Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барий определение меди

    Реагенты, образующие окрашенные соединения с ионами металлов, являются металлохромными индикаторами [242]. Из производных антрахинона чаще всего используют ализарин красный С - для определения редкоземельных элементов, скандия, тория, иттрия и ализарин-комплексон (ХСУ) - для определения кальция, бария, кадмия, меди, индия, свинца, стронция, цинка. В качестве металлиндикатора в комплексометрическом титровании используют и 1,4-диаминоантрахинон. [c.67]


    Об этом можно судить на примере определения меди. В материале электродов, а также в буфере (азотнокислый барий) содержится [c.48]

    Еслп в распоряжении исследователя имеется достаточно большое количество раствора, более удобным может оказаться концентрирование определяемых ионов с помощью микроколонки (см. гл. 14). Последующая обработка ионита реактивом может производиться либо после его извлечения из колонки, либо в самой колонке. Эта методика была применена И. К. Цитовичем [30 ] для определения меди, ртути, бария, цинка и мышьяка в растительных материалах. [c.404]

    Для колориметрического определения. Медь сернокислая ч.д.а., 10%-ный раствор. Натрий сернокислый ч.д.а., 1%-ный и насыщенный раствор. Калий йодистый х.ч., 3%-ный раствор. Барий хлористый ч., 20%-ный раствор. Иод ч. или ч.д.а., предварительно очищенный возгонкой, 0,25%-ный и 0,35%-ный растворы в 3%-ном растворе йодистого калия. Составной раствор готовят перед употреблением, сливая 10%-ный раствор сернокислой меди с 2,5 н. раствором сернокислого натрия в отношении 1 5, смесь перемешивают до растворения образовавшегося осадка и почти полного обесцвечивания. [c.243]

    Разработан химико-спектральный способ определения примесей бария, железа, меди (5.10" —1.10 %) и кадмия (5.10 —5.10 7о) в хроматах калия и натрия, основанный на предварительном концентрировании указанных примесей на карбонате кальция с угольным порошком с последующим спектральным анализом концентрата примесей и эталонов в дуге постоянного тока. [c.72]

    В настоящей статье изложена унифицированная атомно-абсорб- ционная методика определения меди в хлористых, азотнокислых, сернокислых, фосфорнокислых и углекислых солях калия, натрия, бария, стронция, кадмия, цинка и кобальта по норме 2.10 , се-р ра 3.10 и золота - 4.10 %. [c.116]

    Кроме схем устройств, приведенных в табл. 16.6, часто в вакуумной технике для напуска определенного газа используют так называемые генераторы газа — вещества, легко разлагающиеся при изменении внешних условий. Например, напуск кислорода в сосуд может быть осуществлен при нагреве до 500—550 К марганцовокислого калия, перекиси бария, закиси меди и других богатых кислородом соединений. [c.350]

    Для работы требуется Приборы (см. рис. 34,5, Г и рис. 35). — Штатив с пробирками. — Цилиндр мерный емк. 250 мл. — Цилиндр мерный емк. 10 мл,— Стакан на 200 мл с мещалкой. — Воронка. — Термометр на 100 °С. — Термометр комнатный. — Барометр. — Ареометр (отн. плотность 0,8—1,0). — Кольца резиновые для прикрепления капилляров к термометру. — Тиосульфат натрия в порошке. — Набор веществ для определения температуры плавления. — Четыреххлористый углерод. — Поваренная соль, насыщенный раствор. — Серная кислота (1 3).Сульфат меди, 0,5 н. раствор. — Цинковая пыль. — Аммиак, 25%-ный раствор. — Хлорид бария, 10%-ный раствор. — Соляная кислота, 2 н. раствор. — Уксусная кислота, 10%-ный раствор. —Иод, 0,01 н. раствор. — Раствор крахмала. — Сероводородная вода. — Известковая вода. — Бумага лакмусовая (красная и синяя). — Бумага папиросная. — Линейка миллиметровая. — Навески карбида кальция. [c.59]


    На сыщенный водный раствор. К диэтилдитио-фосфату никеля прибавляют дистиллированную воду и оставляют стоять на 12 час., время от времени встряхивая. Растворение идет обычно медленно. Концентрация насыщенного раствора — около 0,06 мол л. Раствор имеет зеленый цвет. Применяют его для обнаружения молибдена, фотометрического определения следов меди, висмута, палладия, для отделения кадмия от цинка, для определения свинца в присутствии бария, кальция, цинка и т. д. [c.91]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Диэтилдитиофосфат никеля применяется для фотометрического определения следов меди в различных материалах [1, 2, 3], фото.метрического определения палладия [4], висмута [5], отделения кадмия от цинка и других элементов [6], определения свинца в присутствии бария, кальция, цинка и других элементов [7], потенциометрического титрования меди [8], обнаружения. молибдена [9] и др. [c.33]

