Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристический спектр природа

    Тем не менее метод инфракрасной спектроскопии оказался довольно мощным и эффективным средством познания химической природы высокомолекулярных компонентов нефти. Его приложение к исследованию строения молекул этих сложных соединений основано на использовании характеристических спектров отдельных групп атомов, входящих в состав молекул. [c.235]


    Длины волн лучей характеристического спектра и потенциалы возбуждения зависят исключительно от природы вещества, из которого изготовлен анод. Чем больше атомный номер элемента, тем короче длины волн линий спектра и тем выше потенциалы возбуждения. Приведем соответствующие соотношения  [c.142]

    Новая количественная характеристика элементов, определяющая их природу, была выявлена в 1913 г. английским физиком Мозли при исследовании характеристического спектра рентгеновских лучей. Такой характеристикой оказалась величина положительного заряда ядра атома. Выяснилось, что элементы в периодической системе размещаются в порядке возрастания величины заряда ядра эту характеристику стали называть порядковым номером элемента и обозначать Z. Все изотопы данного элемента независимо от их относительных [c.57]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    Несомненно, теория Бора— Зоммерфельда явилась крупнейшим достижением физики. Наличие в атомах дискретных состояний было подтверждено экспериментально в опытах Д. Франка и Г. Герца (1913 г.). Серьезным успехом этой теории стало также вычисление постоянной Ридберга для водородоподобных систем и объяснение структуры их линейчатых спектров. В частности, Бору удалось правильно объяснить серии спектральных линий иона Не+, до того приписываемые водороду. Теория Бора — Зоммерфельда объяснила физическую природу характеристических рентгеновских спектров, расщепление спектральных линий в сильном магнитном поле (так называемый нормальный эффект Зеемана) и другие явления. [c.17]


    Н, Br и Вг. Результирующая группа пиков данного фрагмента имеет важное значение при их отнесении к фрагменту. Относительные интенсивности пиков зависят от относительного содержания в природе изотопов атомов фрагмента, например, СО может включать фрагменты с массовыми числами 28, 29, 30 и 31. Их относительные количества можно рассчитать с помощью простой теории вероятности [13, 14]. Чтобы провести такие расчеты, созданы программы для ЭВМ [15, 16]. Эти характеристические участки спектра весьма полезны для его отнесения в случае молекул, в которых атом имеет более чем один распространенный изотоп. Молекулы, содержащие ионы переходных металлов, часто дают такие характеристические участки спектра. Использование пиков С позволяет определить число атомов углерода во фрагменте. [c.324]

    Поглощение в УФ-области является следствием возбуждения электронов в молекулах. Прочность этих связей, а следовательно, и характеристическая энергия перехода определяются природой ядер атомов, и, таким образом, длина волны, при которой происходит поглощение, является скорее свойством группы атомов, чем просто электронов. Можно ожидать, что структурные изменения в поглощающих группах будут сказываться и на характере поглощения в этом, собственно, и состоит сущность использования спектров поглощения для получения данных о структуре молекул вообще и в частности — о строении молекул асфальтенов. [c.211]

    Вследствие того что колебания отдельных частей сложных молекул не очень сильно зависят от природы соседних частей, в ИК-спектрах существуют характеристические линии, присущие определенным атомным группировкам и связям. Это позволяет установить наличие в молекуле различных групп и связей и уточнить ее строение. Смещения характеристических частот указывают на особенности внутримолекулярных и межмолекулярных взаимодействий. [c.52]

    Поглощение в видимой н УФ-области является следствием возбуждения электронов, образующих связи между атомами. Прочность этих связей, а следовательно, и характеристическая энергия перехода определяются природой ядер атомов. Таким образом, длина волны, при которой происходит поглощение, является свойством группы атомов, которую называют хромофором. Структурные изменения, влияющие иа хромофоры, сказываются н на их поглощении. В этом состоит сущность использования спектров поглощения для получения информации о структуре молекул. [c.84]

