Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная кислота, проба на серную

    Отфильтрованный осадок промывают спиртом для удаления растворимых солей, после чего смывают его спиртом в химический стакан, всего расходуют 100 мл спирта. Добавляют 0,5 мл ледяной уксусной кислоты и кипячением переводят соли в раствор. Оставляют стоять 10—15 ч для выпадения осадка. Осадок отфильтровывают и промывают спиртом до отрицательной реакции на ион свинца (по серной кислоте). Затем его смывают диэтиловым эфиром в тот же стаканчик, в котором производили осаждение, разлагают свинцовые соли жирных кислот 10%-ной азотной кислотой (проба на метиловый оранжевый) и переносят в делительную воронку отделяют эфирный раствор жирных кислот, промывают его водой для удаления азотной кислоты (проба на метиловый оранжевый). Эфир отгоняют, полученные твердые кислоты высушивают в термостате до постоянной массы. [c.76]


    Ход анализа. Фильтр с отобранной пробой помещают в фарфоровый тигель, смачивают 5 мл смеси азотной и серной кислот и нагревают на песочной бане до появления паров ЗОз. Затем тигель устанавливают в муфельную печь, нагревают постепенно до 400—450 С и выдерживают при этой температуре до полного озоления. После этого пробу охлаждают и остаток растворяют в 10 мл 5%-ного раствора азотной кислоты. Пробу переносят в пробирку и доводят объем до 10 мл 5 /о-ным раствором азотной кислоты, ополаскивая ею тигель. При появлении взвеси пробу фильтруют. Затем в пробирку с раствором опускают свободный конец капилляра прибора и измеряют оптическую плотность в следующих условиях для атомизации используют воздушно-ацетиленовое пламя расход воздуха 20 л/мин, ацетилена — 5 л/мин длины волн для никеля 232,0, меди — 324,8, кобальта — 240,7 нм. Содержание металлов в пробе находят по градуировочному графику. [c.61]

    Сухой остаток растворяют в 1—5 мл воды и убеждаются в отсутствии следов азотной кислоты (проба с дифениламином в концентрированной серной кислоте). [c.64]

    Затем часовое стекло обмывают водой, приливают к раствору 5 мл разбавленной серной кислоты и выпаривают содержимое стакана на плитке до появления густых белых паров серной кислоты. В пары вносят палочку, смоченную раствором дифениламина в концентрированной серной кислоте. Если наблюдается посинение дифениламина, стакан охлаждают, осторожно вливают немного воды и повторяют выпаривание до полного удаления азотной кислоты (проба дифениламином). Содержимое стакана охлаждают, разбавляют водой и нагревают до полного растворения безводной сернокислой меди. [c.405]

    Пробу в количестве 10—20 г разлагают обычным способом серной и азотной кислотами. Количество серной кислоты не должно превышать 4 мл, чтобы разбавленный раствор не был слишком кислым (<1 н.) для последующего определения. Необходимо убедиться, что вся азотная кислота была удалена после кипячения. [c.774]

    Хотя твердый парафин пробовали окислять с помощью бихромата калия и серной кислоты, но на практике в качестве окислителя, кроме молекулярного кислорода, получила применение только азотная кислота (или окислы азота). В процессе окисления азотная кислота или двуокись азота восстанавливается в окись азота, которая кислородом воздуха окисляется опять в двуокись. Таким образом, двуокись азота действует как переносчик кислорода, содержащегося в воздухе. [c.76]


    Окись азота снова быстро окисляется кислородом воздуха до двуокиси, а NOj, в свою очередь, окисляет ион йода. Таким образом, N0 является соединением, которое каталитически ускоряет реакцию между йодидом и кислородом воздуха присутствие даже незначительного количества NO приводит к выделению большого количества йода. Поэтому необходимо обращать серьезное внимание на полное удаление окислов азота. Для их удаления раствор нужно тщательно прокипятить. Еще лучше совершенно удалить азотную кислоту выпариванием раствора с серной кислотой до появления тяжелых белых паров H SO,. Следует убедиться в полноте удаления HNO, (пробой с дифениламином, проверяя содержание ее в парах серной кислоты). В случае положительной реакции раствор после охлаждения осторожно разбавляют водой и повторяют выпаривание. [c.412]