    Соли кальция почти не влияют на определение калия или влияют очень мало [2004, 2446, 2494, 2879] иногда они только немного повышают результаты в присутствии 200—100 000-кратных количеств кальция по сравнению с количеством калия [409, 410]. Следует, однако, отметить и указание о снижении определяемых количеств калия, если одновременно присутствуют соли кальция [2183]. Для устранения влияния кальция вводили его соль в эталонные растворы [2050]. Добавление ЫС1 устраняет влияние солей кальция [144]. Метод фотометрии пламени позволяет определять до 10% калия в СаСЬ [588]. Мы ограничимся только ссылками на работы, посвященные влиянию солей аммония 842, 843, 2004, 2183, 2796, 2814], бериллия [2084], стронция 144, 2555, 2770], бария [144, 2183, 2284, 2555], марганца [2183, 2237], алюминия [1495, 2004, 2814], железа [1495, 2183, 2185, 2746], хрома, кобальта, никеля, меди, цинка, молибдена [2185], вольфрама [1485], рения [1992]. [c.116]

    Назвать наиболее пригодную форму осаждения при определении а) кальция б) бария в) свинца г) железа д) магния е) меди ж) кадмия з) висмута и) цинка к) кремния л) калия м) натрия н) сульфат-иона о) фосфат-иона. [c.53]

    При определении сульфидной серы не рекомендуется тонко растирать пробу и держать ее в растертом виде, так как возможно окисление сульфидной серы в сульфатную. Определение пиритной серы может быть проведено по методу Остроумова и Иванова-Эмина [355], сущность которого состоит в восстановлении пиритной серы до сероводорода металлической ртутью в присутствии НВг. Сероводород поглощают раствором ацетата кадмия, сульфид кадмия переводят добавлением сульфата меди в сульфид меди, который отфильтровывают, промывают и прокаливают до окиси меди. Влияние сульфатов, частично восстанавливающихся в условиях метода, устраняется добавлением бромистого бария. Так как содержание серы в горных породах незначительно, часто ограничиваются определением общего ее содержания, представляя результат в пересчете на элементную серу [383]. [c.191]

    Кобальт в форме ионов Со(Х 02)б количественно осаждается раствором [Со( Нз)б]С1з [П80, 1181]. Осадок [Со(МНз)б][Со( 02)б] взвешивают после высушивания в вакуум-эксикаторе. Метод позволяет определять кобальт в присутствии ионов кальция, стронция, бария, цинка, марганца, кадмия, меди и свинца. Ионы калия и аммония должны отсутствовать. Погрешность определения составляет около 0,5%. Возможно также микрогравиметрическое определение нескольких десятых долей миллиграмма кобальта [1180]. При этом погрешность определения составляет 1,5%- Преимуществами метода являются высокий молекулярный вес соединения и небольшой фактор пересчета на кобальт (0,1188). [c.96]

    Определение кобальта [394] основано на измерении уменьшения светопоглощения раствора эриохромчерного А при 630 ммк (максимум поглощения), вызванного прибавлением соли кобальта и связывание.м реагента в комплекс, поглощающий при 560 ммк. Определение ведется в присутствии комплексона Н1, маскирующего 100-кратные количества никеля, цинка, свинца и кальция. Мешают кадмий, медь, барий, стронций и магний. [c.146]


    Определение кобальта в титане и титановых сплавах. Сводка методик определения примеси кобальта и примесей других элементов (всего 28 элементов) приведена в работе [1420]. Для полярографического определения кобальта (также меди, никеля, марганца и хрома) в титановых сплавах [1071] навеску материала разлагают смесью растворов фтористоводородной и хлорной кислот и удаляют основную массу титана гидролитически, выпаривая раствор почти досуха. Оставшийся в растворе титан удаляют осаждением пиридином, а хромат — осаждением раствором хлорида бария. Далее полярографируют ко- [c.206]

