Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа зависимость от температур

    Не только термодинамическая устойчивость парафиновых углеводородов определяется их строением, в частности расположением метиль-ных групп. Длина углеводородной цепи и степень ее разветвления, положение метильных групп во многом определяют физические свойства парафинового углеводорода, в том числе температуру кристаллизации. Наличие в керосиновых, дизельных и других фракциях значительных количеств линейных парафиновых углеводородов обуславливает их высокую температуру кристаллизации. Наглядным примером служит зависимость температуры кристаллизации парафиновых углеводородов Сю— i6. имеющих различную структуру (рис. 4.3). Обращает на себя внимание общая закономерность, обнаруженная авторами работы [130], - ступенчатый рост температуры кристаллизации парафиновых углеводородов различных гомологических рядов. При перемещении метильной группы внутрь углеводородной цепи температура кристаллизации понижается, хотя это изменение носит неравномерный характер (рис. 4.4). Высококипящие парафиновые углеводороды в процессе гидроизомеризации претерпевают наиболее существенные превращения в продукты гидрокрекинга и изомеризации, и это обеспечивает значительное снижение температуры кристаллизации перерабатываемых фракций. [c.113]


    Зависимость температуры образования паровых пробок от температуры перегонки 10% бензина (рис. 76) носит прямолинейный ха рактер для бензинов, имеющих температуру перегонки 10% в пределах 45—70° С, т. е. для большинства современных автомобильных бензинов. При температуре перегонки 10% бензина выше 70° С температура нагрева бензинов до образования паровых пробок резко возрастает. В этом случае пропускная способность топливной си стемы оказывается достаточной для обеспечения бесперебойной работы двигателя при высоких температурах нагрева бензинов. Количество паров, образующихся из таких топлив, настолько мало, что поступление жидкой фазы полностью обеспечивает расход топлива на данном режиме работы двигателя. Прямолинейной оказалась 13 195 [c.195]

    Толщина незамерзающих прослоек к зависит от температуры, внешнего давления р и расклинивающего давления П. В работах [32, 318] определен качественный ход изотермы к(р), исходя из зависимости температуры фазового равновесия от давления на закрытую грань кристалла [319], и ход изотермы /г(П)—на основе теории поверхностных сил [42]. Равновесная толщина незамерзающей прослойки определяется точкой пересечения изотерм Н(р — ро) и /г(П), когда (р — ро) = = П. При каждой заданной температуре Т = Т и давлении ро устанавливается единственно возможная толщина равновесной прослойки и отвечающее ей значение гидростатического давления р = 11 + ро. При невыполнении одного из этих условий равновесное состояние нарушается и ледяная пластина будет либо расти, либо таять. [c.107]

    Пользуясь этими данными, можно рассчитать значения зависимости величины F от температуры. Как видно из графика на рис. И1-69, для того, чтобы значение F было минимальным, реактор должен работать при температуре 550 °К- [c.307]

    Вгз. Все значения АН° и Д5° относятся к 1 моль Вгг. В работе опреде-, лена зависимость температур плавления брома от давления (до 10 000 кГ/см ). [c.344]

    В работе определена зависимость температуры плавления от давления и другие величины, характеризующие диаграмму состояния в области высоких давлений (до 40 000 кГ/см ). [c.345]

    Предварительные расчеты показали, что при заданных давлениях (Ра = 6 МПа Рвых = 4,7 МПа) и доле холодного потока ц= 0,7 (ц = У ол I Увх) в трехпоточной вихревой трубе при е = 1,3 можно достичь снижения температуры холодного потока АТх = Твх. тр. - Тх = 10 С. Это в 2 раза больше, чем при обычном дросселировании. Такая температурная эффективность ТВТ позволит получить (в зависимости от эффективности работы теплообменника) температуру точки росы по воде и высшим углеводородам в диапазоне Тр = -10 - 15 С. [c.333]


    Авторы работ [46—48] построили кривые зависимости температуры плавления изомерных твердых углеводородов от их молекулярного веса (рис. 3) [c.35]

    В работах [3—5] предлагается следующая зависимость температуры плавления от молекулярного веса или от числа атомов углерода в молекуле  [c.49]

