Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминия оксид как сорбент для хроматографи

    Тонкослойная хроматография. Тонкослойная хроматография применяется при разделении очень малых количеств веществ на небольшом слое адсорбента за короткое время. Существуют два способа приготовления тонкого слоя сорбента — в закрепленном и незакрепленном слое. В качестве сорбента для приготовления закрепленных слоев применяют оксид магния, оксид алюминия, оксид кальция, карбонат магния, силикагель в смеси со связывающими компонентами. Связывающими веществами могут служить сульфат кальция, рисовый крахмал и вода. При приготовлении хроматографической пластинки с закрепленным слоем адсорбента на стеклянную пластинку (9 X 12 см, 13 X 7 см) наносят в виде кашицы смесь адсорбента со связующим веществом (5% от массы адсорбента) и водой. С помощью специального валика равномерно раскатывают эту смесь и делают слой толщиной 2 мм, затем пластинку высушивают при ПО—120°С. После этого на пластинке не должно быть трещин. При работе на тонком, незакрепленном слое можно использовать различные адсорбенты (наибольшее значение имеет оксид алюминия и силикагель). Для приготовления тонкого, незакрепленного слоя можно воспользоваться такими же стеклянными пластинками, как это описано выше. На пластинку насыпают слой сорбента, равномерно раскатывают его валиком, слегка прижимая к стеклу, снимая при этом избыток. Валик можно сделать из стеклянной палочки диаметром 8—10 мм и длиной несколько большей, чем ширина пластинки. На концы палочки надевают резиновые трубочки (длиной 1 см). Толщину их стенок подбирают так, чтобы при накатывании адсорбента образовывался слой до 1 мм. Трубочки должны находиться на таком расстоянии, чтобы после проведения валиком по пластинке оставались свободные от адсорбента полосы. Можно валик сделать металлический, причем он должен накладываться на пластинку для закрепления ее во время нанесения адсорбента удобно пользоваться специальным приспособлением (рис. 20). [c.27]


    В качестве сорбентов применяют силикагель марки КСК, оксид алюминия для хроматографии с активностью степени II или III, силикат магния. Широко применяют готовые пластины типа Силуфол-254 и др. [c.240]

    Оксид алюминия. Поверхность этого сорбента, образованная ионами алюминия и кислорода, способна создавать сильное электростатическое поле, обладающее поляризующим свойством. Вследствие этого на оксиде алюминия соединения, имеющие систему легко смещаемых электронов (непредельные, ароматические и др.), сорбируются в большей степени, чем на силикагеле. Вода легко адсорбируется на поверхности оксида алюминия. При нагревании до 300—400°С большая часть адсорбированной воды удаляется. Остается вода, взаимодействующая с поверхностью, в результате чего образуются гидроксильные группы. В такой форме оксид алюминия используют в хроматографии. Различают три вида адсорбционных центров на оксиде алюминия кислотные, взаимодействующие с веществами, имеющими области с высокой электронной плотностью основные — адсорбирующие кислоты электронно-акцепторные, взаимодействующие с легко поляризуемыми ароматическими молекулами. [c.597]

    В качестве сорбентов использовали неорганические фазы. Так, смесь антрацена и фенантрена анализировали при 270°С на колонке, заполненной хлоридом кальция на хромосорбе или на ИНЗ-600 [79] смеси нафталина, бифенила, аценафтена, аценафтилена, флуорена, фенантрена, антрацена, пирена и флуорантена разделяли на оксиде алюминия, пропитанном раствором едкого натра и хлорида натрия [80] смесь нафталина, бифенила, фенантрена и терфенилов — на сульфате бария при 210—350°С [81]. Успешно проводится количественный анализ технических пе-ковых дистиллятов на хроматографе с пламенно-ионизационным детектором и программированием температуры в интервале 110— [c.137]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]


    Аналогичная картина разделения веществ (в основном органического происхождения) получается на стеклянной пластинке, покрытой слоем мелкодисперсного сорбента (оксида алюминия, силикагеля, целлюлозы, крахмала и др.). Это так называемая тонкослойная хроматография, получившая за последние годы [c.10]