    В системах, содержащих окрашенные ионы, могут наблюдаться характерные изменения окраски ионита. Изменения цвета, наблюдающиеся в колонке в процессе хроматографического разделения, могут доставить ценную информацию относительно присутствующих в системе ионов. Изменение окраски в хроматографических колонках может быть использовано для идентификации образующихся комплексных соединений этот эффект может быть также использован для проявления неокрашенных зон ионов в хроматографической колонке. Последующая обработка ионита реактивом йожет производиться не только в самой колонке, но и после извлечения из колонки. Эта методика была применена для определения меди, ртути, бария, цинка и мышьяка в растительных материалах [78]. [c.141]

    Из этих вопросов последний является наиболее сложным и подробно изучен во многих работах [195]. Прямое использование водных растворов сравнения не обеспечивает одинакового абсорбционного сигнала с растворами органического происхождения, хотя иногда, например при определении железа, ванадия, никеля и меди в продуктах крекинга, и предлагают методики на их основе [196, 197]. В [198] описана методика атомно-абсорбционного определения бария, кальция, меди, железа и цинка в моторных смазочных маслах путем использования метода добавок, в котором известные количества определяемых элементов вводят в исходную пробу в виде водных растворов неорганических солей. В качестве растворов сравнения чаще применяют металлоорганические соединения, растворенные в том же растворителе, который используется для разбавления анализируемых образцов [199—201], а также металлоорганические соединения, растворенные в масле, нефти, очищенные от металлов [202—204]. Выпускаются стандартные совместные растворы Коностан , Континентал Ойл Компани (США), на основе которых выпускаются также и смешанные стандарты (Д-12, Д-20, С-20) на несколько элементов в одном растворе [205, 206]. [c.57]

    Поток тепловых нейтронов составлял 1,6—2,6-10 н/см -с, быстрых — 2,6—6,5-10 н/см -с. При определении меди-64, ртути-203 введены корректирующие коэффициенты, которые учитывают мешающее влияние радиоизотопов натрия-24, калия-42, лаптапа-140, селена-75. Концентрации натрия, алюминия, серы, хлора, калия, ванадия, хрома, л<елеза, кобальта, никеля, меди, мышьяка, селена могут быть установлены с воспроизводимостью менее 10%. Значения концентраций таких элементов, как магний, цинк, молибден, сурьма, барий, ртуть, торий, часто приближаются к пределу их обнаружения. Также было исследовано влияние гомогенности образцов на воспроизводимость результатов. [c.92]

    Казахское геологическое управление]. Полярографический метод определения меди и цинка в рудах. Полярографический метод определения кадмия и цинка в рудах, содерн<ащих не более 0,1 % меди. Полярографический метод определения свинца в рудах, содержащих барий. Полярографический метод определения олова в рудах. Ускоренный колориметрический метод определения никеля и кобальта из одной навески (посредством колориметрического титрования или шкалы эталонных растворов). Бю.тл. Всес. н.-и. ин-та минерального сырья. (М-лы научно-методические и про- извод, геол. управлений М-ва геологии [СССР]), 1951, № 9(101), с. 2—22. Стеклогр. 4081 Казначей П. Я. Ускорение анализа гальванически осажденного сплава. Зав. лаб., [c.163]

    Проверку методов проводили, пользуясь металлами особой чистоты либо известными точными методами анализа. В процессе разработки был применен ряд новых индикаторов синтезированный в Институте химических реактивов сульфарсазен [18. 19] для определения свинца, цинка, никеля и кадмия [19] и кальцион ИРЕА [20—23] для определения кальция, а также описанные в литературе индикаторы пирокатехиновый фиолетовый [24] для определения висмута, ксиленоловый оранжевый [25] для определения свинца и кобальта, хромазурол С [26, 10, 11] для определения алюминия, метилтимоловый синий [2, 27] для определения стронция и флуорексон [28] для определения бария и меди. В качестве индикатора при определении железа применили сульфосалициловую кислоту [29]. [c.274]

    Определение меди в присутств1та никеля, кобальта, цинка, кадмия, магния, кальция, бария и стронция /234/ [c.41]

