Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикальная температуры

    Термическое алкилирование проходит по механизму радикально-цепной реакции, поэтому добавка агентов образования радикалов (например, хлорорганических соединений) вызывает понижение температуры реакции с 500 до 400 °С. [c.253]

    Радиационное окисление [5.5, 5.20]. Метод основан на воздействии ионизирующего излучения (V и р-лучи, ускоренные электроны, ускоренные ионы, нейтроны и др.) на обезвреживаемое соединение с получением ионов и возбужденных молекул, которые затем участвуют в реакциях. При действии излучений высоких энергий на разбавленные водные растворы органических соединений возникает большое число окислительных частиц, обусловливающих радикальное окисление. Полнота разложения соединений зависит от вида соединения, его начальной концентрации, продолжительности облучения и температуры стоков. Так, при очистке сточных вод от фенола с начальной концентрацией 100,0 мг/л разложение на 100% происходит через 1,5 ч, а при концентрации 10 мг/л — за 0,33 ч. [c.497]


    Ускоренное окисление бензинов при применении в карбюраторных двигателях вызывает образование смолистых отложений во впускном трубопроводе. Здесь благодаря действию воздуха, повышенной температуры и металла создаются наиболее благоприятные условия для окисления бензина, причем происходит энергичное радикально-цепное окисление не только углеводородной части бензина, но и ранее накопившихся смолистых вешеств с образованием продуктов, не растворяющихся в бензине. Отложения во впускном трубопроводе уменьшают его проходное сечение и затрудняют подвод тепла к рабочей смеси. Вследствие этого ухудшается наполнение цилиндров и затрудняется испарение топлива, что, в свою очередь, приводит к снижению мощности и экономичности двигателя. Состав отложений по ходу впускного тракта не постоянен. Отложения, образующиеся непосредственно за карбюратором, в основном состоят из асфальтенов. В отложениях на тюльпанах впускного клапана всего 3— 5% асфальтенов, а 7з отложений составляют карбены и карбо-иды [78]. [c.62]

    По-видимому, ни один пз описанных выше процессов для реакций аммиака с олефинами с целью получения нитрилов не был осуществлен в промышленном масштабе. Реакции термического крекинга рассматриваются как идущие по свободно-радикальному механизму, и образование нитрилов из аммиака и олефинов требует дегидрогенизационных условий. Очень высокие выходы аминов получаются при термическом разложении спиртов, эфиров и других алкилпроизводных, которые разлагаются при более низкой температуре в присутствии аммиака. [c.381]

    На основе анализа литературных, собственных экспериментальных данных и результатов промышленных исследований показано, что в ходе каталитического крекинга, наряду с каталитическими процессами, протекающими по карбоний-ионному механизму, и термическими, имеющими радикальный механизм, происходят превращения, обусловленные окнслительно-восстаиовительными реакциями. Протекание окислительных процессов в ходе каталитического крекинга подтверждается наличием фенола (до 800-1200 мг/л в технологическом конденсате), достаточно высокой концентрацией диоксида углерода (СО2) в жирном газе (до 5-7%) и высоким содержанием кислородсодержащих соединений в жидких продуктах, особенно в тяжелом газойле и остатке с температурой начала кипения выше 420"С (0.5-3.0%) [4.1]. [c.101]


    До настоящего времени неясно, до какой степени термический крекинг газойля протекает по радикальному механизму. Достаточно точно установлено, что свободные радикалы возникают при низких давлениях и высоких температурах. Их стабильность уменьшается с увеличением длины радикала, а концентрация уменьшается с увеличением давления [25]. Удельные скорости большинства пиролитических реакций больше, чем рассчитанные по уравнению Аррениуса [c.298]

    В условиях, способствующих протеканию реакции по радикальному механизму, — в газовой фазе, при высоких температурах, в присутствии промоторов и т. д. — скорость хлорирования замещением в боковой цепи больше, чем в ядре. [c.285]

    Основным фактором, определяющим микроструктуру цепи полибутадиенов при радикальной полимеризации, является температура процесса (табл. 1). [c.176]