    Рукавные (тканевые) фильтры и электрофильтры позволяют достичь высокой степени очистки, в том числе от мелких частиц, но часто требуют предварительной подготовки газа — в основном охлаждения до определенной температуры. Для электрофильтров выбирают оптимальные условия работы (температуру, влажность, скорость газа, конструкцию и метод встряхивания электродов) в зависимости от электропроводности пыли, ее слипаемости, дисперсности и химического состава газа. Электрофильтры, по сравнению с другими аппаратами тонкой очистки, обладают минимальным гидравлическим сопротивлением и большими возможностями автоматизации процесса. По размерам электрофильтры близки к рукавным, требуют больших капитальных затрат, но эксплуатация их дешевле. Сухие электрофильтры работают при температуре до 400—500 °С. Они наиболее экономичны при больших объемах газа (начиная с 0,5-10 м /ч). При малой производительности использование электрофильтров приводит к неоправданному возрастанию удельных затрат. Кроме того, электрофильтры нельзя использовать при обработке взрывоопасных газовых сред. В этих случаях целесообразно устанавливать рукавные фильтры или мокрые пылеуловители. [c.238]

    В работе [10, с. 60—63] предложено определять фракционный состав реактивных топлив с помощью газожидкостной хроматографии на хроматографе Цвет с пламенно-ионизационным детектором, работающим в дифференциальном режиме. Прибор позволяет работать как в изотермическом режиме, так и с программированием температуры термостата колонок в линейном режиме со скоростью от 1 до 40 °С в мин. Хроматографическая колонка из нержавеющей стали длиной 1 м наполнена 5% силиконового эластомера SE-30 на хромосорбе R. Газом-носителем служит азот. Нагревание от 50 до 180°С запрограммировано на скорость 5°С в 1 мин, скорость диаграммной ленты самописца 600 мм/ч. Для испытания требуется 20—30 мг топлива. Содержание отдельных фракций определяют по площадям пиков. Истинные температуры кипения этих фракций устанавливают по калибровочным кривым, представляющим собой зависимость температур удерживания смесей индивидуальных углеводородов Се—С от истинных температур кипения, полученных в различных условиях хроматографирования. [c.17]

    По мере снижения давления коксообразование на катализаторе возрастает, в связи с чем октановые числа бензинов снижаются быстрее и выход водорода уменьшается. На рис. 25, б показана зависимость октановых чисел и выхода бензина от длительности работы катализатора. Температура процесса регулировалась т -ким образом, чтобы при разных давлениях достигались одинаковые начальные значения октановых чисел — 93 по исследовательскому методу. [c.71]

    Давление водорода оказывает значительное влияние на продолжительность жизни катализатора, а также на длительность пробега между очередными регенерациями. Повышенное давление водорода предотвращает образование кокса на поверхности катализатора, а также препятствует отравлению кислых катализаторов соединениями азота. На рис. 51 приведена зависимость температуры реакции от времени работы катализатора в процессе гидрокрекинга вакуумного дистиллята (фр. 350-510°С) из кувейтской нефти при различных давлениях водорода с 70%-й глубиной превращения сырья в легкие продукты [279]. Как видно из рис. 51, только при давлении выше 10 МПа скорость дезактивации становится незначительной. При давлении 7,5 МПа катализатор заметно дезактивируется уже после 60 суток эксплуатации. [c.264]

    При выполнении данной работы задание может видоизменяться. Например, может быть поставлена задача исследовать зависимость температуры дуги от силы тока, от потенциала ионизации вводимых в пробу добавок и т. д. [c.133]

    Изучаемая в работе система вода —фенол относится к первому типу ограниченно смешивающихся жидкостей (рис. 5.1,а). Линии на диаграмме показывают зависимость температуры растворения (гомогенизации) от состава раствора. Любая точка в заштрихованной области представляет гетерогенное состояние системы из двух насыщенных растворов. Согласно правилу фаз (4.1) число степеней свободы С=2—2+1 = 1 (либо температура, либо состав). Для определения составов насыщенных растворов через заданную точку проводят изотерму до пересечения с кривыми растворимости. Например, система, заданная точкой а, состоит из насыщенного раствора компонента В в А (точка С) и насыщенного раствора компонента А в В (точка О), содержащих, соответственно, 20 и 80% компоне(1та В. [c.37]