    Окислительно-восстановительная хроматография. Сорбенты — оксид алюминия, ионообменные смолы, желатина (как студнеобразующее вещество) или другой носитель, удерживающий вещество, участвующее в окислительно- [c.8]

    Носители (сорбенты). В качестве носителей в осадочной хроматографии используются вещества с развитой поверхностью, химически индиферентные к компонентам анализируемого раствора и к растворителю (за исключением, когда носитель одновременно является осадителем, например, диметилглиоксим и т. п.). Такими свойствами обладают силикагель, оксиды алюминия, цинка, кальция, сульфат бария, кварц, стеклянный порошок, глинистые минералы и др. Чем мельче дисперсность носителя, тем более компактными будут зоны отдельных осадков в колонке. Однако чрезмерно мелкозернистый носитель препятствует протеканию раствора через колонку. Целесообразно использовать носители с диаметром зерен 0,02—0,10 мм. [c.226]

    В качестве носителя чаще всего применяют оксид алюминия или уголь, выпускаемый под названием древесный активированный уголь для хроматографии (ДАУХ), отличающийся от осветляющего угля более крупным зернением, обеспечивающим достаточную скорость протекания раствора через колонку. Для качественного анализа применяют оксид алюминия как носитель, так как на поверхности светлого сорбента можно наблюдать образование характерно окрашенных зон комплексных соединений. [c.248]

    Неподвижные твердые фазы. В газовой адсорбционной хроматографии в качестве НФ чаще всего используют силикагель, оксид алюминия, активные угли и молекулярные сита. Адсорбционные характеристики оксида алюминия, силикагеля и угля в значительной степени зависят от исходного сырья, способов приготовления и предварительной обработки. В современной аналитической ГХ эти сорбенты применяют гораздо реже, чем сорбенты с нанесенной жидкой фазой. Более подробно сведения о силикагеле и оксиде алюминия приведены в разделе, посвященном жидкостной хроматографии. Активные угли — неполярные сорбенты с развитой пористой структурой. Они избирательно поглощают углеводороды, ароматические соединения, спирты, эфиры. [c.620]

    Оксид алюминия, применяемый в качестве сорбента как в газовой, так и в жидкостной хроматографии, получают путем дегидратации при высушивании гидроксида [c.89]

    Адсорбционную очистку проводят методом классической колоночной хроматографии. В качестве адсорбентов используют оксид алюминия и силикагель с большой удельной поверхностью (например, КСМ-5) и размером зерна 0,1—0,5 мм. Сорбенты предварительно сушат в течение нескольких часов при 250—300 °С и 160—180 °С. Обычно применяют стеклянные колонки достаточно большой вместимости с отношением высоты к диаметру в пределах 20—30 и краном, работающим без смазки. Наилучшие результаты достигаются на колонках с двумя слоями сорбента нижнюю половину колонки набивают оксидом алюминия, а верхнюю—силикагелем. [c.132]

    Жидкостно-твердая хроматография (ЖТХ), которая представляет собой разновидность адсорбционной хроматографии. Колонку заполняют такими сорбентами, как силикагель, оксид алюминия, молекулярные сита или пористое стекло, а компоненты образца перемещаются подвижной фазой (разд. 23.11). К этой группе принадлежит и тонкослойная хроматография (ТСХ), в которой вместо колонки используется плоская стеклянная пластинка с нанесенным на нее сорбентом (разд. 23.15). [c.27]

    Если применение силикагеля невозможно, и при варьировании растворителя хроматографирование проводят на других сорбентах (силикагель с обращенной фазой, оксид алюминия, целлюлоза, полиамид или сефадекс) или используют хроматографию на сухой колонке [9]. [c.48]