    Для растворения навески твердого вещества чаще всего применяют обработку пробы минеральными кислотами при нагревании на песчаной или водяной бане. Нередко используют смесь кислот, например царскую водку (смесь концентрированных соляной и азотной кислот), или смесь кислоты и окислителя (пероксида водорода, брома), или (реже) смесь кислоты и восстановителя. Подбор растворителя упрощается, если основные компоненты пробы известны из предварительных данных. Многие сульфидные руды сначала обрабатывают соляной кислотой при нагревании, затем добавляют азотную и новую порцию соляной кислоты. Разложение часто заканчивают обработкой пробы серной кислотой при нагревании. Так поступают при определении в рудах свинца, меди и других металлов. Если же предстоит определение серы, то пробу обрабатывают дымящей азотной кислотой, иногда с добавкой брома, чтобы окислить сульфид до сульфата и не допустить потери серы в виде сероводорода. [c.19]

    Мокрое озоление проводят следующим образом. В термостойкий стакан или фарфоровую чашку помещают навеску пробы, добавляют 2-3 мл концентрированной серной кислоты, 5 мл концентрированной азотной кислоты и нагревают на песочной бане. Вещество под действием окислителя обугливается, раствор чернеет по мере расходования азотной кислоты. Снимают чашку с бани, немного охлаждают, добавляют свежую порцию (около 1 мл) НКОз и снова нагревают. Повторяют эту операцию несколько раз. [c.51]

    Если известно содержание учитываемых последним уравнением ионов, появляется возможность расчета концентрации ионов водорода. Реконструированная таким образом величина pH проб дождевой воды, отобранных в Европе в довоенное время, составляет в среднем 5,5. И если сейчас в Западной и Центральной Европе обычны дожди с pH < 5, причем до 60-65 % их кислотности определяется содержанием серной и до 30-35 - азотной кислоты, то ясно, что связано это главным образом с увеличением концентраций предшественников этих кислот в атмосфере. [c.199]

    Прокаленную при 500—800° в течение 20—30 мин. навеску переносят в стакан из жаростойкого стекла емкостью в 250—300 мл, добавляют 5 мл азотной кислоты, 10 мл соляной кислоты и 10 мл серной кислоты (1 1). При анализе шлаков, содержащих большое количество геля кремневой кислоты, дополнительно вводят 10 мл раствора фтористого аммония. После окончания выделения окислов азота нагревание усиливают и продолжают до полного удаления избытка серной кислоты. Разложенная масса должна получаться в виде совершенно сухого порошка, легко отстающего от дна стакана. Метод разложения проб разработан В. С.Быковой (1952 г.), Сухой остаток смачивают небольшим количеством воды (1—2 мл) и измельчают. [c.117]

    Предложено применять для разрушения также азотную кислоту [545], смесь азотной и серной кислот [545], азотной кислоты с перманганатом калия [1110], перекись водорода в присутствии солей железа и хрома в качестве катализаторов [975], кипящую серную кислоту [777]. Описаны методики, предусматривающие выделение ртути (после обработки пробы азотной кислотой) цементацией медью [671] или фильтрацией раствора через сульфид кадмия. В большинстве случаев определяют ртуть колориметрически с дитизоном [458, 733, 777, 923, 1027, 1110, 1266], ди-2-нафтилтиокарбазоном [672, 739, 901, 990], реже с иодидом [75, 347] и другими реагентами [545]. [c.176]

    В колбу емкостью 50 мл наливают 7 мл концентрированной серной кислоты и 5 мл дымящей азотной кислоты d 1,5). К полученной смеси постепенно прибавляют 5 г нитробензола. Затем нагревают открытую колбу в течение 30 мин на водяной бане при частом взбалтывании. Делают пробу на окончание реакции при добавлении в пробирку с холодной водой нескольких капель реакционной смеси (с помощью стеклянной палочки) не должно оставаться масла, т. е. непрореагировавшего нитробензола капли должны застыть в кристаллы динитробензола. При наличии в пробе масла следует продолжить нагревание на 10—15 мин и вновь взять пробу. [c.80]