    Указанная зависимость микроструктуры от температуры полимеризации сохраняется и для бутадиеновой части цепи в процессах радикальной сополимеризации бутадиена со стиролом, а-ме-тилстиролом, акрилонитрилом и др. [c.177]

    Итогом обеих реакций является нарушение регулярности построения полимерной цепи и появление разветвленных макромолекул. Так как энергия активации вторичных реакций значительно выше энергии активации реакции роста, доля вторичных реакций падает с понижением температуры полимеризации. Применение окислительно-восстановительных систем для инициирования радикальной полимеризации бутадиена позволило снизить температуру полимеризации до 0°С и существенно уменьшить разветвленность образующегося полимера [2, с. 1—86]. [c.178]

    В отличие от стирола а-метилстирол имеет более высокую температуру кипения и меньшую температуру плавления, при хра нении на воздухе окисляется до ацетофенона и формальдегида Под влиянием инициаторов радикального типа а-метилстирол по лимеризуется плохо с образованием низкомолекулярного полимера [c.244]

    Октановые числа узких бензиновых фракций грозненской пара-финистой нефти приведены на рис. 11. Указанные свойства бензинов нефтей парафинового основания привели еще в 30-х гг. к предложению рационального выбора температуры отбора бензина, исходя из того, чтобы она не совпадала с температурой выкипания соответствующего нормального парафинового углеводорода, т. е. отбирать головную бензиновую фракцию до 90—95 °С, но не до 100 °С во избежание попадания в нее н-гептана, или, если позволяет октановое число,— до 120 °С, чтобы компенсировать снижение октанового числа увеличением выхода. Более радикальным методом исправления октанового числа явилось предложение удалять из низкооктановых бензинов детонирующие центры посредством четкой ректификации. Так,, по данным [1], при перегонке с ректификацией бензина с октановым числом 58,5 (м.м.) грозненской парафинистой нефти можно получить, извлекая низкооктановые узкие фракции, 37% бензина с октановым числом 77,4 (м. м.). [c.37]

    Были изучены [341] кинетические закономерности взаимодействия гидропероксидов топлив РТ и Т-6 с полисульфидным герметиком. Предварительно топлива окисляли воздухом при 130—140 °С до накопления в них необходимой концентрации гидропероксидов. Затем в среде аргона при заданной температуре (120—140°С) измеряли концентрацию гидропероксидов в пробах топлива через разные промежутки времени без герметика и при контакте с ним топлива. В ряде опытов наблюдали изменение твердости герметика — через определенные промежутки времени извлекали из реактора по одному образцу герметика и замеряли его твердость. Опыты проводили при наличии в окисленном топливе 0,01% (масс.) ионола для исключения радикальной сшивки полимерных цепочек герметика. [c.239]

    Квантовые выходы, естественно, определяются соотнощениями (3.21). Интересно, что и при радикальном механизме при фотохимическом равновесии (Шд=Шт=0) по концентрациям продуктов можно определить константы- скоростей элементарных реакций, используя соотношения (3.22), где 71=йкц/йкт и у2= рц/ рт- Особенностью радикального механизма является ощутимое влияние температуры на скорость химических превращений, так как энергии активации для всех элементарных реакций в этом случае значительны. [c.77]

    Теория цепных радикальных реакций достаточно хорошо разработана Положения этой теории можно привлечь и для объяснения закономерностей радикального расщепления в условиях гидрогенизационных процессов. Радикальная реакция складывается из стадий инициирования, роста и обрыва цепей. Стадия инициирования в процессе гидрогенизации может быть осуществлена или путем взаимодействия с катализаторо.м, или в результате прямого гомо-литического расщепления а-связи при достаточно высоких температурах. [c.114]


    Изомеризация — ионная реакция, но расщепление при температуре 420 °С и выше может протекать не только как ионная, но и как радикальная реакция. Для оценки интенсивности протекания этих реакций целесообразно выделить продукты деметилирования — типично радикальной реакции — и продукты раскрытия кольца — реакции, чаще протекающей по ионному механизму. На скорость деметилирования больше всего влияет температура, что видно по выходам нафтенов Св и Се, достигающих значительных величин при 500 °С. [c.240]

