Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидролиз положительных

    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]


    О наличии положительного мезомерного эффекта у галогенов свидетельствует также отношение полигалогенпроизводных к гидролизу. Казалось бы, увеличение числа атомов галогена у одного атома углерода, если принимать во внимание только —/-эффект атома галогена, должно было бы приводить к увеличению дефицита электронной плотности на атакуемом атоме углерода и, следовательно, к повышению реакционной способности в реакциях нуклеофильного замещения атома галогена по механизму 5ы2. Однако это наблюдается только для первых членов ряда. Так, метилхлорид гидролизуется водяным паром при 250 °С под давлением, образуя метиловый спирт, а из ди-хлорметана получается формальдегид при 140—170 °С. Однако хлороформ гидролизуется при более высокой температуре (225 С), а четыреххлористый углерод — в тех же условиях, что и метилхлорид. [c.118]

    Различие в химической природе гидридов можно легко установить по их поведению при гидролизе. Характерной особенностью гидролиза гидридов является выделение водорода. Реакция протекает по окис-лительно-восстановительному механизму. Отрицательно поляризованный атом Н в гидриде и положительно поляризованный атом Н в воде переходят в состояние с нулевой степенью окисления  [c.276]

    Этот тип кооперативности может моделировать работу фермента нервной системы ацетилхолинэстеразы. Фермент катализирует гидролиз положительно заряженного субстрата — ацетилхолина. [c.299]

    Подобно гидридам, фторидам и хлоридам, бромиды и иодиды в зависимости от природы элемента в положительной степени окисления могу г быть основными (галиды щелочных и щелочноземельных металлов) и кислотными (галиды неметаллических элементов). Примеры бромидов и иодидов разной химической природы и их поведение при гидролизе приведены ниже  [c.301]

    При гидролизе положительных ионов довольно часто возникают некоторые осложнения. Одно из них связано с образованием нерастворимых гидроокисей или основных солей. Например, в отсутствие комплексообразующих анионов для сохранения заметной концентрации ионов Hg в растворе требуется около 0,1 М Н" . Другая проблема связана с гидролитической полимеризацией, т. е. с образованием конденсированных веществ, содержащих несколько катионов, соединенных друг с другом гидроксильными или, возможно, кислородными мостиками. Этот процесс, иногда называемый оляцией, часто является медленным и особенно характерен для ионов большого заряда. К числу более полно охарактеризованных олированных веществ относится одно из тех, которые образуют ионы Сг +. [c.129]


    Большинство отрицательных ионов гидролизуется в воде с образованием растворов, в которых [0Н ]>-[Н+]. Аналогично больщинство положительных ионов гидролизуется с образованием растворов, в которых [Н+]>[ОН-]. Поскольку в каждом содержащем ионы растворе присутствуют как положительные, так и отрицательные ионы, окончательные концентрации Н+ и 0Н определяются относительным гидролизом положительных и отрицательных ионов, т. е. относительной силой присутствующих кислот и оснований. Степень гидролиза может быть вычислена, если известны соответствующие К (как в табл. 18.13). Равновесные концентрации обычно можно подсчитать а) определив формулы реально присутствующих частиц (соли записывают как составляющие их ионы, слабые электролиты — как молекулы) б) записав суммарное уравнение для основного равновесия и соответствующее выражение для константы равновесия в) используя материальный баланс и (или) баланс зарядов г) предположив, что вклад ионов из воды незначителен д) проверив возможность осуществления других упрощающих предположений и сделав их е) вычислив приближенные равновесные кон- [c.84]

    Роль влаги изучена при механическом разрушении волокон ПАН и ПКА [923]. Действие влаги зависит от различных факторов пластифицирующего действия (отрицательного) механически активированного гидролиза (положительного) и криолиза , т. е. от температуры и химической структуры полимера. Первый фактор также зависит от температуры реакции. При низкой температуре (от —30 до —40 °С), когда пластифицирующее действие исключено, на кинетику распада полимера влага не действует. Третий фактор мало влияет в случае полиакрилонитрила, но значительно — в случае полиамида. [c.300]