    Хроматографом ХЛ-3 анализируют неуглеводородные и углеводородные газы, жидкие углеводороды с температурой кипения не выше 180 С. При работе прибора температура колонки может быть изменена от комнатной до 100° С. Температура колонки остается постоянной во время анализа она подбирается в зависимости от состава анализируемой смеси и применяемого наполнителя. [c.163]


    Более удобен метод термического анализ.а, который является частным случаем физико-химического анализа. В основе термического анализа лежит экспериментальное установление температур фазовых превращений, наблюдающихся при медленном изменении температуры изучаемой системы. Наступление того или иного фазового превращения отмечается либо визуально, что возможно для прозрачных растворов и при не слишком высоких температурах, либо путем изучения площадок и перегибов на кривых зависимости температуры от времени. Последний способ более универсален и получил широкое распространение, особенно после работ Н. С. Курнакова. [c.155]

    Можно было бы думать, что для характеристики полимеров и для их сравнения достаточно поль.зоваться величиной температуры стеклования, определяемой для статических условий. Однако и в теоретическом отношении, и для практических целей представляет интерес зависимость температуры стеклования от частоты периодической нагрузки. Практическое значение этой зависимости ле1 ко понять, если вспомнить, например, что каждый участок автомобильной шины подвергается при движении автомобиля периодической нагрузке, частота которой тем больше, чем выше скорость движения. Резина остается эластичной только при температурах выше температуры стеклования. Поэтому морозостойкость резины, если ее определять по температуре стеклования при статической нагрузке, не может характеризовать действительную морозостойкость ее для любых условий эксплуатации, так как при наложении периодической нагрузки температура стеклования вЫше. Под действием периодической нагрузки работает и каждый зуб шестерни при ее вращении. [c.220]

    Определим зависимость функции У 1) от расхода Ох 1) для разных режимов работы регулятора температуры. [c.271]

    В зависимости от условий эксплуатации нефтяных скважин давление на забое может быть выше давления насыщения, тогда выделение газа на забое не происходит. В этом случае объем и состав газа, выделяющегося из нефти при движении нефти в скважине и ее сепарации, будут зависеть от режимов работы скважин, температуры, давления и ступеней сепарации. [c.21]

    Перейдем к выводу уравнения характеристики вихревой трубы. Под уравнением характеристики понимается аналитическая зависимость температур торможения потоков 7х и Тг от начальной температуры Тс, геометрических размеров аппарата и режима работы трубы, характеризуемого долей холодного потока 1-1 и внешними давления ли газа Рс и Рх. [c.172]

    Температуру катализатора в процессе гидрирования поддерживают в пределах 390—450° в зависимости от активности и времени его работы. В случае использования свежего катализатора работают при температуре 390°. Конденсирующийся и собираемый в приемнике 13 продукт анализируют на содержание изовалерианового альдегида. [c.841]

    В зависимости от материала детали могут работать при температурах от —253 до +700° С. Пределы применения материалов приведены в ОСТ 26-291—71. [c.11]

    Ферритные хромистые стали используют также в качестве жаростойких материалов, которые в зависимости от содержания хрома могут работать при температурах до 1050° С. Жаростойкость повышается с образованием защитного окисного слоя СггОз. Жаростойкость хромистых сталей с 12% Сг, дополнительно легированных молибденом, никелем, ванадием и др., находится на уровне примерно 600° С. [c.33]