    Взаимодействие связей в пределах функциональной группы характеризуется строгим постоянством и только в небольшой степени зависит от природы углеродного скелета, несуш,его эту функциональную группу. Поэтому оказывается возможным установить соответствие между различными функциональными группами и свойственными им групповыми частотами. Именно по этой причине ИК-спектроскопия используется главным образом для определения функциональных групп молекулы. Часто бывает трудно представить многие характеристические колебания сложных функциональных групп в виде совокупности простых валентных или деформационных колебаний. Однако химик-практик должен быть знаком с частотами типичных функциональных групп и пользоваться ими при анализе строения молекул эти частоты приведены в табл. 28-2. Дополнительные сведения к таблице читатель может найти в соответствуюш,их главах. Имея в виду вездесущ,ность простых углеводородов, именно их инфракрасные спектры мы рассмотрим в этой главе. [c.504]

    Скелетные перегруппировки обусловливают наиболее характеристические пики в масс-спектрах эфиров р-фенилглицидных кислот [51]. Независимо от природы радикала К такие эфиры [c.251]

    В ИК-спектрах замещенных 1,2,4-триазин-5(2Н)-онов наблюдают характеристические полосы поглощения карбонильной группы в области 1640—1685 см , причем положение v =-o зависит от природы и количества заместителей в триазиновом кольце. Валентные колебания группы ЫН расположены в области 3170 см- . Полосы поглощения связи С = Ы лежат в области 1540—1580 см . Например, 6-метил-1,2,4-триазин-5(2Н)-он [c.130]

    Система энергетических уровней внутренних оболочек не претерпевает изменений, когда атомы вступают в химические соединения друг с другом, поэтому для наблюдения характеристических рентгеновских спектров не нужно изменять физическую и химическую природу исследуемого вещества. Рентгеноспектральный анализ, так же как анализ по оптическим спектрам, характеризует атомный состав вещества. [c.171]

    Установлено, что спектр испускания лучистой энергии, проникающей через небольшое отверстие из внутренней полости нагретого твердого тела, не имеет характеристических линий, а отличается равномерным распределением интенсивности излучения по длинам волн, характерным для каждой данной температуры п не зависящим от природы нагретого твердого тела. Кривые такого распределения приведены на рис. 70. Из рисунка хорошо [c.139]


    Доказательством правильности этого в шода, сделанного на основании химических данных и общих соображений, является изучение колебательных спектров и установление изменения характеристических частот в зависимости от природы заместителей [18] (см., например, влияние заместителей на константу диссоциации фенолов и влияние тех же заместителей на частоту ОН-группы фенолов в инфракрасном спектре, стр. 227), а также изучение данных по изменению положения максимумов поглощения и их интенсивностей в ультрафиолетовых спектрах [19] и величин химических сдвигов протонного магнитного резонанса [20]. [c.151]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Прн отнесении частот в спектре необходимо учитывать условия регистрации спектра физическое состояние образца, химическую природу растворителя, концентрацию, псмпературу и т. д. Все эти факторы могут привести к смещению частот колебаний, приведенных в таблицах характеристических частот из-за влияния внешних (ассоциация, сольватация) и внутренних (электрические, стерические и др.) факторов. Наблюдаемые отклонения составляют обычно 10—20 см однако иногда достигают 50 см и больше. Интенсивности полос должны иметь ожидаемую величину, и все другие доступные данные, как химические, так и спектральные (ЯМР, УФ и др.), должны согласовываться с предложенной структурой. [c.202]