    Обычно линейный участок изотермы оказывается тем короче, чем круче исходный наклон графика (т.е. чем сильнее вещество сорбируется при конкретной активности сорбента). Как правило, изотермы могут быть спрямлены дезактивированием сорбента (например, за счет повышения относительной влажности в адсорбционной хроматографии или за счет повышения элюирующей способности подвижной фазы). Дезактивирующие добавки селективно занимают центры с наибольшей активностью, что делает поверхность сорбента более однородной. Возможность выпрямления изотерм за счет повышения температуры в ТСХ практически не используется. Хорошо дезактивированные силикагели (тех сортов, которые применяются для ТСХ) обладают сорбционной емкостью в 5-15 раз более высокой, чем оптимально дезактивированный оксид алюминия. При той толшине слоя силикагеля, которая характерна для аналитических разделений (порядка 0.25 мм), и при средней активности (при относительной влажности 45%) линейность изотермы не нарушается при нанесении до 5-20 мкг образца (в зависимости от вида вещества и [c.151]


    Автор предлагает [4] использовать в качестве стандартных гидрофильных адсорбентов оксид алюминия с характеристиками, сходными с АЬОз типа Т, и силикагель типа силикагеля 60. Автор также считает необходимым, чтобы этот же адсорбент (с соответствующим размером частиц) бьш пригоден и для колоночной хроматографии. Это требование выполняется только частично. Между прочим, из данных, приведенных на рис. 110, следует, что фирма Мегск непреднамеренно продавала, по крайней мере с 1963 г. по настоящее время, под разными названиями один и тот же адсорбент. Этот адсорбент сходен с выпускаемым в настоящее время силикагелем 60 (характеристики сорбента приведены на рис. 122, в). [c.368]

    ДПЯ хроматографии на оксиде алюминия или силикагеле методы анализа должны быть сопоставлены с методами ОФ ТСХ на химически привитых сорбентах. В последнем случае трудно стандартизировать метод анализа, поскольку свойства сорбента изменяются от партии к партии, а в результате этого меняется селективность. [c.400]

    Нейтральные азотистые соединения, выделенные из деасфальтенизатов нефтей, подвергали последовательной хроматографической очистке и разделению на силикагеле и оксиде алюминия. Марки сорбентов, условия активации и соотношение образца к адсорбенту аналогичны таковым, использованным для разделения азотистых оснований. Фракционирование концентратов К-4 и К-5 проводили па активированном силикагеле с отбором фракций, исчерпывающе десорбируемых элюотропным рядом растворителей. В случае К-4 применяли смесь пентап — бензол (10 1 по объему), бензол и спиртобензол (1 1) с получением фракций Сц, Сх и Сд соответственно для разделения К-5 использовали смеси пентан — бензол (4 1) и спирт — бензол (1 1) с отбором фракций Со и С соответственно. Нри изучении химического состава нейтральных азотистых соединений вакуумного газойля товарной западно-сибирской нефти хроматографическому разделению на силикагеле подвергали только концентрат, выделенный в виде нерастворимого комплекса с тетрахлорид-тптаном, используя в качестве элюентов смесь пентана с бензолом (10 1) (фракция Сц), спирт — бензол (1 1) (фракция Сх). Бензольные элюаты далее фракционировали на оксиде алюминия, деактивированном 3 мас.% воды, спирто-бен-зольные — на оксиде алюминия, содержащем 4 мае. % воды. В обоих случаях использовали бинарные смеси растворителей с постепенно возрастающей силой элюепта едв с Аедв на 0,1. Обозначение продуктов разделения нейтральных азотистых соединений аналогично таковому, принятому для азотистых оснований (см. 5.2.1). В качестве растворителей для получения бинарных смесей при хроматографии на оксиде алюминия использовали пентап, четыреххлористый углерод, бензол, хлороформ, диоксан. Объемную долю сильного растворителя в бинарной смеси с заданной силой элюепта рассчитывали по [38]. [c.131]