    Таким образом, процессы деметилирования представляют собой высокотемпературные процессы гидрокрекинга, в которых создаются максимально благоприятные условия для радикальных реакций расщепления и всеми мерами предотвращается гидрирование ароматических углеводородов., Разработано много модификаций как каталитических, так и некаталитических процессов деметилирования (см. гл. 1, а также обзоры ), различающихся сырьем и технологическими параметрами. Применение катализаторов позволяет снижать температуру процесса на 100—150 °С (500—550 против 650—700 °С), что в свою очередь снижает капитальные вложения вследствие применения более дешевых металлов для изготовления оборудования, но повышает стоимость эксплуатации из-за расходов на производство и регенерацию катализатора. В зависимости от конкретных экономических условий применяются и каталитические, и некаталитические процессы в настоящее время в ряде стран до 20—25% бензола и более 50% нафталина получают при помощи процессов гидродеалкилирования Все процессы протекают под давлением водорода. [c.327]

    Исходя из радикально-ценно го механизма горения топлива, про — текающего через образование промежуточных пероксидных соедине — ний можно сформулировать следующий принцип оптимизации кон — стру ктивных и эксплуатационных параметров карбюраторного двига — тел> наиболее благоприятны для бездетонационного горения такие значения параметров, которые обеспечивают минимальное время сгорания, низкие температуры и наилучшие условия гомогенизации [c.103]

    Отметим, что в течение этого процесса стационарное состояние характеризуется отсутствием окраски 12. В этом случае большая часть иода находится в виде Н1. По-видимому, их данные подтверждают именно такую схему. Во всяком случае, они показали, что невозможны другие механизмы, включающие прямые молекулярные реакции. Фотохимическое разложение ацетальдегида значительно сложнее, чем пиролиз нри высоких температурах. Хотя основными продуктами являются СО и СН4, в системе присутствуют также и На, (СНзСО)г, (СН0)2, НСНО и СаНв в количествах, составляющих 1 — 10% от количества СО. Относительное количество этих веществ обычно уменьшается с увеличением температуры [46]. Квантовые выхода понижаются при температурах ниже 100°, но быстро увеличиваются и достигают значений, равных значениям выхода для ниролиза нри температурах около 300°. Существуют данные, свидетельствующие о возможности не радикального, а самопроизводного распада фотовозбужденных молекул СН3СНО, причем этот самопроизвольный распад на СН4 и СО протекает в одну стадию. Вероятность такого распада увеличивается с уменьшением длины волны света. Наблюдаемые эффекты усложняются реакциями возбужденных молекул [c.334]

    Некоторые указания на важность взаимодействия молекул в растворах дает тот факт, что из многих тысяч реакций, которые были изучены в растворе, менее чем 20 могут быть изучены для сравнения в газовой фазе. Изучение ионных реакций почти полностью ограничивается растворами по вполне понятным причинам при температурах ниже 1000° К скорость ионных процессов в газовой фазе практически равна нулю. Это объяснение приемлемо для большинства реакций, протекающих в растворах, поскольку, как показано далее, в большинстве реакций между полярными молекулами принимают участие ионы в качестве промежуточных частиц. Например, такая широко известная реакция, как гидролиз амилгалогенов или эфиров в газовой фазе, идет неизмеримо медленно (по крайней мере до тех температур, пока не начинают преобладать другие направления реакции). Единственный большой класс реакций, которые можно изучать как в газовой, так и в жидкой фазе,— свободно-радикальные реакции. Несомненно, этот тип реакций в дальнейшем будет все более тщательно изучаться и даст богатый материал для сравнения кинетического поведения веществ в газовой и жидкой фазах .  [c.423]

    Поскольку энергии диссоциации связей С—Вг как в алкил-, так и в арил-бромидах порядка 50—70 ккал, а /)(Н — 0Н) = 118 ккал, свободно-радикальный цепной процесс в таких системах при 25° невозможен. В действительности в большинстве случаев энергии связей настолько велики, что исключают возможность протекания цепных свободно-радикальных реакций между органическими соединениями при температурах ниже 100°. (Исключение составляют такие соединения, как перекиси, азосоединепия и системы, содержащие окислительно-восстановительные реагенты, такие, как Fe " , Со и т. д.) [c.471]