    Существует значительное число модификаций методов, основанных на детектировании электрохимически генерированных промежуточных продуктов посредством получения их оптических спектров в ультрафиолетовой, видимой или инфракрасной областях поглощения света. Идентификация продуктов реакции производится по длинам волн и интенсивностям характеристических полос поглощения. Наибольшую информацию о природе частиц можно извлечь из данных ИК-спектрометрии, однако ее сравнительно невысокая чувствительность, определяемая небольшими значениями коэффициента молярной экстинции е, требует достаточно высоких концентраций интермедиата, труднореализуемых в случае короткоживущих частиц. Дополнительные осложнения при использовании ИК-спектрометрии связаны с трудностями применения в качестве растворителей воды и других гидроксилсодер-жащих соединений, сильно поглощающих в исследуемой области частот. В силу названных причин ИК-спектрометрия для изучения промежуточных продуктов электродных реакций используется относительно редко. Большим достоинством видимой и УФ-спектро-фотометрии является высокая чувствительность метода. Однако в этой области спектра низка специфичность поглощения, т. е. полосы многих хромофоров перекрываются. Пики поглощения находящихся в растворе частиц, как правило, очень широкие, и спектры сильно искажаются примесями, поглощающими свет в той же области спектра. Поэтому применение УФ-спектрометрии для установления структуры частиц оказывается малоэффективным. Значительно чаще такие измерения используются для изучения кинетики накопления или исчезновения промежуточных продуктов. [c.220]

    Фурье-спектрометр обладает большей светосилой, нежели дисперсионный спектрометр одинакового с ним разрешения. Вследствие этого чувствительность возрастает примерно на два порядка. Так, лучшие приборы G /FTIR выпуска начала 80-х гг. позволяют идентифицировать вещества, содержание кот<зрых в дозируемом количестве образца не превышает 50—300 нг и доходит до 5 гн. Реальная нижняя граница содержаний идентифицируемого вещества в дозе сильно зависит от природы функциональной группы и наличия в молекуле структурных элементов, обусловливающих необходимый набор характеристических частот в спектре. По этой причине получаемая информация может оказаться недостаточной для однозначной идентификации вещества, но может послужить основанием для отнесения его к тому или иному классу органических соединений. [c.208]

    Природа основных и возбужденных электронных состояний различных химических соединений различна и специфична для эт1пс соединений (здесь она не рассматривается), поэтому разные химические соединения в общем случае поглощают свет при разных длинах волн, характерных для каждого соединения. Если родственные соединения содержат одинаковые структурные фрагменты — хромофоры (например, одинаковые ароматические или гетероциклы, функциональные фуппы, ионы и т. д.), то в их электронных спектрах поглоще 1ия наблюдаются полос<.1, обусловленные поглощением хромог оров и расположенные приблизительно в одной и той же области. Положение этих характеристических полос несколько изменяется при варьировании растворителей. Химическое соединение, в зависимости от его природы, может иметь не одну, а несколько полос в электронном спектре гюглощения. [c.525]

    Органический радикал R может включать разли тные связи и функциональные группы, имеющие собственные полосы в широкой области ИК-спектра. В частности, характеристические полосы валентных колеба-гшп связей СН метиленовых -СН г и метильных -СНз групп лежат приблизительно в интервале -2800—3000 см , характеристические полосы деформационных колебаний — около -1360, -1460 см . В зависимости от природы радикала R может наблюдаться ряд дру1их полос пог.юще-ния, например, полос валентных колебаний связей С-С — так называемых скелетных колебаний радикала R. [c.576]

    Универсальность растрового электронного микроскопа при исследовании твердых тел в большей мере вытекает из обширного множества взаимодействий, которые претерпевают электроны иучка внутри образца. Взаимодействия можно в основном разделить на два класса 1) упругие процессы, которые воздействуют на траектории электронов пучка внутри образца без существенного изменения их энергии 2) неупругие процессы, при которых происходит передача энергии твердому телу, приводящая к рождению вторичных электронов, оже-электро-нов, характеристического и непрерывного рентгеновского излучений, длинноволнового электромагнитного излучения в видимой, ультрафиолетовой и инфракрасной областях спектра, электронно-дырочных пар, колебаний решетки (фононы) и электронных колебаний (плазмоны). В принципе все эти взаимодействия могут быть использованы для получения информации о природе объекта — формы, состава, кристаллической структуры, электронной структуры, внутренних электрическом или магнитном полях и т. д..  [c.21]