    В колбу емкостью 100 мл наливают 17 мл концентрированной серной кислоты, затем 12,5 мл концентрированной азотной кислоты д. 1,4). К полученной смеси постепенно прибавляют 5 г нитробензола. Смесь нагревают 1 ч на водяной бане. После пробы на окончание реакции производят дальнейшую обработку так же, как в предыдущем опыте. Выход л1-динитробензола 5—6 г(75— 90% теоретического). [c.80]

    Впервые метод качественного определения типа полимера (натурального) был разработан Вебером [12]. Позже с появлением новых типов каучуков были предложены [12, 204]i методы определения типа полимера по плотности, по набуханию в различных растворителях, по измерению времени до начала разложения прн взаимодействии пробы со смесью концентрированных кислот (равные объемы серной и азотной кислот) при 40—60 °С, по отношению к горению и 80%-ному раствору серной и концентрированной азотной кислот. Наиболее широкое применение получили химические методы, основанные на определении функциональных групп полимеров [12, 204], на измерении плотности и pH продуктов термического разложения каучука [13]. Последний метод получил наибольшее применение [14, 203, 205, 206.  [c.84]

    Следы серебра в горячей ключевой воде [1535] концентрируют соосаждением с сульфидом мышьяка, далее осадок растворяют в азотной кислоте и отделяют мышьяк на колонке с амберлитом ША-410, после чего определяют серебро посредством дитизона, маскируя мешающие катионы (РЬ, Си, Bi) раствором комплексона III. При анализе подземных вод [173] особенностью метода является необходимость предварительного разрушения органических веществ окислением персульфатом аммония. После этого определение ведут обычным способом, маскируя в случае необходимости медь раствором комплексона III и восстанавливая ртуть аскорбиновой кислотой. Определение серебра в минеральных водах дитизоном описано в работе [1098]. Для анализа безалкогольных напитков на содержание серебра пробу предварительно озоляют в колбе Кьельдаля смесью концентрированных серной и азотной кислот и после этого проводят экстракцию дитизоном. [c.175]

    Описаны и методы с применением дитизона [614, 1475]. Определение серебра в свинцовых, медных и золотых концентратах также можно выполнить дитизоновым методом [37]. Пробу разлагают азотной кислотой и выпаривают досуха с серной или хлорной кислотами. Остаток растворяют в разбавленной серной кислоте, аликвотную часть раствора взбалтывают с бензольным раствором дитизона экстракты промывают раствором аммиака и фотометрируют при 435 нм. [c.178]

    Фосфор расплавляется и постепенно растворяется, при этом выделяется оксид азота N0. После полного растворения фосфора раствор выпаривают в фарфоровой чашке до полного выделения азотной кислоты (проба с дифениламином в концентрированной серной кислоте). Если раствор содержит Н3РО3 (фосфористая кислота) (проба с насыщенным раствором Hg l2), то добавляют концентрированной азотной кислоты и выпаривают до удаления HNO3, при этом температура не должна превышать 188°С Если под конец выпаривания появляются черно-коричневые хлопья [c.317]

    Фильтр с отобранной пробой помещают в фарфоровый тигель, смачивают 5 мл смеси азотной и серной кислот и нагревают на песочной бане до удаления кислот (до появления паров 50з). Затем тигель помещают в муфельную печь и нагревают до 400—450 С. Выдерживают пробу в печи до полного озоле-ния. После этого пробу охлаждают и образовавшиеся соли металлов растворяют в 10 мл 5%-ной азотной кислоты. Пробу переносят в пробирку и объем доводят до 10 мл 57о-ной азотной кислотой, тщательно ополаскивая тигель. При появлении взвеси пробу фильтруют. Затем в пробирку с пробой опускают свободный конец капилляра распылителя спектрофотометра и измеряют оптическую плотность растворов. Содержание металлов находят по градуировочным графикам. [c.53]