    Нижний же рафинат, имея более высокие пределы кипения, содержит более высокоплавкие парафины с температурой плавления на уровне 56—60°, обладающие более мелкой кристаллической структурой. Депарафинизация этого рафината более затруднительна, чем среднего рафината. И еще труднее протекает обез-масливание полученного гача. По этой причине для нижнего дистиллята еще более, чем для среднего, имеет значение четкость фракционировки его от более высококипящих фракций, влияющих на его микрокристаллическую структуру. При нечеткой фракционировке этого продукта и при растянутости его к. к. выше 500°, а иногда и выше 525° (как это иной раз наблюдается на некоторых восточных заводах) нижний дистиллят становится настолько загрязненным мелкокристаллическими высокомолекулярными компонентами, что его кристаллическая структура приближается к структуре остаточных рафинатов, однако без свойственного остаточным продуктам агрегирования кристаллических образований, значительно облегчающих фильтрацию последних. Поэтому наблюдаются случаи, когда рафинаты нижних дистиллятов поддаются депарафинизации значительно труднее, чем рафинаты остаточных продуктов. Радикальным способом улучшения депарафинизации является повышение четкости отфракционировки концевых фракций нижнего дистиллята. [c.30]

    Стэйвли [42] измерил среднюю длину цепи радикальной реакции с помощью окиси азота. Найденные им величины меняются от 20,6 при давлении 50 мм рт. ст. до 6,4 при давлении 500 мм рт. ст. при температуре 620° С. Это не может быть истинной длиной цепи, так как эти данные совершенно несовместимы с приведенными выше величинами констант скорости. Действительная длина цепи, измеренная по относительным скоростям реакций развития и обрыва цепи, должна составлять песколько тысяч единиц. Если ингибированная реакция является молекулярной, то эти результаты могут быть объяснены допущением, что непосредственная молекулярная перегруппировка в этилен и водорода должна происходить значительно чаще, чем расщепление молекулы этана на два метил-радикала. [c.26]

    Методики проведения свободно радикальной полимеризации. Полимеризацию в лабораторных условиях проводят путем слабого нагревания небольших количеств мономера (самого мономера или его раствора в подходящем растворителе), обычно в присутствии добавленного инициатора, до тех пор, пока реакция не закончится или не пройдет до желаемой сте пени. Имеются детальные описания методики [36, 127] главное внимание должно быть обращено на то, чтобы для реакции брались достаточно малые количества образцов и чтобы поддерживалась достаточно низкая степень полимеризации, чтобы было возможно контролировать температуру реакции. Желательно также по возможности исключить из системы жислород, так как он часто ингибитирует полимеризацию и дюжот вызвать обесцвечивание или другие нежелательные изменения свойств продуктов реакции. [c.119]

    Во многих случаях желательно проводить реакции свободно-радикальной полимеризации при комнатной или даже при еще более низких температурах. Ярким примером такого типа является производство синтетического каучука, где наиболее желательными физическими свойствами обладают полимеры, получаемые нри температурах ниже 0°. Обычным методом ипициирования полимеризации при подобных условиях является применение в качестве инициатора такой комбинации реагентов, которая реагирует с образованием свободных радикалов в результате какой-либо окислительно-восстановительной реакции. Исследовано большое количество таких восстановительно-окислительных систем особенно для эмульсионной полимеризации [8, 76]. Одна из таких систем, по-видимому, типичная и довольно подробно изученная, является комбинацией иона двухвалентного железа и перекиси водорода [18]. В разбавленном водном растворе кислоты они реагируют нормально, давая гидроксилы и ионы трехвалентного железа в двухстадипном процессе  [c.135]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]

    Инициированное термическое алкилирование. Термическое алкилиро-вание.парафигговых углеводородов можно осуш ествить в мягких условиях, если к смеси парафинового и олефинового углеводородов добавить небольшие количества (1—3% вес. на о бщ ую загрузку) таких веществ, как алифатические галоидные или нитросоединения [33]. Парафиновые углеводороды с прямой и разветвленной ценью алкилируются ири 300—400° и давлении 210 ат и выше. При этом получаются такие же продукты, как и при чисто термических реакциях это указывает на то, что и здесь имеет место свободно-радикальный механизм реакции, а катализаторы служат в качестве инициаторов цеии путем распада их с образованием радикалов при сравнительно более низкой температуре, чем в случае углеводородов. [c.308]