    В ИК-спектрах элементоорганических соединений (51, Ое, 8п, Аз, 8Ь) при наличии винильной группы (-СН=СН2) характеристические полосы 5//(=СН2) и у, СН, совпадают, а при наличии аллильной группы -СН,-СН=СН,) эти полосы наблюдаются раздельно. На частоту Уч группы — СН,—Э— влияет не только природа атома Э, но также и присутствие в непосредственной близости к Э непредельных групп и электроотрицательных атомов. [c.90]

    Область двойной связи 1430-1950 см (5,1-7 мкм). Самыми распространенными и характеристичными группами с двойной связью являются карбонильные. Вероятно, они наиболее изученный класс групп, поглощающих в ИК-области. В то время как некоторые структуры можно отличить просто по положению полосы валентного колебания С=0, другие в силу совпадения частот однозначно можно отнести, только прибегая к помощи других областей спектра. Как уже отмечалось, органические кислоты и обычно альдегиды легко идентифицируются по полосе поглощения карбонильной группы и по поглощению групп ОН или СН. Сложные эфиры кроме полосы валентных колебаний С=0 имеют сильное поглощение С—О—Я около 1200 СМ . В кетонах также проявляются полосы средней интенсивности около 1000-1370 см . Сильное поглощение в интервале 1540-1650 см (6,1—6,5 мкм) может указьшать на ионизированную карбонильную группу (например, в металлосодержащих солях органических кислот), на плоскостные деформационные колебания НН в аминах, валентные колебания N=0 в нитратах или валентные колебания С=0 в амидах. Для определения природы поглощения здесь опять необходимо рассмотреть другие спектральные области. Поглощение, обусловленное валентными колебаниями С=С в алифатических соединениях, находится в области 1630—1690 см (5,9 —6,1 мкм), если только к одному или обоим атомам углерода не присоединен атом фтора. В этом случае поглощение смещается в область более высоких частот и число атомов фтора коррелирует с положением полосы. Более тяжелые галогены понижают эту частоту, так как в валентном колебании С = С участвует также некоторая доля деформационного колебания СН. Ценная структурная информация может бьггь получена из положения этой полосы и полосы внеплоскостных деформационных колебаний в области 800-1000 см (10-12,5 мкм) [217]. В ароматических соединениях с малой степенью замещения наблюдаются три (а при лучшем разрешении четыре) резкие полосы в области 1450 — 1650 см (6—7 мкм). Этим полосам сопутствует более слабое поглощение около 1000 — 1200 см (8,3 — 10 мкм) и характеристические внеплоскостные деформационные колебания С—И около 670-900 см (11-15 мкм). Высокозамещенные ароматические соединения имеют [c.188]

    Пирролинон [31], получающийся при реакции 2-метокси-2-дифенил-3(2Н)--фуранона (МДФФ) с аминокислотами, имеет характеристический муль-типлет в спектре КД. Отнесение конфигурации в таких случаях производят по максимуму абсорбции в длинноволновой области ( - 380 — 430 нм), положение которого не зависит от природы заместителей у хирального С-атома. [c.29]

    Установление структуры органических соединений по масс-спектрам включает определение молекулярной массы, природы и количества функциональных групп, строения скелета молекулы и по возможности пространственного строения. Если эти сведения не удается получить при прямом масс-спектрометри-ческом исследовании, то проводят химическую модификацию образца и последующий анализ масс-спектров модифицированных продуктов. Химическое модифицирование может состоять а) в получении соединения, имеющего интенсивный пик М " б) в целенаправленной трансформации функциональных групп путем их защиты или других химических превращений в) в получении соединения, имеющего более характеристический масс-спектр, который легче интерпретировать на основе общих и специфических закономерностей фрагментации г) в получении гомологов или аналогов (в частности, дейтероаналогов) с последующим исследованием сдвига характеристических ионов при переходе от исходного соединения к модифицированному и др. [c.179]