    Колонка 1,231X48,5 см сорбент — сополимер стирола и дивинилбензола, содержащий 2% дивинилбензола (сополимер алкилировали бензилхлоридом по методу Фриделя-Крафт-са, а затем нитровали дымящей азотной кислотой в серной кислоте полученный тетра-витробензилполнстирольный сорбент размалывали и методом осаждения выделяли фракцию с частицами размером 250—270 меш, взвесь этой фракции в ацетоне вводили в колонку) элюент—ацетон скорость потока 5 мл/ч проба — смесь углеводородов по 3—6 мг каждого в 0,3 мл ацетона отбор фракций — автоматическим коллектором обнаружение — методом УФ Спектрофотометрии или ГЖХ. [c.303]

    Подготовка проб осадка. 1—2 г воздушно-сухого осадка помещают в колбу Кьельдаля емкостью 250 мл. Осадок в колбе смачивают небольшим количеством воды и прибавляют 10—12 мл концентрированной серной кислоты. Осадок тщательно перемешивают, затем прибавляют 10 мл концентрированной азотной кислоты, пробу закрывают вгулттой и ставят на электрическую плитку с асбестовой сеткой. Озоление идет правильно, если выделяются бурые пары окислов азота. Если сжигание не окончено, добавляют [c.95]

    Нитробензол. О чистоте бензола или толуола, идущих на нитрование, сказано ранее. Приблизительный состав нитрующей смеси для нитрования бензола следующий 30% азотной кислоты, 60% серной кислоты и 10% воды. Ее можно готовить из кислот любых концентраций. На одну весовую часть бензола расходуются 2,5—3 части нитрующей смеси. Нитрование производится в закрытом чугунном котле, снабженном пропеллерной мешалкой, делающей около 60 оборотов в минуту, патрубком для спуска нитрующей смеси, чугунной термометрической гильзой, нижним спуском, рубашкой и внутренним свинцовым змеевиком для охлаждения. В аппарат заливают бензол, включают мешалку и систему охлаждения и начинают подавать охлажденную нитрующую смесь с такой скоростью, чтобы температура не поднималась выше 25—30°. К концу процесса температуру повышают до 70—80°. Ход реакции контролируют следующим образом отбирают пробу смеси, разделяют слои нитробензола и кислоты и определяют удельный вес нитробензола или содержание азотной кислоты в кислом слое, пользуясь нитрометром Лунге. Количество применяемой азотной кислоты должно быть таким, чтобы отработанная нитрующая смесь содержала около 1 % азотной кислоты. Обычно практикуется оставлять немного непронитрованного бензола, чтобы избежать динитрации. [c.90]

    Г FeS04-7H20 растворите в 66,8 мл дистиллированной воды, содержащей 3 мл концентрированной серной кислоты для подавления гидролиза солей. Для окисления железа (II) в железо (III) в полученный раствор добавьте небольшими порциями при нагревании и постоянном перемешивании 2,5 мл концентрированной азотной кислоты. После окончания окисления раствор прокипятите. Сначала он становится темно-бурым, а затем красно-коричневым. Для контроля полноты окисления железа (II) используйте в отдельной пробе реакцию с красной кровяной солью. [c.286]

    Для растворения пробы чугуна или стали используют смесь кислот, которая готовится следующим образом 200 мл серной кислоты (пл. 840 кг/м ) осторожно тонкой струёй при непрерьтном помешивании вливают в 550 мл воды и по охлаждении добавляют 150 мл азотной кислоты ( пл. 1400 кг/м ). Вычислите процентные концентрации кислот в полученном растворе. [c.4]

    Несмотря на перечисленные достоинства, применс-Н1 с окислителей связано со следующими недостатками. Обычно предварительная подготовка пробы к анализу состоит в переведении анализируемого материала в раствор посредством обработки различными кислотами чаще всего применяют азотную кислоту или ее смесь с хлороводородной или серной кислотой. Так, медные сплавы растворяют в азотной кислоте, причем содержащиеся в них элементы — железо, олово и другие—превращаются в соединения высших степеней окисления. При анализе различных чугунов и сталей необходимо определять ванадий, молибден, вольфрам, титан и нс-которые другие легирующие элементы, которые вследствие обработки пробы окислительными агентами также содержатся в полученном растворе в высших степенях окисления. Железные руды содержат оксиды железа растворяя их в хлороводородной кислоте с добавками различных окислителей, получают железо в степени окисления +3 и т. д. [c.435]