    При сравнении силикагеля и оксида алюминия было установлено, что на силикагеле достигается лучшее отделение алканоциклоалканов от аренов, а на оксиде алюминия — более четкое разделение аренов на моно-, би- и полициклические. Кроме того, оксид алюминия позволяет несколько лучше отделять углеводороды от сераорганических соединений, хотя четкого разделения не достигается. В связи с этим предложено применять двойной сорбент — оксид алюминия внизу, а силикагель АСК — вверху колонки при соотношении 1 1 [78]. Разделение нефтяных фракций проводилось при следующих условиях соотношение продукт сорбент =1 10 разбавление фракций деароматизированными алканами или фракцией алкилата (50—80°С) в соотношении 1 3 десорбция при разделении фракций, перегоняющихся до 350 °С, осуг ществлялась последовательно фракцией алкилата (2 1, считая на сорбент), затем бензолом (1 1) и спирто-бензольной смеськз (1 1). Для десорбции фракций, перегонящихся выше 350 °С, после фракции алкилата подавали смеси той же фракции алкилата с 5, 10, 15, 20 и 25% бензола (1 2, считая на сорбент), затем чистый бензол и спирто-бензольную смесь. Температура адсорбции и десорбции поддерживалась 25—40°С. Показано, что применение этой методики с двойным сорбентом при определении группового углеводородного состава 50-градусных фракций, перегоняющихся в пределах 200—400 °С, дает лучшие результаты, чем адсорбционная хроматография на индивидуальных сорбентах — силикагеле или оксиде алюминия. [c.61]

    Для выделения органических суперэкотоксикантов из экарак-гов применяют различные сорбенты силикагель, кремниевую кислоту, оксид алюминия, флоризил(силикат магния), фосфат кальция, активный уголь, целлюлозу, полимерные смолы и др Классическим примером могут служить методы разделения ХОП и ПХБ с помощью флоризила [90,9 П и арохлора [92,93] Большое число работ посвящено вьщелению ХОС и ПАУ с применением колоночной хроматографии на силикагелях [36,94-96]. Установлено, что степень ра аделения ПХБ и ХОП зависит от пористости и удельной поверхности силикагелей, условий их активации и содержания воды Интересные результаты получены при использовании двух колонок, заполненных оксидами алюминия и кремния [97] (рис. 6 4) Для удаления остаточных количеств воды наряду с сорбентами в каждую колонку добавляют по 0,2 г безводного сульфата натрия [c.221]

    Алюмогедь (активный оксид алюминия)—частично гидратированный оксид алюминия. Воды в нем 1—3%, 5уд= 170-+300 м /г. Получают его из чистого гидроксида алюминия, который активируют азотной кислотой, а затем нагревают при 450Х. При 500°С активный у-оксид превращается в неактивную а-модификацию. Промышленность выпускает активный оксид алюминия двух сортов А-1 и А-2. Оксид алюминия А-1 содержит макропоры, насыпная плотность 0,4—0,5 г/см , А-2 не содержит макропоры, насыпная плотность 0,55—0,8 г/см . Это полярный специфический сорбент, но менее пористый, чем силикагель. Кроме того, он обладает меньшим поляризующим действием, чем силикагель. С повышением температуры колонки его каталитические свойства возрастают, что невыгодно и хроматографии. Применяя оксид алюминия, дезактивированный 2 Уо воды, можно значительно уменьшить удерживаемый объем высококипящих веществ и осуществить десорбцию легко-кипящих компонентов без нагрева колонки. Перед заполнением колонки оксид алюминия прокаливают до постоянной массы при 200—300°С. [c.170]

    Оксид алюминия ( APTW 6-09-5296—69, ч. для хроматографии ) — наиболее активный и доступный сорбент, обладающий удельной поверхностью 100—200 м г. На оксиде алюминия имеется несколько типов активных адсорбционных центров, Одни из них избирательно сорбируют кислоты, другие — основания. При этом для кислот рЛ <5 и оснований с /7Л >9 характерна хемосорбция. Среди адсорбционных центров, сорбирующих основания, имеются и такие, которые образуют комплексы с ароматическими углеводородами, что позволяет использовать оксид алюминия для разделения последних. Оксид алюминия эф( )ективен также для разделения ациклических углеводородов с различным числом двойных и тройных связей. [c.57]

    Широко используются различные известные варианты хроматографии, в том числе и наиболее распространенный — жидкостноадсорбционный. На рис. 63, U—г изображены схемы аппаратурного оформления колоночной хроматографии. Отношение диаметра колонки к ее высоте составляет 1 10, 1 15, а количество сорбента берут в 50 100 раз больше, чем количество разделяемой смеси. В качестве неподвижной фазы в жидкостно-адсорбционном варианте чаще всего применяют оксид алюминия различной активности или силикагель с размером гранул 100—150 или 150—200 мкм. С уменьшением размеров гранул разделительная способность сорбента возрастает, однако одновременно возрастает и гидродинамическое сопротивление всей колонки. Для ускорения хроматографического процесса элюент подают под давлением (рис. 63, д). [c.59]