    Природа полимерной матрицы. Полимерные гели, применяемые для иммобилизации, способствуют созданию оптимального микроокружения включенного фермента, что позволяет добиться высокой каталитической активности иммобилизованных препаратов. Оптимизация микроокружения достигается за счет подбора соответствующей гелеобразующей системы. Особенно удобными с этой точки зрения являются гели на основе сополимеров производных акриловой кислоты. Варьируя химическую природу исходных мономеров и их соотнощение, можно получать полимерные матрицы с наиболее подходящими для данной ферментативной реакции характеристиками. В частности, при введении в состав полимера мономерных звеньев, несущих электрический заряд, повышается каталитическая эффективность иммобилизованного препарата в реакциях с участием заряженных субстратов. Например, скорость реакции гидролиза положительно заряженного субстрата этилового эфира а-Ы-бен-зоил-/.-аргинина под действием трипсина, иммобилизованного в геле полиакриламида, возрастает при введении в полимерную цепь путем сополимеризации отрицательно заряженных мономерных звеньев акриловой кислоты. Увеличение скорости ферментативной реакции объясняется повышенным сродством положительно заряженного субстрата к отрицательно заряженной полимерной матрице. [c.66]

    Полученные значения констант Михаэлиса и максимальных скоростей реакций для исходного и промежуточных олигомеров ввели в математическую модель действия глюкоамилазы и с помощью ЭВМ получили кинетические кривые накопления глюкозы прн гидролизе мальтодекстринов (рис. 2). Теоретические кривые близки по характеру к экспериментальным. Отличие заключается в том, что в них не отражается ингибирование продуктами реакции (поскольку ингибирование не вводилось в математическую модель). Тем не менее обработка теоретических кривых в рамках интегральной формы уравнения скорости (рис. 3), которая обычно проводится при анализе кинетических кривых простых ферментативных реакций [21], свидетельствует о наличии сильного ингибирования продуктами реакции в данной системе. На это указывают положительные угловые коэффициенты соответствующих прямых в известных координатах [Р]/ 1//1п ([5]о/[8]а — [Р]) для различных начальных концентраций исходного субстрата (рис. 3) >. [c.32]

    Для идентификации мочевой кислоты иримеиима м у р е к с и д и а я реакция, которая, впрочем, дает положительные результаты и со многими другими пуриновыми соединениями. Эта реакция заключается в том, что остаток после упаривания мочевой кислоты с азотной кислотой при действии аммиака окрашивается в пурпурно-красный цвет вследствие образования мурексида — аммониевой соли так называемой пурпуровой кислоты. При действии азотной кислоты мочевая кислота частично превращается в аллоксантин, молекулярное соединенне аллоксана с диалуровой кислотой, вероятно имеющее приведенное ниже строение при последующей обработке аммиаком аллоксантин образует пурпуровокислый аммоний (мурексид), которому приписывают формулу (I). Для свободной пурпуровой кислоты,очень легко распадающейся при действии гидролизующих агентов на аллоксан и урамил, предпочтительна формула (И)  [c.1040]


    Выход адипиновой кислоты повышается, когда окисление осуществляют в двухтемпературном режиме при 60—80 °С на первой стадии и при 100—120°С на второй (это объясняется тем, что образование промежуточных продуктов синтеза адипиновой кислоты протекает с более низкой энергией активации, чем для промежуточных стадий получения побочных веществ, в то время как для гидролиза этнх веществ в адипиновую кислоту требуется повышенная температура). Положительно влияет также медь-ванадиевый катализатор, добавляемый в виде оксида меди и метаванадата аммония (в количестве 0,07% каждого компонента в расчете на взятый циклогексанол). Медь связывает оксиды азота в комплексы, а ванадиевые соединения ускоряют целевую реакцию и повышают выход адипиновой кислоты до 90—95%. [c.392]

    Более детально биохимический гидролиз представляется следующим образом. Сперва происходит соединение фермента с кислотным и спиртовым остатком молекулы эфира, результатом чего является электронная индукция—продвижение электрона от спиртового к кислотному радикалу. Вследствие перехода электрона карбонильная группа заряжается отрицательно, эфирная—положительно. Образование биполярной структуры облегчает присоединение элементов [c.550]

    Можно предположить, что повышение устойчивости хлороформа и четыреххлористого уг.перода к гидролизу обусловлено влиянием +/И-эффекта хлора, возрастающего при увеличении положительного заряда на атоме углерода, а также тем, что более объемистые, чем водород, атомы галогена, не подлежащие и данный элементарный акт замещению и имеющие избыточную электронную плотность, препятствуют атаке нуклеофильного реагента  [c.118]