    Разработана методика кинетических измерений, исключающая возможность термического и гидролитического разложения нитратов и нитритов в процессе подготовки проб и проведения анализа. Определение порядка реакции по субстрату показало переход значения от нулевого к дробному и далее к первому при увеличении концентрации азотной кислоты. Изучение влияния добавок позволило установить, что скорость сильно зависит от факторов, влияющих на равновесие автопротолиза азотной кислоты. В присутствии серной кислоты скорость резко увеличивается, тогда как добавление в реакционную смесь воды и нитрата калия приводит к резкому снижению начальной скорости. При этом происходит переход порядка реакции по субстрату т дробного к нулевому. Добавка нитрита калия вызьшает снижение скорости процесса. Реакция имеет первьт порядок по субстрату в области концентраций азотной кислоты 3.5-24.0 моль/л. Из-за значительного избытка азотной кислоты реализуется процесс псевдопервого порядка. Порядок по азотной кислоте определен по тангенсу угла наклона в координатах lgk ,фф- 1й[НКОз]. Константа скорости пропорциональна пятой степени концентрации азотной кислоты. Линейный характер зависимостей сохраняется для всего диапазона концентраций азотной кислоты, т е. высокий порядок по азотной кислоте не связан с влиянием растюрителя, а присущ собственно реакции нитроксилирования. [c.13]

    Wallis (Ann. 345, 353 [1905]) обращает внимание на тот факт, что синильная кислота количественно поглощается подкисленным азотнокислым серебром, в то время как на циан оно не действует. Rhodes (J. Ind. Eng. hem. 4, 652 [1912]) изучал их разделение и определил условия анализа. Он рекомендует следующие условия для открытия и определения свободного циана в присутствии синильной кислоты для качественного определения газы пропускают через два поглотителя (пробирки с боковыми отростками), первая содержит 10 см 10% раствора азотнокислого серебра, подкисленного 1 каплей 1/6 н. азотной кислоты, — вторая—Юш3 1/2 н. едкого кали. Слабый ток воздуха пропускается затем через поглотители в течение 10 минут для вытеснения растворившегося циана из растворов азотнокислого серебра. 5 см3 10%-ного раствора железного купороса и 1. каплю раствора хлорного железа прибавляют теперь к раствору из пробирки со щелочью, затем через 15 минут добавляют достаточно разбавленной серной кислоты для растворения осадка гидратов закиси и окиси железа. Зеленое окрашивание или голубой осадок указывают на присутствие циана во взятой пробе газа. Этим методом можно открыть 0,3 см3 циана в 10 см3 синильной кислоты. [c.8]

    Цианистая медь анализируется на медь кипячением с азотной кислотой и титрованием обычными методами неорганического анализа, предпочтительно иодногипосульфитным методом. Циан, содержащийся в цианистой меди, лучше всего определяется отгонкой и поглощением. Навеску пробы в 0,5 г помещают в круглодонную дестилляционную колбу, прибавляют 200 MS воды и 5 г хлористого натрия и соединяют отводную трубку колбы с небольшим холодильником, другой конец которого опущен в 100 ел 3 2% оаствора едкого натра. Прибавляют к содержимому дестилляционной колбы через канальную воронку 10 см3 серной кислоты (1 1), нагревают до кипения и кипя хят до тех пор, пока объем жидкости в дестилляционной колбе не уменьшится на половину. К поглощающему раствору добавляют немного метилоранжа, чтобы судить о-том, что в поглощающий раствор не перегналась соляная кислота настолько, чтобы раствор сделался кислым. Дестиллат титруют азотнокислым серебром, применяя йодистый калий как индикатор. [c.41]