    Диффузионное хромирование позволяет получать покрытие, которое может содержать до 30% хрома. Толщина слоя в зависимости от способа получения и вида применяемой стали составляет 60—120 мкм. Для того чтобы предотвратить образование карбида хрома, рекомендуется применять стали с максимальным количеством углерода 0,08 % или сталь, стабилизированную титаном. Диффузионное хромирование находит широкое применение для крепежных деталей благодаря исключительной коррозионной стойкости и легкому демонтажу болтовых соединений. Срок службы таких деталей в 5 раз больше срока службы оцинкованных деталей. Температура диффузионного процесса составляет 1200— 1300° С, и дополнительная термическая обработка целесообразна только для болтов, рассчитанных на высокие нагрузки. Предельная температура применения их составляет 800° С. Кратковременно болты могут работать при температуре до 1100°С (резкие изменения температуры не являются препятствием). Диффузионное хромирование используют также для повышения срока службы измерительного инструмента, форм для прессования стекла, для литья под давлением легких сплавов и т. д. [c.83]

    Строительные конструкции, предназначенные для противопожарного секционирования на АЭС, исследуются относительно их надежности в условиях огневого воздействия. Огневые воздействия устанавливаются путем моделирования теплового баланса и сравниваются с огневым воздействием в условиях стандартного огневого испытания. Функциональная зависимость температуры от времени при возможных реальных пожарах определяется с помощью моделей развитого горения в помещении с охватом реальных условий работы вентиляции и режима выгорания типичных огневых нагрузок. Вероятность отказа выбранных важных строительных конструкций прежде всего устанавливается путем статистической обработки результатов стандартных огневых испытаний. Рассчитываются средние значения и стандартные отклонения огнестойкости, а также вероятность отказов после достижения номинальной огнестойкости. Для переноса на реальные пожары привлекается временной интеграл по стандартной кривой горения до момента отказа в виде переносимой тепловой энергии . Несущая способность железобетонной конструкции при огневом воздействии определяется путем простого математического моделирования. Вероятность отказа устанавливается по теории надежности, при этом ненадежные параметры характеризуются с помощью вероятностного распределения. Расчет вероятности отказа строительной конструкции осуществляется с помощью индекса надежности, который зависит от длительности реального пожара в выбранном помещении или стандартного огневого испытания. [c.171]

Рис. 9. Установленная в работе [ ] зависимость константы скорости горения К от температуры при атмосферном давлении. Рис. 9. Установленная в работе [ ] <a href="/info/366508">зависимость константы скорости</a> горения К от температуры при атмосферном давлении.
    Как правило, аномалии зависимости температуры размягчения от пенетрации не наблюдаются, поскольку битумы, облада-юшие такими аномалиями, недостаточно стабильны, и длл практики они не представляют большого интереса. В связи с этим математическое описание зависимости температуры размягчения от пенетрации может быть довольно простым. Однако часто такие описания основаны на сомнительных допущениях, например, об отсутствии влияния на зависимость температуры размягчения от пенетрации других факторов [25], или ограничены полученным в конкретных условиях экспериментальным материалом без перехода к другим условиям [26]. Рациональным представляется следующее полуэмпирическое уравнение, предложенное в работе [27] для окисленных битумов  [c.30]

    В случае 7-AI2O3 были проведены измерения с образцом, дегидратированным при 473 и 673 К. Сравнение полученных результатов показывает, что при повышении температуры термовакуумной обработки происходит смещение зависимости температуры максимумов и силы тока в максимумах от степени гидратации (рис. 16.10). В результате прогрева уменьшается величина поляризации (сравнение проведено при адсорбции воды, равной 5,4 мг/г). Эти явления можно объяснить уменьшением числа молекул воды, обеспечивающих процесс //, для образца, дегидратированного при 673 К- При этом часть молекул воды, переставшая участвовать в процессе //, становится невидимой для метода токов ТСД. Доля таких молекул, определенная по величине температурного смещения максимумов, их высоте и уменьшению поляризации (рис. 16.10), составила, соответственно, 0,11 0,12 0,08 числа молекул в монослое Ош. Все это можно объяснить восстановлением частью адсорбированных молекул воды гидроксильного покрова, который частично был разрушен при прогревании -(-АЬОз до 673 К [703—705]. Можно предположить, как это сделано в работах [703, 704], что первые порции адсорбированных молекул взаимодействуют с [c.265]

    Основными показателями технологического 1 режима печи, за которыми должен следить оператор во время работы, являются температура сырья на входе в печь и выходе из печи, температура дымовых газов на перевале и расход сырья в ггечь. Температура на выхояе сырья из печи регулируется в зависимости от температуры в зоне реакции Постоянство тем- [c.154]