    Силан реагирует с олефинами при нагревании под давлением. Этилеп и силан при 450—510° дают в качестве основных продуктов этил-силан и диэтилсилан. Светочувствительная реакция ири комнатной температуре дает в основном этилсилан, н-бутилсилан и 1,4-дисиланбутан. Для этих реакций был предложен свободно-радикальный механизм [39а]. [c.381]

    Действительно, скорость промышленного окисления при температурах 120—130 X и в присутствии катализаторов (чаще всего 0,1—0,25% КМИО4) может достигать значительной величины после окончания индукции благодаря накоплению за время индукции больших количеств перекисных соединений, которые после расхода ингибиторов могут инициировать разветвленные цепные радикальные реакции окисления. Практически это проявляется в выделении большого количества тепла за очень короткое время непосредственно после индукционного периода, что приводит к быстрому росту температуры в реакторе. Последняя может превысить температуру, необходимую для получения продуктов частичного окисления (при окислении [c.150]

    Известно, что при радикальной полимеризации не представляется возможным существенно регулировать структуру полимерной цепи. Анионная же полимеризация диенов впервые открыла возможность регулирования структуры полимера путем изменения природы щелочного металла и условий полимеризации. Еще в 30-х годах на Опы тном заводе литер Б было показано, что переход от натрия и калия к литию сопровождается повышением количества 1,4-звеньев в цепи и соответственно понижением температуры стеклования и улучшением морозостойкости полимера. На основании полученных данных был разработан промышленный способ и организовано производство морозостойкого литийбута-диенового каучука (СКБМ). [c.11]

    Влияние температуры на микроструктуру полибутадиенов при радикальной полимеризаиии [c.177]

    Рассчитанная из экспериментальных данных разница в мольных эн ях активаци 1 цис-1,4- и грс.чс-1,4-присоединения составляет для бутадиена 13,4 кДж/моль [6]. Это указывает на практически невозможность получения полибутадиенов с преимущественным содержанием 1,4-звеньев методом радикальной полимеризации, поскольку для этого процесс должен осуществляться при температурах около 400 °С [7]. [c.177]

    В отличие от низших гомологов, например диацетилперекиси, пероксидиянтарная кислота достаточно стабильна при хранении при обычных температурах, нечувствительна к толчкам и трению, к воздействию минеральных кислот, что обеспечивает до известной степени безопасность работы с ней. Пероксидиянтарная кислота эффективна при инициировании радикальных реакций. При термическом распаде могут образоваться радикалы двух видов [21, с. 267]  [c.424]

    С такими основаниями, как трет-бутоксид калия, реакции проводят большей частью в полярных апротонных растворителях, однако иногда используют и бензол, в котором такие основания растворяются довольно плохо. В том и другом случае прибавление краун-эфира не только изменяет растворимость, но, кроме того, оказывает сильное влияние на ассоциацию ионов. Это приводит, как уже указывалось выше, к радикальному изменению скоростей реакций, ориентации и стереохимии -элими-нирования [454, обзор 455]. Гладко и в мягких условиях проходит дегидрогалогенирование хлор- и бромалканов при нагревании их с твердым трег-бутоксидом калия и 1 мол. % 18-крауна-б в петролейном эфире при температуре более низкой, чем температура кипения образующегося алкена. В этих условиях бор-нилхлорид, например, за 6 ч при 120°С образует 92% борнена без примеси камфена и трициклена [1104]. В сходных условиях из 1,2- и 1,1-дигалогенидов можно получить 1-алкины. Геминаль-ные дихлориды (полученные из кетонов и P I5) с прекрасным выходом дают замещенные алкины. Изомеризация этих алки-нов в аллены или сдвиг тройной связи в другое положение протекает существенно медленнее, чем обычный процесс элиминирования. -Галогеналкены подвергаются смн-элиминированию под действием системы грет-ВиОК/краун, давая алкины с хорошим выходом [1105]. [c.240]