    После определения цианамидного азота методом Kjeldahl a, как описано на стр. 108, берут другую порцию раствора, обычно такую же, как и первая, если неизвестно, что проба содержит очень большие количества дициандиамида, разбавляют до 250 см3, прибавляют такой же объем азотнокислого серебра, какой был взят для осаждения цианамида, и затем еще некоторое количество в зависимости от количества предполагаемого в наличии дициандиамида. Потом медленно и при энергичном помешивании приливают 25 см3 10% раствора едкого натра. Перемешивают несколько минут до свертывания осадка и просветления жидкости, фильтруют и промывают осадок один раз хоЛ дШй водой. Смывают осадок небольшим количеством воды в тот же стакан обратно, прибавляют по каплям азотной кислоты до растворения почти всего осадка, разбавляют до первоначального объема, прибавляют 5 см3 азотнокислого серебра и затем 25 см3 раствора едкого натра и перевешивают, как раньше. Фильтруют и дважды промывают осадок холодной водой. Переносят в Кьельдалевскудо колбу с 50 см3 серной кислоты (1 1), кипятят и отгоняют, как при цианамиде. Уловленный аммиак соответствует Цианамиду и дицианди амиду. Дициан-диамид получается по разности.  [c.110]

    В фарфоровой чашке вместимостью 1 л растворяют 200 г сульфата железа (II) FeS04-7H20 в 40 мл воды и фильтруют через двойной фильтр. К фильтрату добавляют 22 мл концентрированной серной кислоты, подогревают до 30— 35 °С и медленно добавляют по каплям (под тягой) 25— 30 мл концентрированной азотной кислоты. Раствор становится темно-бурым, а в конце реакции приобретает красновато-коричневую окраску. Окончание реакции окисления определяют по пробе с раствором K3[Fe( N)6] отсутствие образования синего осадка или окрашивания указывает на полноту окисления железа (II). [c.34]

    Для очистки товарной борной кислоты к раствору 100 г Н3ВО3 (ч.) в 1600 мл бидистиллированной воды добавляют 4 мл концентрированной азотной кислоты и упаривают до начала кристаллизации. Выпавшие при охлаждении кристаллы отфильтровывают с отсасыванием, промывают до отрицательной реакции промывных вод на ион N07 (проба с дифениламином в серной кислоте) и сушат. Выход 85г (85 %) квалификации х. ч. [c.297]

    Ход анализа. Пробу стали (0,1 г) поместите в маленькую чашку и растворите в разбавленной серной кислоте в полученном растворе окислите железо и вольфрам несколькими каплями азотной кислоты, раствор выпаривайте (под тягой) до выделения ЗОз (белые пары). По охлаждении добавьте 6 мл воды и нагрейте. Выделившуюся вольфрамовую и кремневую кислоты отделите центрифугированием. Центрифугат нагрейте до кипения, добавьте 0,1 г сульфита натрия для воссгановления железа и кипятите 10 мин. В горячий раствор добавьте 3—4 капли перекиси водорода и 1 мл 30%-ного раствора фосфата натрия и перемешайте в присутствии циркония появляется белый илистый осадок фосфата циркония. Осадок после центрифугирования промойте 3%-ным раствором нитрата аммония. Для проверки наличия циркония промытый осадок сплавьте в ушке платиновой проволоки с карбонатом натрия, плав растворите в воде, центрифугируйте и отделите осадок от раствора. После промывания 1 %-ным раствором ЫааСОз растворите осадок в 2—3 каплях горячей соляной кислоты (1 1), прибавьте 2 мл воды, 1—2 капли спиртового раствора ализарина и слегка нагрейте. При наличии циркония появляется характерное краснофиолетовое окрашивание или такого же цвета осадок. Для обнаружения циркония можно воспользоваться также капельной реакцией с р-диметиламино-азофениларсоновой кислотой (см. стр. 157). [c.161]

    Ход анализа. Анализируемую пробу и эталон ( 1 мкг Hg) запаивают в полиэтиленовые или кварцевые ампулы и облучают 20—30 час. в ядерном реакторе с нейтронным потоком 2-10 2 нейтрон1см -сек. Облученную пробу нагревают в специальных аппаратах сожжения и отделяют ртуть перегонкой при избирательном улавливании других летучих элементов. При анализе тиоацетамида и анионитов в СГ-форме облученную пробу озоляют мокрым способом в смеси серной, азотной кислот и перекиси водорода при нагревании в колбе с обратным холодильником, затем экстрагируют ртуть дитизоном, реэкстрагируют в 6 H I и собирают на колонке с анионитом Дауэкс-1 в С1--форме. После выделения измеряют активность радиоизотопа Hg 64 час.) по т-пику 70 кэв при помощи т-спектрометра. Чувствительность определения ртути составляет 0,0001 мкг. [c.158]