    В ЗСЦ атом серы поляризован положительно. При взаимодействии с водой в результате ряда последовательных стадий гидролиза, образования аквакомплекса, отщепления молекул воды — образуется сернистая кислота. Формально аквакомплекс [c.520]

    Следует заметить, что в последнее время получило распространение мнение, что перезарядка отрицательно заряженных частиц обусловлена не самими электролитами с многовалентными катионами, а продуктами их гидролиза,, содержащими положительно заряженные ионы окислов или их гидратов. Доказательством этому служит то, что в кислых растворах перезарядка частиц вообще не происходит. В слабо щелочной среде изменение знака заряда может быть вызвано очень малой концентрацией поливалентного иона, но при еще более высоких значениях pH перезарядка снова становится невозможной из-за того, что образующиеся в этих условиях ионы гидратов окисей сами несут отрицательный заряд. [c.301]

    Каковы должны быть заряд иона (положительный, отрицательный, высокий, низкий) и его размеры (большой, небольшой), чтобы в результате гидролиза раствор имел наименьшее значение pH  [c.217]

    Б воде устойчивы и амиды кислот. Но в присутствии достаточно высокой концентрации ионов водорода амиды могут присоединять протон, т. е. переходить в форму сопряженной кислоты. Получается заряженная частица, причем в результате наличия положительного заряда рядом с карбонильным атомом С и дополнительного оттягивания от него электронов заряд на самом атоме С возрастает и это облегчает атаку его неподеленной парой электронов воды. В присутствии достаточно сильных кислот проходит гидролиз амидов по реакции [c.239]

    С обратной картиной, когда лимитирующий участник реакции-субстрат, приходится сталкиваться при катализе кислотами. Кислоты катализируют реакции, как правило, путем перевода одного из субстратов, являющегося основанием, в протонированную форму, т. е. в сопряженную кислоту. Подобно присоединению иона металла, присоединение протона, создавая положительный заряд в определенной области молекулы, повышает ее электрофильные свойства н облегчает реакцию с нуклеофильным компонентом. Например, в кислой среде облегчается гидролиз сложных эфиров кислот, поскольку карбонильная группа протонируется и электронная плотность оттягивается от атома углерода, что облегчает последующее взаимодействие с нуклеофильной молекулой воды [c.313]

    Гетерокоагуляцня широко используется в процессах водопод-готовки и очистки сточных вод. В воду добавляют минеральные коагулянты, например, соли алюминия, железа, магния, кальция. Эти соли снижают агрегативную устойчивость системы, и частицы загрязняющих веществ выпадают в осадок. Однако эффективность очистки воды от коллоидных дисперсий определяется не только снижением электростатического барьера, а главным образом, гете-рокоагуляциен. Соли алюминия и железа в результате реакций гидролиза образуют малорастворимые в воде гидроксиды, частицы которых приобретают положительный заряд  [c.345]

    Высказанное Конантом, Кирнером и Хаоси положение ...активирующие группы могут оказывать влияние на атом галогена в соединениях типа АСНгХ так, что атом галогена является очень реакционноспособным при его положительном и отрицательно.м значениях [269, стр. 493], получило дальнейшее развитие в работах других исследователей. Так, Беннет и Бер ра через два года показали, что в то время как отрицательный заряд атома хлора ускоряет гидролиз,. ..положительный заряд на атоме хлора делает более быстрым его взаимодействие с иодидом калия [270, стр. 1678], Несколько другим лутем предложил решить (Проблему действия одинаковых по строению молекул в различных органических реакциях Тронов, предсказавший существование в гало-генпроизводных двух типов разрыва связи между углеродом и галоидом нейтрального (распад на радикалы.— В. К.) я ионного, причем в последнем случае лишние электроны остаются при ядре галоида [271, стр. 1279]. Поэтому при более электроположительных углеводородных частях молекулы (алифатические производные) должен преобладать второй тип разрыва, а при электроотрицательном углеводородном остатке — первый тип. Именно переходом от одного механизма расщепления гало-генпроизводного к другому в зависимости от характера электронного строения углеводородных частей молекул Тронов объяснил наблюдаемое им падение, а затем возрастание активности галогена при реакциях галогензамещенных молекул с аминами и алкоголятами (табл. 18). [c.77]