    К. М. Ольшанова и Л. А. Куницкая [164] разработали методику качественного анализа катионов III и IV аналитических групп с помощью осадочной тонкослойной хроматографии. В качестве сорбента применяли оксид алюминия ( для хроматографии ) и силикагель КСК-2. Сорбенты без добавления связующего вещества наносили на стеклянную пластинку (9x12 см) слоем 0,4 мм. Для исследования применялись растворы соответствующих солей в пределах концентраций 0,1—0,25 н. по отношению к каждому катиону для открытия катионов применяли высокоселективные проявители, дающие специфическую окраску с исследуемым катионом. Несложная техника выполнения и быстрота метода дают возможность использовать его как контрольный при качественном анализе неорганических веществ. [c.210]

    Совсем недавно появилось описание новой разновидности хроматографического анализа, названного пиковой тонкослойной окислительно-восстановительной хроматографией [140]. Этот метод был применен для количественного определения церия (IV) в растворах и заключается в следующем. На стеклянную пластинку наносили сорбент — оксид алюминия или силикагель в виде суспензии. Толщина слоя сорбента составляла 0,5 мм. На линию старта наносили капилляром по 0,02 мл хроматографируемого раствора. Пластинку помещали в наклонном положении в раствор смеси 3%-ного раствора перекиси водорода и 2 н. раствора аммиака, смешанных в определенном соотношении. Через 10—15 мин образовалась оксихроматограмма, на которой исследуемые вещества отображались в виде пиков. Было найдено, что с увеличением концентрации раствора церия высота пиков оксихроматограмм пропор- [c.224]

    Среди сорбентов, давно и успешно применяемых в жидкостной адсорбционной хроматографии, следует назвать силикаты кальция и магния. К этим адсорбентам относится и выпускаемый промышленностью адсорбент флорисил М з[814О 0](ОН)2. Эта группа адсорбентов скорее ионная, чем ковалентная, поэтому следует ожидать сходства этих адсорбентов с оксидом алюминия. Кроме того, силикагель обладает слабокислотными свойствами, а для суспензий силиката магния характерен pH = 8-10. [c.377]

    Оксид алюминия, так же как и силикагель, широко используют в колоночной хроматографии низкого давления и в ТСХ. Так как имелся большой опыт разделений, вначале его достаточно интенсивно применяли для ВЭЖХ. Однако постепенно его применение уменьшалось, и в настоящее время встречаются единичные работы, связанные с применением оксида алюминия в качестве адсорбента. Фирмы или не производят сорбентов такого типа, или же производят ранее разработанные (возможно, даже давно произведенные), не разрабатывая новых вариантов. [c.19]

    Основными привитыми фазами для нормально-фазной распределительной хроматографии в настоящее время являются нитрильная и аминная. Каждая из них прививается с использованием соответствующего силана (диметиламинопропилхлор или диметилцианпропилхлорсилана). Нитрильная и аминная привитые фазы могут быть поэтому использованы в двух вариантах для нормально-фазной (с неполярными элюентами) и обращенно-фазной (с полярными элюентами) распределительной ВЭЖХ. В качестве нормально-фазных сорбентов они работают, подобно силикагелю или оксиду алюминия, с теми же элюотропными рядами [c.21]

    Выбор сорбента и колонки для ГВЭЖХ также имеет свои особенности. Прежде всего, колонка должна быстро приходить в равновесие с растворителем постоянно изменяющегося состава как в процессе градиентного элюирования, так и при возвращении к исходному составу растворителя при подготовке колонки к новому анализу. Если для старых колонок в жидкостной хроматографии, работавших однократно, градиент формировался и использовался один раз, после чего сорбент в колонке заменялся свежим, и это позволяло применять силикагель и оксид алюминия, то для ГВЭЖХ эти сорбенты не подходят, так как уравновешивание их со слабым растворителем после градиента слишком длительно. Однако современные обращенно-фазные и другие привитые сорбенты достаточно быстро приходят в равновесие с исходным растворителем после окончания градиентного элюирования, что позволяет успешно использовать их для этих целей. Время, необходимое для уравновешивания колонки, для каждого сорбента устанавливается экспериментально по достижению постоянства времени удерживания веществ, входящих в анализируемую смесь. Это время различно как для разных сорбентов, так и для разных по составу растворителей, и может колебаться от десятков до нескольких сотен минут. [c.66]

