Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация от кинетики процесса

    В процессе полимеризации в водной среде возможен гидролиз этих мономеров. Указанные особенности акрилатов отражаются на механизме образования и стабилизации полимер-мономерных частиц при эмульсионной полимеризации, на кинетике процесса, на протекании вторичных процессов, на адсорбции взятого для получения эмульсии мономеров эмульгатора и на агрегативной устойчивости получаемых латексных систем [4]. При эмульсионной полимеризации водорастворимых мономеров под [c.388]


    Если для рассмотренных выше процессов массообменные математические описания приведены в ряде литературных источников, то корректные методы расчета процессов роста твердых частиц в растворе только разрабатываются, хотя такие процессы (кристаллизация, полимеризация) имеют большое техническое значение. Проиллюстрируем ниже оригинальный подход к расчету этих процессов, в котором использованы уравнения балансов, а также функция распределения твердых частиц по размерам. Определяя параметры, характеризующие эту функцию, и влияние на нее условий проведения процесса, можно рассчитать количество твердых частиц и их распределение. При этом, очевидно, решающее значение приобретают сведения о кинетике процесса. [c.91]

    В качестве примера использования некоторых фрагментов изложенной схемы построения математической модели ФХС рассмотрим один из подходов к анализу диффузионной кинетики процессов эмульсионной полимеризации. [c.146]

    При полимеризации в эмульсиях мономер, водорастворимый инициатор, стабилизатор и другие добавки распределяются при интенсивном перемешивании в воде или водных растворах солей в присутствии эмульгатора, образуя эмульсию. Скорость процесса больше, чем при полимеризации в массе, а образовавшийся полимер имеет наиболее высокую молекулярную массу. Реакционные смеси, как правило, состоят из большого числа компонентов жидкого мономера (15—30% от массы всей смеси), воды (60—80%), эмульгатора, инициатора, растворимого в воде, и регуляторов (pH среды, поверхностного натяжения, степени полимеризации и разветвленности полимера). Величина pH среды влияет на скорость полимеризации, а также на качество и выход образующегося полимера. Кроме того, на кинетику процесса и степень полимеризации будущего полимера влияют температура и время процесса, количество инициатора, количество и характер эмульгатора, а также скорость механического перемешивания н другие факторы. Получив полимер с нужными свойствами, добавляют кислоты или другие электролиты для разрушения эмульсии. [c.196]

    Исследована макрокинетика процесса полимеризации [5]. Кинетическое уравнение изменения температуры размягчения во времени имеет вид характерный для гетерофазных процессов полимеризации, сопровождающихся образованием новой фазы. Формальная кинетика процесса изменения температуры размягчения описывалась кинетическим уравнением вида  [c.110]


    Кинетические закономерности и механизмы ионной полимеризации имеют более сложный характер, чем в случае радикальной, так как промежуточные активные центры могут сосуществовать в равновесии в виде различных форм свободных ионов, ионных пар, поляризованных комплексов и др. Смещение этого равновесия в ту или иную сторону путем изменения условий проведения реакций (температуры, природы растворителя, катализатора и др.) позволяет достаточно активно воздействовать на кинетику процесса и структуру образующегося полимера, что, как правило, исключается в случае радикальной полимеризации. [c.18]

    Б работе исследуется кинетика радикальной полимеризации в массе (в блоке). Это — один из способов практического осуществления полимеризации, когда процесс проводится в конденсированной фазе в отсутствие растворителя. Длительность полимеризации 30 мин. Полная полимеризация мономера приводит к образованию монолита (блока), имеющего форму сосуда, в котором проводился лроцесс. [c.397]

    ОКД-5 и ОКД-20 на кинетику процесса проявляется при их введении в количестве 0,5 и 1 м,ч, при более высоких концентрациях степень полимеризации играет незначительную роль. Это может быть связано с большей функциональностью ОКД-20 с одной стороны, и ростом влияния стерических факторов на кинетику реакций с другой Определено содержание ОКД при котором достигается степень конверсии 90-94%, Исследование изменения количества концевых групп ПКА в результате его взаимодей- ствия с ОКД показало, что в основном в реакции участвуют карбоксильные группы (степень их конверсии составляет более 50%, а аминогрупп -всего 1-3%), [c.75]

    Кинетика процесса термического крекинга в жидкой и в паровой фазах под давлением изучена недостаточно, нет достоверных качественных и количественных показателей процесса. Однако известно, что при крекинге в паровой фазе повышение давления значительно ускоряет такие вторичные реакции, как полимеризация, конденсация непредельных и ароматических углеводородов и др., что отражается на качестве получаемых продуктов. [c.43]