    Системы для сжигания жидких отходов снабжены емкостями для хранения и перемешивания отходов, обеспечивающими подачу устойчивого и гомогенного потока они могут быть как горизонтальными, так и вертикальными. Обычно камера сгорания рассчитана на теплонапряжение 930 тыс. кДж/м , хотя некоторые высокотурбулентные вихревые камеры поддерживают таковое до 3720 тыс. кДж/м . При оптимальной конструкции печи факел не касается огнеупорных стен камеры, и установка работает при температурах ниже температуры плавления золы. Печи для сжигания жидких отходов работают в интервале температур 815—1650 °С в зависимости от условий проведения процесса. [c.142]

    Попытки улучшить обычный метод расчета с по-М01Г1ью норм расчета [1, 6 привели только к выявлению основных недостатков моделей упругих деформаций. В результате пластической деформации контактное давление распределяется по уплотнению неравномерно, изменяясь во времени. В соединении обычного типа (рие. ), а) точка приложения реакции уплотнения ие определена и суммарный момент, приложенный к фланцу, также изменяется в зависимости от условий нагружения, длительности работы и температуры. Кручение фланца нельзя рассчитать достаточно точно. И только па основе эмпирических методов, полученных после долгих лет эксплуатации и внедренных в процессе создания теплообменников и сосудов давления, можно делать достаточно точные расчеты. Соединения с самоуплотняющимися сальниками (рис. 1, б), напротив, можно проанализировать с достаточной точностью, и расчет можно выполнять только па основе теоретических данных. Это справедливо и для безболтового соединения (рис. 1, в). В обоих случаях пластическая деформация либо предотвращается, либо локализуется — например под кольцом. В общем, в соединении возникает упругая де( )ормация, распределение реакций точно определено и со временем не меняется. [c.270]

    Материал труб змеевика выбирают в зависимости от температурного режима и коррозионных свойств сырья, причем в различных зонах печи используют трубы из разных материалов. Так, в печах пиролиза начальные участки змеевика, расположенные в конвекционной зоне, работают при температуре 30—400°С, а конечные, находящиеся в радиантной камере, — при температуре 500—900 °С. По этой причине конвекционные трубы первых рядов изготовляют из углеродистых стальных труб (20Г), последних рядов — из хромомолибденовой стали (15Х5М), а радиантные трубы — из жаропрочной стали 12Х18Н10Т. [c.268]

    Простейнгий вид распределения температуры изображен на рис. 4.1, о. Он реализуется в теплообменнике с идеальным противотоком теплоносителей, в котором прирост температуры холодного теплоносителя равен потерям температуры горячего таким образом, разность температур двух теплоносителей постоянна по всей длине канала. В остальных примерах рассматриваются более сложные случаи, так как с изменением разности температур изменяется тепловой поток. Вследствие этого изменяется и наклон кривых температуры теплоносителей в зависимости от расстояния до входа. Этот эффект особенно заметно проявляется во втором идеализированном случае, когда температура поверхности теплообмена постоянна независимо от расстояния до входа теплоносителя, что обычно является типичным условием работы конденсаторов. Температура холодного теплоносителя сначала быстро растет вблизи входа, затем рост постепенно замедляется с уменьшением разности температур между теплоносителями, сопровождающимся уменьшением плотности теплового потока. Подобный эффект можно наблюдать в типичном случае распределения температур для котельной установки (см. рис. 4.1, в). В прямоточных и противоточных теплообменниках (см. рис. 4Л, г к д) меняется не только разность [c.72]

    Толщиномеры изоляционных покрытий предназначены для контроля толщины изоляционного покрытия стальных трубопроводов при их строительстве и ремонте. Принцип работы приборов основан на использовании зависимости силы притяжения между стальной поверхностью и магнитом от расстояния между ними или зависимости электромагнитной индукции от расстояния между замкнутым магнитопроводом и стальной поверхностью. Технические характеристики некоторых типов толщиномеров приведены в табл. 5.13. Приборы могут работать при температуре окружающего воздуха от -10 до +40 С и относительной влажности до 95 % при температуре 25 °С, т.е, в зимнее время их можно принять только в отапливаемых помещениях. Магнитные толщиномеры (МТ) различных модификаций могут измерять толщины покрытий из немагнитных электропроводящих и диэлектрических материалов. Для труб из неферромагнитных материалов (медь, алюминий) выпускается вихретоковый толхцино-мер ВТ-ЗОН. [c.105]