    Электрофорез. На рис. 47 приведены данные об электрофоретической подвижности урана, полученные Стариком и Колядиным [ ] с помощью прибора, описанного Хойером [ ]. Изменение электрофоретической подвижности частиц уранг с ростом pH происходит неодинаково для концентраций 10 и 5 10 м. Поведение урана при концентрации 5 10 м. может быть объяснено образованием истинных кoллoидoв причем уменьшение подвижности в интервале pH 1—2 соответ-, ствует в этом случае гидролизу уранил-иона большое зна--чение подвижности в интервале pH 2.5—4.5 объясняется об--разованием продуктов гидролиза положительно заряженных коллоидных мицелл. При дальнейшем увеличении pH нод вижность уменьшается за счет уменьшения потенциала прч [c.126]

    Попытки приготовить дихлордиметилсульфат из дихлордимети-лового эфира и серного ангидрида вначале не дали положительных результатов [432], но позднее [434] удалось получить его с выходом 31% путем нагревания реагентов в автоклаве при 180° в течение 50 мин. Дихлордиметилсульфат имеет т. кип. 103—105° при 12—13 мм, уд. вес d 1,634 и пр 1,4530. Ранее он был описан как маслянистая жидкость с т. кип. 96—97° при 14 мм и уд. весом 1,60. Этот эфир представляет собой сладкое на вкус, неядовитое соединение, не имеюш ее запаха и обладающее сильными бактерицидными свойствами. Однако вряд ли можно считать, что он окажется интересным с этой точки зрения, так как при его гидролизе образуются сильные кислоты. [c.75]

    Однако следует иметь в виду, что на основной электродный процесс накладываются побочные реакции с участием хлора, приводящие к образованию продуктов е О гидролиза — гипохлоритов и хлоратов. Высокое положительное значение стандартного потенциала хлорного электрода (+1,358 Ei при 25°С) затрудняет подбор достаточно устойчивого, не реагирующего с хлором материала электрода. Тем пе менее при соблрздении определенных мер ряду авторов удалось получить опытные значения потенциалов хлорного электрода, совпадающие с теоретической величиной. [c.168]

    Применение пара для отгонки спирта из гидролизационной смеси в тех же условиях не дало значительного эффекта. Во-первых, не удалось изменить количественное соэт1[ошение вводимых в сферу гидролиза веществ за счет меньшего предварительного разбавления кислоты водой. Во-вторых, паровая разгонка при температурах 100—150 "С способствовала сильному разбавлению отработанной серной кислоты. Непосредственный гидролиз паром сразу всей массы кис оты не дал положительных результатов спирт не образовывался, вся кислота обуглероживалась, наблюдалось бурное выделение ЗОз и свободной серы, а в отгоне собиралось лишь незначительное количество эфира. Объяснение всех перечисленных явлений следовало искать в неоптимальных соотношениях кислоты (сразу вся масса) и воды (постепенное вве-депие малыми порциями в виде нара). Поэтому в следующем цикле экспериментов кислота и пар контактировали в противотоке — на насадке колонны. Тем самым удалось создать условия встречи малых порций кислоты с большими порциями пара н свести потери спирта до 10—25 % (считая на потенциал спирта) образование эфира но наблюдалось. [c.33]

    Эти реакции эндотермичны, и пх равновесие смещается вправо только прп высокой температуре 500—600°С в случае образования ангидрида и 700 °С в случае 0бра 10вания кетеиа. Отметим, что при образовагни кетена на равновесное превращение положительно влияет н пониженное давление. Обе реакции протекают в присутствии гетерогенных катализаторов кислотного типа (фосфаты и бораты металлов) илн паров фосфорной кислоты, которую можно вводить в исходную смесь в виде эфиров, легко гидролизующихся в свободную кислоту. Механизм реакции в общем подобен другим процессам дегидратации  [c.200]

    Фермент благодаря своей жесткой трехмерной структуре образует каталитический центр, в котором и осуществляется каталитическая реакция. В то же время небольшой по размеру пептид имеет слабожесткую структуру и не обладает каталитическими свойствами. Интересно, что если ион металла связан с пептидом, то можег происходить гидролиз амидной связи, аналогичный гидролизу, наблюдаемому в присутствии гидролитических ферментов. Таким образом, гидролиз амидов (и эфиров) подвержен каталитическому действию различных ионов металлов, поскольку а-ами-ногруппа и кислород карбонильной группы — два хороших потенциальных лиганда при комплексообразовании. Другими словами, координированные лиганды (пептид) приобретают удивительную активность благодаря эффекту оттягивания электронной плотности положительно заряженными ионами металла. [c.352]