    Пример Х-6. Моделирование кинетики процесса полимеризации. Одна из трудностей аналитического описания кинетики процесса полимеризации заключается в том, что образующийся полимер состоит из большого количества различных видов молекул, отличающихся длиной цепи (или молекулярным весом, зависящим от их длины). Хотя длина цепи меняется дискретно в результате присоединения простого структурного элемента — звена, от построения дискретной модели роста цепи обычно переходят к упрощенной схеме, в которой предполагается, что длина цепи меняется непрерывно во времени, т. е. при описании кинетики процесса полимеризации обычно принимаются две независимые переменные — длина цепи М, характеризующая молекулярный вес образующегося полимера, и время t. Как было показано в предыдущих примерах, это приводит к уравнениям в частных производных. [c.239]

Рис. Х-37. К выводу уравнения кинетики процесса полимеризации. Рис. Х-37. К выводу <a href="/info/1234025">уравнения кинетики процесса</a> полимеризации.
    Радиационная полимеризация. Кинетика, а в ряде случаев и природа одного из важнейших в практическом отношении процессов химической технологии — полимеризации органических мономеров — существенно изменяются под действием излучения. Как правило, полимеризация заключается в переходе кратных связей мономеров в одинарные связи полимеров. Очевидно, что подобные процессы характеризуются большей или меньшей энергией активации. Обычно для осуществления цепной реакции полимеризации реакционную среду -подвергают действию видимого УФ-света либо вводят различные катализаторы, благодаря чему в сфере полимеризации образуется некоторое количество свободных радикалов. [c.209]

    Разнообразие каталитических систем полимеризации этилена по их составу, фазовому состоянию, структуре поверхности использованных носителей обусловливает отличительные особенности кинетики процесса [22]. Однако для этих систем можно найти и общие закономерности, определяющие скорости [c.166]

    МАТРИЧНЫЙ СИНТЕЗ. I Полимеризация и поликонден-сания, при к-рых строение образующегося полимера и (или) кинетика процесса определяются др. макромолекулами (матрицами), находящимися в непосредств. контакте с молекулами одного или неск, мономеров и растущими цепями. Пример М с. в живой природе-синтез нуклеиновых к-т и белков, в к-ром роль матрицы играют ДНК и РНК, а состав и порядок чередования звеньев в растущей (дочерней) цепи однозначно определяются составом и структурой матрицы. [c.667]


    Количество данных, отражающих влияние противоиона на кинетику процесса катионной полимеризации, недостаточно [193]. Получение их в строго фиксированном количестве затруднено, так как обычно неизвестна концентрация растущих ионных пар и константа их диссоциации на свободные ионы. Последнее обстоятельство может внести существенные ошибки в измеряемые значения кр из-за высокой реакционности свободных ионов, образующихся из ионных пар. [c.86]

    Проведенный анализ быстрых реакций полимеризации показал, что отмеченные при математическом моделировании эффекты тождественны наблюдаемым экспериментально на примере полимеризации изобутилена [2]. Сравнение расчетных и экспериментальных данных указывает на возникновение градиента концентрации и температур, т.е. быстрые реакции с локальным вводом катализатора протекают по отдельным зонам в виде факела с различными температурными и кинетическими параметрами. Важным следствием неизотермичности процесса является повышение полидисперсности продукта по средним молекулярным массам, т.е. ухудшение его свойств. Наличие факела в быстрых процессах полимеризации, в частности изобутилена, определяет специфические методические и практические приемы их проведения. Так, внешнее термостатирование не является эффективным и ограничивает использование дилатометрии и многих других экспериментальных методов исследования кинетики процесса. Лишь низкие концентрации катализатора (меньше 10 моль/л) при условии эффективного перемешивания реакционной массы могут обеспечить изотермический характер процесса и получение полимерного продукта с ММР, близким к расчетному. [c.142]

    В главе, посвященной полимеризации и сополимеризации полярных мономеров, систематизируются исследования, начатые сравнительно недавно. Уделяется большое внимание природе межфазной поверхности и влиянию ее на кинетику процесса, поведение полимеризационной системы, а также на конформационное поведение образующихся макромолекул. Впервые дается экспериментальный, а также количественный подход к оценке поведения статистически неоднородной сополимерной макромолекулы на границе раздела фаз, что намечает путь к новому аспекту изучения эмульсионной сополимеризации. [c.8]