    Эффект искажения формы экструдата является серьезным препят-ствием для высокоскоростной переработки полимеров. Для осуществления процессов переработки полимеров при напряжениях сдвига выше 10" МПа необходимы дальнейшие прикладные и фундаментальные исследования. В качестве примера можно назвать работу Торделла по экструзии тефлона, дробление поверхности экструдата которого происходит при очень низких скоростях сдвига, применяемых в промышленности [51]. Тефлон в виде уплотненного порошка экструдировали при высоких давлениях, используя очень сильную зависимость температуры плавления от давления. Вследствие этого уплотненный порошок плавился при прохождении через головку, и получаемый экструдат имел гладкую поверхность. [c.478]

    В печах сопротивления в подавляющем большинстве случаев применяется простейший вид регулирования температуры — двухпозиционное регулирование, при котором исполнительный элемент системы регулирования — контактор имеет лишь два крайних положения включено и выключено . Во включенном состоянии температура печи растет, так как ее мощность всегда выбирается с запасом, и соответствующая ей установившаяся температура значительно превосходит ее рабочую температуру. В выключенном состоянии температура печи снижается по экспоненциальной кривой. Для идеализированного случая, когда в системе регулятор — печь отсутствует динамическое запаздывание, работа двухпозиционного регулятора показана на рис. 2.19, на котором в верхней части- дана зависимость температуры печи от времени, а в нижней — соответствующее изменение ее мощности. При разогреве печи вначале ее мощность будет постоянной и равной номинальной, поэтому ее температура будет расти до точки 1, когда она достигнет значения 4ад4-АА, где +Д/ + 1—М-х —зона нечувствительности регулятора. В этот момент регулятор сработает, контактор отключит печь и ее мощность упадет до нуля. Вследствие этого температура печи начнет уменьшаться по кривой 1—2 до тех пор, пока не будет достигнута нижняя граница зоны нечувствительности 4ад—AI2. В этот момент произойдет новое включение печи, и ее температура вновь начнет увеличиваться, [c.78]

    Нитрилсиликоны относятся к немногим неподвижным фазам, которые объединяют преимущества высокой полярности и селективности, а также хорошей термической устойчивости. Высоковязкие представители этой группы могут применяться после термического кондиционирования для продолжительной работы при температуре до 250° при этой температуре селективность для ароматических углеводородов еще так велика, что нафталин, кипящий при 218°, обладает вдвое большим объемом удерживания, чем и-гекса-декан, кипящий при температуре па 69° выше. Коэффициенты селективности для различных гомологических рядов (ароматические углеводороды, и-пара-фины, циклогексаны, циклоолефины, кетоны, первичные спирты, простые и сложные эфиры, галогенопроизводные углеводородов) изменяются в зависимости от того, много плп мало цианалкильных групп содержит масло, и могут быть подобраны по желанию в определенных границах (см. табл. 4). Электроноакцепторпые свойства этих неподвижных фаз позволяют проводить разделения, кроме перечисленных органических соединений, также фенолов, эфиров фенолов и ароматических аминов (см. также разд. Фторалкилсиликоны ). [c.197]

    Сплавы ниобия. Рекристаллизацию сплавов ниобия в настоящей работе не исследовали. Ранее [15] установлена зависимость температуры рекри- [c.18]