    В настоящее время наиболее радикальным методом борьбы с коррозией стали при использоиании неочищенного жидкого топлива считают применение новых сплавов (для элементов конструкций высокотемпературных печей), которые не взаимодействуют с V2O5. Легирование хромоникелевых сталей марганцем и кобальтом (температура плавления эвтектики соответственно 1240 и 880 °С), а также другими элементами позволяет значительно повысить жаростойкость материалов. [c.178]

    Способность алкенов с внутренней двойной связью к цис-транс-изомеризации под действием высоких температур хорошо известна и обсуждалась еш,е Вант-Гоффом в 1875 г. Количественно цис-транс-изомеризация впервые была исследована Кистяковским и Смитом. В работе [1] изучена термическая изомеризация цис-бу-тена-2 при температурах выше 340 °С. Реакция, по полученным данным, протекала по уравнению первого порядка, причем скорость ее мало увеличивалась с температурой (энергия активации 74 600 Дж/моль, предэкспонейциальный множитель ЫО с- ). Для объяснения этого явления был предложен механизм, предусматривающий образование активного комплекса при тройных соударениях, или радикальный. Однако экспериментальные результаты Кистяковского и Смита по термической изомеризации цис-бугена-2 не удалось воспроизвести, и, по более поздним данным [2, 3], они не являются надежными из-за недостаточной точности анализа. [c.50]

    В ранних работах было установлено,что при деструктивной гидрогенизации толуола, метилциклогексана этилбензола и гекса-гидромезитилена в присутствии МоЗа протекают процессы изомеризации, деалкилироваиия и раскрытия колец, но индивидуальных углеводородов было выделено мало (пентан, бензол, метилциклогексан, концентраты 1,2- и 1,3-диметилциклопентанов). При гидрогенизации на никелевых, платиновых и палладиевых катализаторах при высоких температурах (460 °С) и небольшом давлении идут сложные радикальные реакции, приводящие к образованию метиленовых радикалов, а также к метилированию, деметилированию и изомеризации [c.240]

    Процессы деметилирования являются частным случаем процессов парофазной гидрогенизации и гидрокрекинга, но их химические цели — отщепление метильных заместителей без затрагивания ароматических ядер — заставляют проводить такие превращения в жестких условиях, что накладывает на них некоторые специфические особенности. В самом деле, ионное отщепление метильных заместителей энергетически почти невозможно из-за высокой энергии образования иона Н3С+ (см. гл. 2), следовательно в процессах деме-тилирования необходимо обеспечить исключительное протекание радикальных реакций. Последние усиливаются больше всего с ростом температуры так, что при 450 —500 °С начинают преобладать даже процессы деметилирования циклоалканов (см. стр. 228). С другой стороны, рост температуры сдвигает равновесие [c.327]

    Термолитический подход к деструкции молекул нефтяных асфальтенов использовали авторы работ [377—381], изучавшие ме тодом ГЖХ состав углеводородов, образующихся при кратковременном воздействии на ВМС нефтей температур порядка 300— 400°С. Дж. Кнотнерус [382] провел обширное исследование превращений модельных углеводородов, а также смол и асфальтенов различного происхождения при температуре около 600°С, применив сочетание последовательно соединенных пиролизера, реактора гидрирования пиролизата и газового хроматографа. Он нашел, что при столь высоких температурах происходит глубокий распад насыщенных структур и новообразование колец за счет циклизации алифатических цепей. По его мнению, метод пиролиза пригоден для качественного сопоставления различных битумов, но не для углубленного изучения их состава и строения. Для сохранения нативной природы фрагментов рекомендовано проводить термическую деструкцию в высоковакуумном пироли-зере, непосредственно связанном с ионным источником масс-спектрометра т. е. в условиях крайне слабого развития радикально-цепных реакций [379, 383, 384]. [c.44]


Смотреть страницы где упоминается термин Радикальная температуры: [c.494]    [c.77]    [c.134]    [c.119]    [c.60]    [c.160]    [c.470]    [c.137]    [c.240]    [c.253]    [c.262]    [c.291]   
Основы химии полимеров (1974) -- [ c.222 , c.232 , c.234 ]




ПОИСК







© 2024 chem21.info Реклама на сайте