    Сорбенты первой группы были исторически первыми, стимулировавшими быстрый рост ВЭЖХ. Они представляют собой стеклянные микрошарики размером 35—50 мкм, на поверхности которых различными способами закрепляется слой силикагеля или оксида алюминия толщиной в 1—2 мкм. Этот слой кет либо использоваться для разделения методом адсорбционной хроматографии, либо модифицироваться нанесением подвижной фазы. Нанесение фазы возможно динамическим методом из растворителя, методом испарения раствора фазы, как в ГХ наноситься могут индивидуальные вещества или же полимеры наконец, фазами могут служить химически привитые пленки как в виде монослоев (щеточные сорбенты), так и в виде полимерных пленок разной толщины. [c.87]

    Хотя оксид алюминия широко и давно используют в колонной и тонкослойной хроматографии, его применение в ВЭЖХ имеет ограниченный характер. Это связано с тем, что микрочастицы оксида алюминия выпускают не все фирмы-производители сорбентов, а привитые фазы на этой основе не выпускаются совсем. Тем не менее в некоторых случаях, когда требуется селективность, отличная от селективности силикагеля, оксид алюминия применяют. Его также используют и в тех случаях, когда нужно перейти к ВЭЖХ от методики ТСХ, размотанной на пластинках с оксидом алюминия. [c.90]

    При разделении гликоалкалоидов методом колоночной хроматографии в качестве сорбента применяют нейтральный оксид алюминия (II) и (III) степени активности по Брокману, а элюирование проводят смесью бензола с хлора юрмом. [c.165]

    Оксид алюминия, как и силикагель, широко исгюльзуют в колоночной хроматографии низкого давления и в ТСХ. Сорбенты на основе оксида алюминия показали повышенную селективность по сравнению с силикагелем в разделении многоядерных ароматических углеводородов, некоторых аминов. [c.43]

    Для приготовления препаративных слоев продаются порошки силикагеля и оксида алюминия, содержащие для улучщения адгезии мелкие частицы без добавления постороннего связующего, а также сорбенты, содержащие в качестве связующего сульфат кальция (Р-серии). Для детектирования зон с помощью гашения флуоресценции сорбенты могут содержать люминофоры на 254 или 254 и 366 нм. Следует тщательно следовать инструкциям производителей по нанесению суспензий порошка, их сушке и активированию, чтобы избежать растрескивания и шелушения слоев. В настоящее время для препаративной хроматографии широко используют слои из силикагеля или оксида алюминия. Детальные указания и предостережения по нанесению препаративных слоев различной толщины можно найти в книге Халпаапа [12]. [c.133]

    Оксид алюминия является типичным представителем полярных неорганических гидрофильных сорбентов ионного типа. Оксид алюминия получают путем термического удаления влаги из гидратированного гидроксида алюминия. В зависимости от исхохшого материала и используемого процесса гидратации получают разные кристаллические формы оксида алюминия а, Р, у, 11. Они имеют разные удельные поверхности, размер пор и поверхностную энергию, чем и обусловлены различия их хроматографических свойств. Можно выделить несколько типов композиций смешанные составы - оксид и гидроксид алюминия, низкотемпературные (200-600 С) и сверхвысокотемпературные (1100 С) оксиды алюминия. Как правило, повышение температуры дегидратации способствует снижению удельной поверхности. Например, оксид алюминия с очень высокой температурой обработки обладает чрезвычайно низкой удельной поверхностью и вследствие этого не используется в хроматографии. [c.375]