    В первом случае поглощение сопровождается либо переходом электронов внутри электронной оболочки активатора на более высокие энергетические уровни, либо полным отрывом электрона от активатора и переходом активатора ионизованное состояние (образуется дырка ). Во втором случае, при поглощении энергии основой, в основном веществе образуются дырки и электроны. Дырки могут мигрировать по кристаллу и локализоваться на центрах люминесценции. Излучение происходит в результате возвращения электронов на более низкие (исходные) энергетические уровни Или при воссоединении (рекомбинации) электрона с ионизованным центром (дыркой). Люминофоры, в которых люминесценция (поглощение и излучение энергии) связана с электронными переходами в пределах люминесцентного центра, получили название характеристических. Активаторами в таких люминофорах являются ионы переходных и редкоземельных элементов, а также ртутеподобные ионы. Кри- еталлическая решетка основы, как правило, мало влияет на электронные переходы внутри центра, поэтому спектры возбуждения и люминесценции в основном определяются природой активатора. [c.5]

    Анализ спектров замещенных бензолов [184, 185] показал, что характеристические полосы образуют правильную очередность полос бензола со значительным смещением к видимой области в зависимости от количества, природы и положения заместителей, поэтому спектр полифункционального соединения является результатом суммирования поглощения соответствующих изолированных хромофоров и их взаимного влияния. Видимо, с этим связан и тот факт, что большинство спектральных исследований лигнина в УФ-области проведено на модельных соединениях, представляющих структурные единицы макромолекулы лигнина. Вместе с тем в [186] указывается, что спектр 4-окси-3-метокси-1-пропилбензола (принятого за основную единицу структуры лигнина) существенно не изменяется, если а) про-пановая цепь укорачивается до простого метильного заместителя б) две структурные единицы соединяются С- С-связью между кольцом и боковой цепью или с образованием кумарановой структуры в) в боковую цепь вводится ОН-заместитель. [c.170]

    В течение 70-х годов проводились исследования химической природы частиц, присутствующих в растворах щелочных металлов в жидком аммиаке, аминах и эфирах. В аммиаке, который является хорошим растворителем, катион М , легко стабилизируется благодаря взаимодействию с полярными молекулами аммиака, а в качестве химической частицы с отрицательным зарядом в растворе остается только В спектрах поглощения разбавленных растворов щелочных металлов в амине или эфире кроме максимума поглощения е д д наблюдается характеристическое поглощение щелочного металла (за исключением ), как представлено на рис. 3.48. Маталон и сотр. [265] в 1969 г. указали, что характеристическое поглощение обусловлено анионами М . С тех пор благодаря применению ЭПР-спектроскопии, кондуктометрии, эффекта Фарадея, флеш-фотолиза и т.д. исследования по составу и кинетике химических частиц в растворах шелочных металлов достигли значительного успеха. [c.182]

    Таблицы основных характеристических частот в органических соединениях приведены по источникам [25, 2, 6]. При отнесении полос следует учитывать, что указанные в табл. 6.4—6.7 полосы поглощения являются приближенными, поскольку не только обусловлены характеристическими колебаниями атомов в данной связи, но и зависят от природы окружающих эту связь атомов, электронных заместителей, межмолекулярного взаимодействия, природы растворителя, если запись спектра производилась в растворе. Поэтому заключения о строении вещества, сделанные на основании его ИК-спектра, желате но подтвердить другими физическими и, прежде всего, ЯМР-спектроскопией [15], или химическими методами. При отнесении полос поглощения необходимо иметь в виду ряд обобщений, связывающих характеристические частоты, наблюдаемые в ИК-спектрах, с природой связей и функциональных групп. Наибольшие значения частот (V > 2500 см ) соответствуют частотам связей с легким атомом водорода — ОН, ЫН, СН и др. [c.179]

