы по освоению но-зых методов пиролиза нефтяных фракций. К таким методам отно-- ятся контактный пиролиз в нисходящем потоке теплоносителя, в киняпгем слое и в восходящем потоке теплоносителя, гомогенный пиролиз в токе перегретого пара или газообразного теплоносителя, окислительный пиролиз и др. В результате этих работ предложен ряд процессов, при проведении которых на опытно-промышленных установках получены высокие показатели по выходу целевых продуктов (олефинов). [c.9]

    Обычно время пиролиза значительно больше, и получаемые выходы а-олефинов С4 и выше значительно ниже максимальных (25% мол. при к 1к = 2 и 5,5% мол. при 2/ 1 = 15 при выходе 1 моль продукта на 1 моль разложившегося сырья). При увеличении температуры отношение 2/ 1 можно считать неизменяющймся, так как разница в энергиях активации мала и при высоких температурах несущественна, а 1 возрастает. В результате максимальный выход промежуточных продуктов практически не меняется, а время его достижения снижается. [c.98]

    В середине 70-х годов XIX в. Летний прирупил к пзучению влияния высокой температуры на нефть и нефтепродукты, в том числе и в присутствии различных материалов, в частности древесного угля. Он разработал способ получения ароматических угле-водородов пиролизом нефти. Его работы были продолжены Лермонтовой (под руководством Марковникова) и Лисенко. Результаты работ Летнего по существу явились базой для создания крекинг-процесса Шухова (1891 г.), Никифорова (1895 г.) Ис-следования русских ученых в этой области имели исключительную практическую ценность. Они явились основой, на которой развились производства ароматических углеводородов, крекинг-бензина, а начиная с 50-х годов нашего столетия — низкомолекулярных олефинов и нефтяного кокса. [c.5]

    Детерминистический метод предполагает составление системы уравнений кинетики, гидродинамики и теплообмена, вскрывающих суть физико-химических процессов, которые протекают в реакторе. Этот метод позволяет легко экстраполировать полученные результаты за область эксперимента. Применение этого метода к процессу пиролиза встречает существенные препятствия, обусловливаемые следующими причинами кинетика разложения многокомпонентных смесей углеводородов ввиду сложности происходящих процессов, сопровождающихся первичными и вторичными превращениями, изучена недостаточно процесс производства олефинов характеризуется высоким уровнем случайных помех, многофакторностью, наличием эффектов [c.138]

    Например, данные об углеводородном составе бензинового дистиллята позволяют еудить о его ценности и как топливного компонента, и как сырья для термокаталитических процессов. Высокое содержание парафиновых углеводородов нормального строения свидетельствует о низком октановом числе бензина и о пригодности его как сырья пиролиза для получения олефинов. Значительное содержание к-пентана и к-гексана дает возможность получать из них изопентан и изогексан — высокооктановые компоненты бензинов. Количественные данные о распределении по бензиновым фракциям тяжелых, детонирующих в двигателе нормальных парафиновых углеводородов позволяют сделать вывод о целесообразности применения молекулярных сит или четкой ректификации для частичного или полного удаления этих детонирующих центров . О значении данных по групповому химическому составу бензиновых фракций, предназначенных для каталитического риформинга, говорилось ранее. [c.75]


Смотреть страницы где упоминается термин Высшие олефины пиролиз: [c.100]    [c.48]    [c.104]    [c.49]    [c.38]    [c.115]    [c.414]    [c.88]    [c.98]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.90 , c.92 , c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Высшие олефины полимеризация их при пиролизе

Высшие олефины получение их при пиролизе этан

Высшие олефины, механизм пиролиза

Высшие олефины, механизм пиролиза как растворителя

Высшие олефины, механизм пиролиза олефинов

Высшие олефины, механизм пиролиза при термическом разложении

Высшие олефины, механизм пиролиза углеводородов

Пиролиз олефинов

Получение высших олефинов путем пиролиза

Этилен 79. Пропилен 84. Вутилены 86. Амилены 88. Высшие олефины 90. Пиролиз олефинов под давлением 91. Диолефины 93. Общие выводы о термических реакциях олефиновых углеводородов 94. Термическое разложение ацетилена



© 2025 chem21.info Реклама на сайте