    Такое необычное поведение представляет значительный теоретический интерес. С электронной точки зрения можно объяснить эту реакцию, допуская, что положительно заряженный радикал СНоЗОаСЮН. ЗОз, образующийся при гидролизе в качестве промежуточного продукта, неустойчив и разлагается, как указано ниже  [c.186]

    Применяемый в процессе депарафинизации карбамид содержит примеси биурета и некоторых других веществ. Кроме того, биурет образуется в результате гидролиза карбамида при применении водного раствора последнего и при разрушении комплекса водой. Присутствие небольших количеств биурета не оказывает отрицательного действия, а в отдельных случаях его могКпо рассматривать даже как положительный фактор. Так, Шампанья с сотр. [10] показал, что в то время как химически чистый карбамид образует исключительно устойчивые гели, присутствие до 1% биурета ограничивает размеры кристаллов комплекса, что уменьшает опасность закупорки трубопроводов. Повышенное содержание биурета сказывается отрицательно на депарафинизации, уменьшая, в частности, депрессию температуры застывания масла. Так, Б. В. Клименок с сотр. [107] показал, что если при отсутствии биурета в карбамиде удается достичь температуры застывания дизельного топлива —56° С, то при содержании в карбамиде 1, 3 и 5% биурета температура застывания дизельного топлива равна соответственно —51,5, —50 и —49° С. В связи с отрицательным влиянием, которое оказывает повышенное содержание биурета на свойства карбамида (не только при депарафинизации), его содержание в мочевине различных сортов ограничивают следующими предельно допустимыми нормами. [c.61]

    В комплексе с катализатором может происходить существенное перераспределение электронной плотности в молекуле субстрата, приводящее к изменению его реакционной способности. Например, присоединение к субстрату протона или образование субстратом координационной связи с ионом металла новьппает электрофильность субстрата, делая возможным взаимодействие его с относительно слабыми нуклеофильными реагентами. Так, ноны Си + являются эффективными катализаторами гидролиза эфиров аминокислот. Это, в первую очередь, связано с тем, что последние образуют хелатный комплекс с ионом Си -+, в котором положительный заряд иона Сц + поляризует связь [c.257]

    Данные, полученные с помощью различных методов исследования, указывают на участие по крайней мере трех аминокислот в построении активного центра рибонуклеазы двух остатков гистидина и одного остатка лизина. Гидролиз РНК (рис. 3.6) проходит в два этапа переэтерификация и последующий гидролиз. Отметим, что при физиологических значениях pH одно из двух имидазольных колец протонировано, а второе —нет. Имидазоль-ные кольца функционируют как общеосновной — общекислотный катализатор, а положительно заряженный остаток лизина, вероятно, стабилизирует пентакоординационный интермедиат. [c.128]

    Не менее поучительно сопоставление сорбционных функций а-химотрипсина и другой сериновой протеазы — трипсина. Размеры и форма субстратсвязывающего (сорбционного) участка в активных центрах обоих ферментов примерно одинаковы [3]. Единственное различие в первичной структуре полипептидных фрагментов, образующих гидрофобный карман , состоит в том, что в а-химотрипсине остаток 189 — это серин (см. рис. 9), а в трипсине в соответствующем положении находится отрицательно заряженная аспарагиновая кислота. Это приводит к тому, что в отличие от а-химотрипсина трипсин обнаруживает специфичность к гидролизу пептидных связей, образованных положительно заряженной аминокислотой (Lys, Arg). Сорбция положительно заряженного субстрата на ферменте (вблизи каталитически активного нуклеофила активного центра) происходит в данном случае за счет электростатических взаимодействий (рис. И, б). [c.35]