    Метод ИК-спектроскопии может быть применен для устано ления чистоты образца и определения примеси. Если известс характер примеси, то сравнивают ИК-спектр примеси со спек ром чистого вещества и находят характеристические полосы прз меси, которые не перекрываются с полосами поглощения чисто вещества. Если природа примеси неизвестна, то спектр чисто вещества сравнивают со спектром исследуемого. В спектре вещ ства, содержащего примеси, больше полос, чем в спектре этал< на. По положению полос поглощения примеси можно установи ее природу [38]. [c.182]

    Рентгенофазовый анализ и ИК-спектры ПС и ПК свидетельствуют о широких пределах изменения пористой и кристаллической структуры этих веществ в зависимости от того, какие гости — катионы Na+, молекулы Н О—и в каком количестве заполняют внутрикристаллическое пространство сорбента. Чувствительность ряда характеристических дифракционных линий и полос поглощения может быть использована при этом для оценки природы и изменений строения кремнеземного каркаса, а также характера взаимодействия сорбирующихся веществ с поверхностью. [c.70]

    В основе традиционного спектроскопического анализа полимеров лежит приближение характеристических частот. Суть этого приближения состоит в том, что колебания полимерных цепей как простых молекул могут быть идентифицированы с помощью отдельных химических групп, колебания которых слабо зависят от типа химического соединения и его структуры. Обширный экспериментальный материал, накопленный в области колебательной спектроскопии низкомолекулярных соединений, позволяет быстро и надежно интерпретировать спектры полимеров. Идентификация полос неизвестной природы подробно рассмотрена Белла.ми [6,7, 150], Наканиси [78] и др. [12, 35, 44, 102, 111, 119]. Кроме того, издан ряд атласов ИК спектров наиболее важных промышленных полимеров [42, 46, 304, 307, 621]. Поэтому идентификация полимеров по ИК спектрам не представляет в настоящее время особых трудностей. Успешному решению этой задачи способствует интенсивное внедрение в практику лабораторных исследований электронно-вычислительной техники, использование библиотек колебаний молекулярных фрагментов, хранящихся в памяти ЭВМ [27, 32, 196, 197]. [c.14]

    При отнесении частот необходшло учитывать условия регистрации спектра физическое состояние пробы, наличие и химическую природу растворителей (полярные или неполярные растворители), концентрацию проб, температуру и др. Все пти факторы в некоторых случаях могут привести к смещению частот колебания, приведенных в таблицах характеристических частот из-за влияния внешних (ассоциация, сольватащ1я) и внутренних факторов (электрические, сте-рическяе и другие эффекты). Наблюдаемые отклонения составляют обычно + 10-20 см , однако иногда достигают 50 и больше см.  [c.265]

    Классический метод качественного анализа с помощью газовой хроматографии основывается на сравнении времени удерживания или удерживаемого объема неизвестного компонента с соответствующими характеристиками, полученными для известного соединения на той же колонке при идентичных условиях. Этот метод, как мы увидим далее, имеет ряд ограничений. Другая возможность качественного анализа методом газовой хроматографии заключается в создании такого детектора или такой группы детекторов, которые не только давали бы полезные характеристики удерживания для компонентов анализируемой пробы, но и производили сигнал, дающий информацию о природе разделяемых веществ. Такими детекторами являются масс-спектрометры, дающие масс-спектры колшопентов при выходе их из колонки ионизационные детекторы, измеряющие характеристическое сродство к электрону различных функциональных групп, и газовые плотномеры, дающие молекулярный вес компонента и характеристики его удерживания. Полезными оказались также методы улавливания в сочетании с независимо выполняемым снятием характеристик с помощью соответствующих приборов. [c.262]


Смотреть страницы где упоминается термин Характеристический спектр природа: [c.114]    [c.222]    [c.142]    [c.54]    [c.30]    [c.62]    [c.603]    [c.650]    [c.135]    [c.274]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.43 , c.44 , c.45 , c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Спектры характеристический



© 2025 chem21.info Реклама на сайте