    Построение полных диаграмм состояния даже в случае относительно простых тройных систем требует выполнения сложного и трудоемкого эксперимента. Трудности особенно велики при изучении тугоплавких систем, когда температуры плавления сплавов достигают 3000° С и более. Из-за методических трудностей динамические методы (ДТА, изучение зависимостей температура — свойство) выше 2000° С используются сравнительно мало. В то же время, как оказалось, для углеродсодержащих систем (в частности, с молибденом и вольфрамом), как и для металлических, характерны быстропротекающиевысокотемпературные превращения типа мар-тенситных. В этом случае использование метода отжига и закалок для исследования фазовых равновесий при высоких температурах малоэффективно. С другой стороны, даже после длительных отжигов при относительно невысоких температурах (< 1500° С) часто в сплавах не наблюдается состояния термодинамического равновесия. Для правильной интерпретации экспериментальных данных, учитывая столь сложное поведение сплавов, особенно важно знание общих закономерностей взаимодействия компонентов в рассматриваемых системах. Поэтому, наряду с обстоятельными многолетними исследованиями с целью построения полных диаграмм состояния [1, 9, 121, целесообразно выполнять работы, цель которых — сравнительное исследование немногих сплавов многих систем в идентичных условиях, выявление на этой основе общих черт в поведении систем-аналогов [3, 12] и использование полученных результатов при оценке собственных экспериментальных и литературных данных и при планировании новых исследований [4]. [c.161]

    Котлы ТМ и ТГМ-84 поставлялись заводом-нзготови-телем в различных конструктивных модификациях, отличавшихся количеством горелок (24 и 18), уровнем их расположения, соотношением полурадиационной и конвективной поверхностей нагрева пароперегревателей, марками сталей отдельных элементов, величиной впрыска, шагами труб конвективного пароперегревателя, т. е. всего того, что оказывает непосредственное влияние как на температуру перегретого пара, так и на условия эксплуатации пароперегревателя. В 1966 г. ТКЗ значительно уменьшил количество горелок на этих котлах и выпустил котел ТГМ-84 с шестью горелками конструкции ТКЗ и котел ТГМ-84/А с четырьмя горелками ХФЦКБ—ВТИ. На электростанциях в процессе эксплуатации котлов ТГМ и ТМ-84 в зависимости от местных условий проводилась доводка пароперегревателя главным образом путем уменьшения поверхностей нагрева ширм и конвективной части. Таким образом, рассматривая характер изменения перегрева на этих котлах при переходе к сжиганию мазута с малыми и пониженными избытками воздуха, следует иметь в виду имеющееся разнообразие конструкций пароперегревателей, расположения горелок и т. д. Несмотря на это, котлы ТГМ и ТМ-84 с заводскими горелками, установленные иа Уфимской ТЭЦ Л Ь 4, Стерлитамакской и Ново-Салават-ской ТЭЦ, характеризуются следующими общими особенностями. Во-первых, несмотря на значительное (более 50%) тепловосприятие радиационной й полурадиационной частей, в целом пароперегреватель имеет возрастающую характеристику зависимости температуры перегрева пара от нагрузки котла, свойственную чисто конвективным пароперегревателям. Как правило, при увеличении нагрузки котла в 2 раза условная температура перегрева пара возрастает на 60—70° С (с 550 до 610— 620° С). Во-вторых, работа этих котлов с пониженными и 212 [c.212]

    На котле ТГМ-84, оборудованном шестью горелками конструкции Стерлитамакской ТЭЦ, размещенными на фронтовой стене в два яруса, общая картина работы пароперегревателя аналогична котлу с четырьмя горелками Ф. А. Липинского. Для выявления зависимости температуры перегретого пара от комбинации работающих горелок были опробованы различные варианты включения горелок, что позволило установить наиболее приемлемое с этой точки зрения сочетание работающих горелок. Из рассмотрения рис. 4-26, на котором представлены схема расположения горелок и зависимость температуры перегретого пара от паропроизводительности котла при разных сочетаниях работающих горелок, видно, что наибольший перегрев пара обеспечивается при работе [c.213]


Смотреть страницы где упоминается термин Работа зависимость от температур: [c.11]    [c.344]    [c.345]    [c.54]    [c.13]    [c.22]    [c.439]    [c.166]    [c.77]   
Химическая термодинамика Издание 2 (1953) -- [ c.409 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость изменения работы выхода от температуры

Тепловая работа воздухоподогревателя в зависимости от температуры воздуха перед ним

зависимость от температур



© 2025 chem21.info Реклама на сайте