    Предложен метод определения ртути в почвах (чувствительность 1-10 %), основанный на разложении проб концентрированной серной кислотой в присутствии перманганата калия или на отгонке ртути в трубках Пенфильда и растворении отогнанной ртути в азотной кислоте с последующим колориметрическим определением с дитизодом [52, 907]. [c.170]

    Металлы растворяют в кислотах (исключая щелочные и щелочноземельные, растворимые в воде). Лучшим растворителем является соляная кислота, однако нужно учитывать, что при растворении могут образоваться летучие соединения, а это может привести к потерям. Серная кислота (2 н., 6 н. или 1 1) также может хорошо растворять металлы и сплавы. Некоторые металлы, стоящие правее водорода в ряду напряжений, растворяются в азотной кислоте (Си, Hg). Растворение ведут сначала в разбавленных кислотах если растворение идет медленно, смесь подогревают. Если растворение в разбавленных кислотах происходит плохо, растворяют пробу в концентрированных кислотах при нагревании. Если растворения не происходит, применяют царскую водку (смесь концентрированных 1 ч HNO3 с 3 ч НС1). Некоторые металлы растворяют в концентрированных растворах щелочей (Zn, Al). [c.89]

    В других методах спектрографическому анализу предшествует химическая обработка фильтров с пробой смесью концентрированных серной и азотной кислот (или хлорной и азотной) и фтористоводородной кислотой. Используется также окисление смесью H2SO4 (или H IO4), Вг2 и HNO3 [521]. Далее сухой остаток после обработки можно перевести в раствор действием соляной кислоты. Возбуждение полученного раствора производится в дуге постоянного тока после испарения раствора под [c.110]

    Для растворения пробы чаш,е всего применяют смесь растворов соляной и азотной кислот при такой обработке весь кобальт почти всегда переходит в раствор. Лишь в редких случаях нерастворимый остаток содержит незначительное количество кобальта тогда эту нерастворившуюся силикатную часть следует обработать фтористоводородной и соляной кислотами или перевести в раствор сплавлением с Naa Os, пиросульфатом калия или другими плавнями. После растворения избыток азотной кислоты обычно удаляют двух-, трехкратным выпариванием раствора с серной, соляной или хлорной кислотами. [c.175]

    Самые распространенные методы переведения анализируемого материала в раствор состоят в следующем. Почвы обычно обрабатывают смесью растворов хлорной и фтористоводородной кислот 1365] или азотной и соляной кислот 541, 652] или сплавляют с Na2 03 541, 575, 605], разлагая полученный плав соляной кислотой. В других случаях извлекают растворимые в кислотах соединения микроэлементов действием раствора соляной кислоты 428, 493, 1378] или буферным ацетатным раствором с известной величиной pH [429] последний способ, в частности, применяется при анализе микроудобрений. Растительные материалы, как сено или другие кормовые продукты, предварительно сжигают при 350—500° С [403, 430, 492, 1242, 1283] и обрабатывают остаток после сжигания смесью фтористоводородной и серной кислот для удаления кремне-кислоты. При анализе животных тканей применяют метод мокрого сжигания, который состоит в обработке материала смесью серной и азотной кислот [1128, 1186, 1389], или применяют обычное озоление, нагревая пробу в. муфельной печи до 450— 500° С так поступают, например, при исследовании крови, [797, 1407]. [c.209]


Смотреть страницы где упоминается термин Азотная кислота, проба на серную: [c.112]    [c.353]    [c.303]    [c.19]    [c.422]    [c.110]    [c.113]    [c.156]    [c.140]    [c.275]    [c.131]   
Химико-технические методы исследования Том 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Проба в кислотах



© 2024 chem21.info Реклама на сайте