    В качестве реакции сравнения, в которой гидролиз сложного эфира (I) проходил бы по тому же механизму, но без дополнительных нековалентных взаимодействий со стероидным фрагментом нуклеофила, выбрана реакция соединений (I, а—ж) со свободным имидазолом. Для незаряженных эфиров (I, а—в) логарифм константы скорости взаимодействия с нуклеофилом (II) gkn прямо пропорционален логарифму константы скорости взаимодействия с имидазолом ghrn (рис. 18). Соединения (I, г—е) реагируют несколько быстрее за счет электростатического взаимодействия разноименных зарядов в молекулах реагентов. Это проявляется положительным отклонением величины lg n от нормировочной прямой, полученной для незаряженных эфиров (рис. 18). В противоположность этому соединение (I, ж) обнаруживает отрицательное отклонение из-за отталкивания одноименных зарядов в молекулах реагентов. [c.73]

    ХЬУ, не содержащих карбоксильной группы величина lg o линейно зависит, причем с очень небольшим наклоном, отДр/Са- Введение карбоксильной группы в анионной форме приводит к положительному отклонению от этой прямой. Как видно из рис. 23, участие карбоксилатаниона несомненно приводит к ускорению, однако оно невелико (приблизительно в 3 раза) и, по мнению авторов [60], не может играть существенной роли в ферментативном катализе. При переходе от водного раствора к ацетонитрилу, содержащему 3,3 М воды, эффект почти не усилился. Константа скорости гидролиза ХЬП в этом растворителе лишь в 4,5 раза выше константы скорости гидролиза ХЬП б, причем также почти не изменились и абсолютные скорости гидролиза этих соединений. В этом состоит определенное отличие этой системы от предыдущих, где было найдено, что реакция в неводном растворителе сильно тормозится, но зато и сильно ускоряется карбоксилатными анионами. [c.103]

    Из всех продуктов гидролиза особенно важными являются координационные соединения с шестью и восемью атомами, которые с нейтральными частицами [Л1(Н20)з(0Н)з]° образуют сетчатую положительно заряженную структуру, способствуюшую процессу коагуляции природных вод. [c.143]

    На процесс коагуляции существенное влияние оказывает солевой состав воды. Анионы слабых кислот обусловливают емкоси, буфера, способствуя гидролизу коагулянта. Катионы могут изменять заряд коллоидных частиц. Например, в жестких водах отрицательно заряженные коллоиды за счет адсорбции ионов кальция и магния могут приобрести положительный заряд. При значениях рН>7 этот заряд может нейтрализоваться ионами 804 из сернокислого алюминия, а ион алюминия будет полностью гидролизоваться до Л (ОН)з. Доза коагулянта в этом случае будет меньше, чем при коагуляции глинистой взвеси с отрицательно заряженными частицами. Следовательно, ион-партнер 504 оказывает суще ственное влияние на процесс коагуляции в водах с повышенной жесткостью. С добавлением в воду коагулянта у частиц происходит сжатие двойного электрического слоя, способствующее сближению их на такое расстояние, где проявляются межмолекулярные силы притяжения, и частицы укрупняются. [c.143]

    В тех случаях, когда непосредственно измерить концентрацию Р невозможно, кинетическая кривая накопления Р может быть получена как разность кинетических кривых образования Р и Р + Р, определенных независимо [И]. Если же мутаротация в ходе ферментативного гидролиза протекает достаточно быстро (например, при условии, что кинетические эксперименты весьма продолжительны или в системе присутствует специфическая му-таротаза ), то оба описанных выше подхода для определения ано-мерпой конфи урации образуюпдихся продуктов реакции могут ие дать положительных результатов. [c.26]

    Если исходные предположения авторов работы [16] верны, то-по мере перехода от одноцепоче шого к многоцепочечному механизму разница /.max—Яо должна изменяться от нуля до определенных положительных величин. В качестве полностью неупорядоченного действия принималась деструкция амилозы под действием фосфорилазы из картофеля, где разность Хтах—Хо была равна 44 нм. При гидролизе амилозы под действием р-амилазы эта разница при оптимальных условиях реакции оказалась равна 20 нм,, отсюда следует, что способ действия р-амилазы является промежуточным между одноцепочечным и многоцепочечным, т. е. соответствует механизму множественной атаки. [c.90]


Смотреть страницы где упоминается термин Гидролиз положительных: [c.67]    [c.192]    [c.1220]    [c.377]    [c.61]    [c.93]    [c.61]    [c.136]    [c.258]    [c.194]    [c.68]    [c.304]   
Современная общая химия Том 3 (1975) -- [ c.2 , c.84 ]

Современная общая химия (1975) -- [ c.2 , c.84 ]




ПОИСК







© 2025 chem21.info Реклама на сайте