    Изложенная в гл. 2 количественная теория эмульсионной полимеризации создана при математическом рассмотрении модели процесса, не учитывающей молекулярного взаимодействия на границе раздела фаз. Очевидно, при полимеризации в водной среде этот фактор имеет тем большее значение, чем более полярен мономер. От его зависят такие важные параметры процесса, как взаимо-действ ие между частицами, истинная и коллоидная растворимость мономера, адсорбция эмульгатора, равновесная концентрация мономера в частицах и др. Существенное различие этих параметров, при полимеризации полярных и гидрофобных мономеров должно привести к значительным изменениям в механизме образования частиц, в кинетике процесса и коллоидном поведении образующихся латексных систем. [c.85]

    Высокая полярность мономера в ряде случаев (акрилонитрил, хлорвинил) является причиной нерастворимости в ем его полимера, что приводит к своеобразным топохимии и кинетике процесса полимеризации. [c.86]

    Хотя оба мономера отличаются по величине скоростей полимеризации и предельным глубинам превращения, показатель Аврами одинаковый, причем в присутствии растворителя его величина возрастает (рис. 8). В то же время в случае линейной полимеризации применение растворителей приводит к уменьшению показателя Аврами. Такое различие объясняется тем, что в случае линейной полимеризации структурообразовапие уменьшается в присутствии растворителей, в случае же трехмерной полимеризации явление микросинерезиса усиливает гетерогенность системы и факторы, влияющие на процессы структурообразования. То обстоятельство, что разные мономеры с различной реакционной способностью демонстрируют одни и те же кинетические закономерности, свидетельствует, по мнению авторов [27], о том, что в данном случае проявляется глубокая общность механизма трехмерной полимеризации кинетика процесса определяется распространением фронта полимеризации от образованных на ранней стадии микрогелевых зародышей. [c.101]

    Ингибиторы, очевидно, превращают реакционноспособные радикалы, участвующие в развитии цепи полимеризации, в нереакционноспособные, но способные к быстрому присоединению но двойным связям. Кинетика процесса ингибитирования довольно подробно изучена. Обычно полимери-зующиеся системы, содержащие ингибиторы, имеют индукционный период (в течение которого полимеризация или совсем но идет, или же идет лншь в незначительной стенени, а ингибитор расходуется), после которого начинается реакция болое или меиее нормальной полимеризации [13, 108]. Если определить длину такого периода индукции при условиях, когда известна скорость инициирования (зарождения) цепи, то можно определить число кинетических цепей, обрываемых каждой молекулой ингибитора. И, наоборот, определяя периоды индукции в ирисутствии определенных количеств ингибиторов с известными свойствами, можно определить скорость зарождения цепей. Этот метод наряду с методом вращающегося сектора имеет большое значение для определения отдельных констант скоростей. [c.129]

    Весьма важный тин самоингибитирования наблюдается у многих а-метиленовых олефинов, типичным представителем которых является аллилацетат. При нолиморизации этого соединения получается низкомолекулярный продукт, реакция эта требует довольно больших количеств катализатора. Кинетика процесса подробно изучалась Бартлетом и Альт-шулем[12]. Они показали, что при применении перекиси бензоила скорость реакции пропорциональна первой степени, а не корню квадратному от концентрации катализатора, что молекулярный вес полимера не зависит от скорости полимеризации и что получается одна молекула полимера на частицу катализатора, инициирующую цепь. Эти результаты согласуются со следующей схемой, согласно которой молекула мономера может подвергаться двум типам реакций с растущей цепью  [c.130]

    На основании этой картины можно сделать ряд выводов. Во-первых, раз эмульсионная полимеризация идет (и все мыло адсорбировано на частицах полимера, так что нет мицелл, способных создать новые центры), то скорости полимеризации будут зависеть только от числа частиц, а не от скорости инициирования цеии, размера частиц или концентрации ммла. Такая кинетика процесса была показана на примере стирола [113, 134], бутадиена и изопрена в присутствии некоторых, но не всех инициаторов систем [113]. Далее, так как обычно применяется концентрация частиц 101 /л (что эквивалентно концентрации радикалов приблизительно 10 моля ио сравнению с обычно применяемой при полимеризации в массе мономера концентрацией 10 ), то становится очевидным объяснение высоких скоростей, возможных при эмульсионной полимеризации. Затем, поскольку длина кинетической цепи будет определяться скоростью, с которой новые радикалы проникают в отдельную частицу, то не наблюдается обычное обратное отношение между скоростью и р (в отсутствии переноса цепей) и, несмотря на очень высокую скорость полимеризации, можно получать полимеры очень высокого молекулярного веса. Поэтому особенно важно применение регуляторов для эмульсионных систем  [c.132]