    Некоторое время считалось, что анализ ионных или ионогенных соединений следует проводить методом ион-париой хроматографии с обращенными фазами. Однако в настоящее время исследователи останавливают свой выбор либо на традиционном варианте ионообменной хроматографии, либо на хроматографии с применением немодифициро-ванного силикагеля или оксида алюминия. В последнем случае применяют водные растворители и буферы. Хроматография на немодифицированном силикагеле или оксиде алюминия имеет существенные преимущества по сравнению с ОФ-вариаитом. Во-первых, свойства сорбента не меняются от партии к партии, во-вторых, сорбенты в меньщей степени подвержены гидролизу и, наконец, при анализе таких проб, как сыворотка, не требуется предвар1ггельная очистка [275]. Оксид алюминия ие изменяет своих свойств при использовании водных элюентов с pH от 2 до 12. Силикагель растворим в воде при рН>8, однако этот недостаток может быть преодолен при насыщении растворителя силикагелем в фор-колонке. При использовании ТСХ описанные преимущества реализуются наилучшим образом (см. разд. 1П, Б, 2). Учитывая взаимное влияние буфера, растворенного вещества, рК, состава элюента и pH, можно варьировать условия и тем самым оптимизировать процесс разделения. Разработанные [c.399]

    Обычно в методе жидкостной адсорбционной хроматографии предлагается использование полярных неподвижных фаз в сочетании с неводными подвижными фазами. Типичными сорбентами являются силикагель, оксид алюминия, силикагель с привитыми полярными группировками (амино-, циано- или диольными). Обычно используются однокомпонентные растворители или растворители, состоящие из "неполярного носителя" (гексан или фреон-113), в который для регулирования элюирующей способности растворителя и селективности вводят различные полярные растворители ("модификаторы"), например метиленхлорид, различные простые эфиры, этилацетат, метанол, ацетоннтрил и т.д. [c.13]

    Инструментальные методы оценки тонкослойных хромато-грамм изложены в работах [31, 34]. Адсорбирующими материалами в тонкослойной хроматографии могут быть силикагель, оксид алюминия, диатомиты и измельченная до пудры целлюлоза. Тонкослойную пластинку изготовляют распылением водной суспензии сорбента по поверхности пластинки или наносят на стеклянные пластинки, предварительно обезжиренные хромовой о СЬЮ, промытые и высушенные. Пластинки затем выдержива- ллотнения слоя. Для некоторых целей ее можно акти-ванием в сушильном шкафу в течение нескольких [c.33]

    Работа хроматографа. В хроматографической колонке длиной 1 м с внутренним диаметром 6 мм, заполненной молекулярными ситами типа 5А с размером зерен 0,25—0,5 мм, происходит отделение метана от следов азота при 50 °С. Форколонка представляет собой и-обратную стеклянную трубку длиной 50 см с внутренним диаметром 4 мм, заполненную высушенным при 350 °С гранулированным (0,25—0,5 мм) активным оксидом алюминия с добавкой 10% Ы-метилпирролидона. Удельные объемы удерживания диэтилового эфира и бензола на этом сорбенте при 20 °С составляют 37 см г и 345 смУг соответственно, метан в колонке практически не сорбируется. Форколонка служит для отделения метана, образовавшегося в результате реакции гидроксилсодержащего полимера с метилмагнийиодидом, от паров растворителей — бензола и диэтилового эфира. Время удерживания диэтилового эфира в форко-лонке при комнатной температуре и скорости газа-носителя, равной 50 смУмин, составляет 4 мин, поэтому продолжительность продувки реактора и форколон-ки по схеме с прямой продувкой не должна превышать 3,5 мин. Продолжительность продувки реактора и форколонки определяется удельным объемом удержания диэтилового эфира на оксиде алюминия, модифицированном метилпир-ролидоном, а также шириной хроматографической полосы метана. [c.92]


Смотреть страницы где упоминается термин Алюминия оксид как сорбент для хроматографи: [c.163]    [c.322]    [c.64]    [c.34]    [c.129]    [c.311]    [c.297]   
Техника лабораторных работ (1982) -- [ c.313 , c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминия оксиды

Сорбенты

Сорбенты хроматографии



© 2025 chem21.info Реклама на сайте