    Получение латексов в присутствии неионных ПАВ. Механизм полимеризации в присутствии одних только неионных поверхностно-активных веществ (ИПАВ) до сих пор является предметом дискуссии [64—66]. По-видимому, на кинетику процесса полимеризации, размер образующихся частиц и молекулярную массу полимера существенное влияние оказывают природа мономера, концентрация и химический состав эмульгатора, а в случае использования смеси ионных и непонных эмульгаторов, их соотнощение. [c.600]

    Оценка влияния диффузионных эффектов в эмульсионной полимеризации. Обычно математическое описание кинетики процесса эмульсионной полимеризации сводят либо к детерминированной кинетической модели [15—22], либо к модели, основанной на вероятностных представлениях [23—281. В основе этих подходов лежит допущение о том, что скорость постзшления мономера к по-лимер-мономерным частицам превосходит скорость полимеризации в последних, т. е. процесс протекает в кинетической области. Экспериментальной и теоретической проверке этого положения в эмульсионной полимеризации уделялось сравнительно мало внимания. Влияние диффузии на скорость полимеризации может быть значительным, когда скорость полимеризации в частицах превосходит скорость поступления мономера к нолимер-моно-мерным частицам (внешнедиффузионная область) и скорость диффузии мономера и радикалов внутри частицы (внутридиффузион-ная область). Одними из немногих работ, где делается попытка получить качественные и количественные оценки диффузионных явлений в эмульсионной полимеризации, являются работы [29, 30]. Автор работы [30] получает скорость максимального диффузионного потока к поверхности частицы в виде [c.146]

    О кинетике процесса полимеризации олефинов в присутствии фосфорной кислоты имеется относительно мало данных. Снижение объемной скорости подачи и повышение температуры увеличивают константу скорости полимеризации, но чрезмерное повышение температуры приводит к образованию высококипящих полимеров и асмолению катализатора. [c.324]

    Под полимеризацией понимают химическую реакцию, при которой мономерные соединения, содержащие реакциониоспособпые двойные связи или реакционноспособные кольца, самопроизвольно или под действием инициаторов или катализаторов превращаются в полимеры . Характерной особенностью полимеризации является, однако, не схема присоединения, а кинетика процесса полимеризация, приводящая к высокомолекулярным веществам, является цепной реакцией (Штаудингер). [c.931]

    Такие олигомеры легко могут быть получены путем поликонденсации гликоля с двухосновной кислотой в присутствии непредельной одноосновной кислоты (например, акриловой). При последующей полимеризации этих олигоэфиров образуются пространственные блок-сополимеры олигоэфиров и соответствующей непредельной кислоты. Меняя исходные компоненты при синтезе олигоэфиров и степень полимеризации последних, можно в широких пределах изменять свойства получаемых полимеров. Так как полимеризация указанных олигомеров связана с образованием полимеров сильноразветвлеиных и пространственных (трехмерных), то уже на очень ранних стадиях полимеризации наблюдается резкое возрастание вязкости среды, что сильно влияет на кинетику процесса. [c.204]

    При Сополимеризации винилфурана с бутадиеном получаются синтетические каучуки типа бутадиенстирольных (25). Разработана рецептура и режим совместной полимеризации винилфурана и бутадиена, изучена кинетика процесса и влияние на нее таких факторов, как соотношение мономеров, pH среды, количество катализатора. Бутадиенвинилфурановые каучуки отличаются высокими физико-механическими показателями, являются удовлетворительными по морозостойкости, а по маслостойкости значительно превосходят дивинилстирольные каучуки. [c.209]

    Количественные закономерности реакций поликонденсации и миграционной полимеризации, включая кинетику процесса, распределение по молекулярному весу и влияние полифункциональн сти на разветвление и сшивание, подробно описаны во многих источниках П—3] и здесь не рассматриваются. [c.78]

    Достижения К. х., в течение длит, времени остававшейся чисто фундаментальной наукой, находят все большее практич. применение. Разработаны теории горения и взрыва, распространения пламени, детонации, используемые для изучения процессов, происходящих в двигателях и факелах ракет. Кинетич. исследования газофазных р-ций позволили создать хим. лазеры. Исследования кинетики газофазных р-ций имеют большое значение для химии земной атмосферы. На основе изучения кинетики р-ций в конденсиров. фазе создана теория жидкофазного окисления орг. соед., лежащая в основе технол. процессов получения мн. кислородсодержащих в-в. Кинетич. методы использ. для изучения пиролиза, полимеризации, каталитич. процессов, р-ций на пов-сти и в объеме тв. тел (см., напр.. Адиабатического сжатия метод. Акцепторов свободных радикалов метод, Релаксационные жтоды, Статические кинетические методы, Струевые кинетические методы). Знание кинетич. параметров позволяет совершенствовать известные и разрабатывать новые технол. процессы, создает основы для автоматического управления хим. процессами и т. д. См. также Механизм реакции. Скорость реакции.  [c.255]

    Поэтому установление предельной толщины слоя, меньше которой реакция проходит в кинетической области, т. е. скорость ее определяется только скоростью реакции поликонденсации, имеет очень важное зачение. Было высказано предположение [49], что при толщине слоя расплава 0,5 мм исключается влияние диффузии на общую кинетику процесса, тогда как при использовании более толстых слоев наблюдается переход в диффузионную область. Эти выводы малочубедительны из-за недостаточно надежного определения порядка реакции и отсутствия данных для более тонких слоев. Процесс поликонденсации в гонких слоях полиэтилентерефталата был исследован Стевенсоном [50], Кэмпбеллом [51] и описан в ряде патентов [52]. Чефелин [53] использовал методику Маркеса поликонденсации в вакууме в запаянных вращающихся ампулах и динамометрический метод с применением весов Мак-Бена с кварцевой спиралью и показал, что только в пленке расплава толщиной 0,005—0,02 мм исключено влияние диффузии на скорость реакции и константа скорости возрастает при повышении степени полимеризации исходного полимера, концентрации катализатора и температуры. Он же привел данные [53] о том, что в области конверсии 95—98% при 280 °С и остаточном давлении 0,16 кПа (1,25 мм рт, ст.) выделение этиленгликоля протекает как реакция второго порядка с константой скорости К-= 1,30-10 г-мoль с" при концентрации ацетата сурьмы 0,092% (масс.). [c.69]

    Закономерности ионной полимеризации могут быть рассмотрены только в общих чертах, так как в каждом конкретном случае в зависимости от природы мономера, катализатора к среды процесс имеет свои особенности. Энергия активации ионной полимеризации ниже, чем радикальной, поэтому процесс идет прн низких температурах, часто отрицательных, с очень высокой скоростью. Ионная полимеризация, как любой цепной процесс, протекает в три стадии инициирование, рост цепи, ограничение роста. Однако в отличие от радикальных процессов функция катализатора не ограничивается только участием в реакц[ ях инициирования катализаторы влияют на реакцик роста и обрыва цепи, участвуют в реакциях переноса. Это определяет кинетику процесса н структуру получаемого полимера. Прн радикальной по.лимернэации инициатор не оказывает влияния на структуру полимера. [c.122]

    Исследование кинетики процессов полимеризации методами гельпрпникающей хроматографии (ГПХ) [c.200]

    Напомним, что, по-видпмому, впервые Стерн и Эйринг [221] воспользовались предположением о диффузионной кинетике процессов обрыва цепей при интерпретации влияния давления иа скорость реакций полпмеризации. Эти авторы предложили уравнение, связывающее константу скорости полимеризации к с константами скорости инициирования, роста и обрыва материальных ценей  [c.213]

    Активность карбоната стронция в значительной мере определяется степенью заполнения поверхности катализатора адсорбированной водой. Кинетика процесса носпт сложный характер период резкого начального ускорения подвержен влиянию примесей и полярных добавок стационарная полимеризация протекает по первому порядку относительно мономера. Концентрация активных центров составляет примерно 10 на 1 см , что, скорее всего, отвечает концентрации поверхностных дефектов. В пользу большой неоднородности активной поверхности свидетельствуют также исследования закономерностей активации катализатора при адсорбции воды [121, 122]. [c.263]

    В главе, посвященной полимеризации мономеров типа стирола, освещаются вопросы, исследованию которых, начатому еще в начале столепия, посвящено наибольшее число работ. В ней авторы обобщают главным образом последние исследования советских ученых, в которых особое внимание уделяется специфическому действию эмульгатора на механизм инициирования и кинетику процесса. [c.8]


Смотреть страницы где упоминается термин Полимеризация от кинетики процесса: [c.331]    [c.717]    [c.67]    [c.175]    [c.637]    [c.20]    [c.21]    [c.7]    [c.8]    [c.83]    [c.104]   
Фракционирование полимеров (1971) -- [ c.368 , c.376 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика процессов



© 2025 chem21.info Реклама на сайте