    Установлено, что азотная и серная кислоты при концентрации до 25 /о (по объему), а также литий, натрий, калий, кальций, барий, стронций, медь, кадмий, свинец, хром, марганец, железо, серебро, титан, цирконий, фосфор, мышьяк, бор, алюминий, висмут, кобальт, никель, сурьма, торий и олово при концентрации по 1000 мкг/мл каждого определению не мешают. Несколько заниженные результаты получаются в присутствии магния и кремния (найдено соответственно 4,75 мкг/мл и 2,85 мкг/мл цинка вместо 5 мкг/мл). Значительный мешающий эффект был обнаружен первоначально со стороны галоидных кислот. Оптическая плотность при 2139 А 2,5 н. раствора соляной кислоты, содержащей цинк в концентрации 7,5 мкг/мл, равнялась 0,52 вместо 0,30 для водного раствора при той же концентрации цинка. С уменьшением концентрации кислоты оптическая плотность раствора приближалась к 0,30 (в растворе 0,1 н. соляной кислоты оптическая плотность равна 0,28). Объясняя полученный результат, авторы предположили наличие в области 2100—2200 А молекулярных абсорбционных полос соляной, бромистоводородной и йодистоводородной кислот, ранее не идентифицированных и в связи с этим рекомендовали определение цинка проводить в отсутствии галоидных кислот. С этим объяснением не согласился автор работы [8]. По его данным, галоидные кислоты при использовании горелки из нержавеющей стали определению цинка не мешают. В связи с этим он высказал предположение, что поглощение в области 2000—2200 А вызвано поступлением в пламя загрязнений. В последующих исследованиях это предположение подтвердилось [9] было показано, что при использовании латунной горелки ее поверхностный окисный слой разрушается соляной кислотой и вносится в пламя вместе с распылохм анализируемого раствора. Этим объясняется поглощение в пламени растворов галоидных кислот как при длине волны Zn 2139 А, так и при длинах волн 2024,. 2165, 2178 и 2182 А. При указанных длинах волн [81] расположены сильные абсорбционные линии меди. [c.149]

    Рекомендуется также метод , основанный на осаждении циркония из солянокислого раствора в виде манделята (соли миндальной кислоты) циркония(СвН5СНОНСОО)42г. Определение может быть выполнено в присутствии титана, железа, ванадия, алюминия, хрома, тория, церия, олова, бария, кальция, меди, висмута, сурьмы и кадмия. Содержание свободной серной кислоты в растворе не должно превышать 5%. Аммонийные соли препятствуют осаждению вследствие образования, как предполагает автор, растворимого комплексного манделята аммония и циркония. Определение сводится к следующему. Раствор, содержащий хлорид или сульфат цирконила в соляной кислоте, в количестве 0,050—0,3 г в пересчете на окись циркония, разбавляют приблизительно до 20 мл концентрированной соляной кислотой. К раствору прибавляют 50 мл 16%-ной миндальной кислоты и разбавляют до 100 мл. Температуру раствора медленно повышают до 85° и нагревают при этой температуре 20 мин. Выделившийся осадок отфильтровывают, промывают горячим раствором, содержащим 2% соляной кислоты и 5% миндальной кислоты, и прокаливают до окиси циркония. [c.590]

    Лабораторная методика химико-спектрального определения серебра,30лота бария,кобальта, меди.висмута.галлия, индия.марганца,никеля,титана. хрома.свинца.стронция,цинка по норме 1.10 алюминия, "машйя. железа по норме [c.65]

    НО высока. Определению мешают все редкоземельные элементы, торий, уран, висмут, медь, железо, барий, скандий и др. Для повышения избирательности лучше применять маскирующие реагенты ЭДТА, тартраты, оксалаты, фториды и некоторые другие. [c.79]

    Нитрат-ионы можно определять прямым спектрофотометрическим методом, измеряя оптическую плотность раствора при длине волны 302 нм. Определению мешают ионы поливалентных металлов [медь(И), свинец(Л), кобальт(П), барий(П), кальций(П) и др.]. Катионы металлов отделяют пропусканием анализируемого раствора через колонку с Н-катионитом. В результате ионного обмена 2RH + Ме + НгМе + 2Н - в раствор переходит эквивалентное количество ионов водорода, причем образовавшиеся кислоты (H I, H2SO1, H IO4) не мешают определению нитрат-ионов указанным методом. Если в растворе находились только нитраты, то после катионирования их можно определить рН-метрическим титрованием азотной кислоты. [c.323]

    М. В. Алексеева, Б. Е. Андронов, С. С. Гурвиц, А. С. Житкова. Определение вредных веществ в воздухе промышленных предприятий. Госхимиздат, 1954, (410 стр.). В книге приведены методы определения различных вредных веществ в воздухе, причем особое внимание обращено на описание техники работы. Рассмотрены методы определения не только собственно газов галоидов, хлористого водорода, синил1,ной кислоты, мышьяковистого и фосфористого водорода, но и др. ядовитых органических и неорганических соединений. Так, в книге изложен),1 методы определения ртути и ее соединений, тетраэтилсвинца, солей бария, сурьмы, цинка и меди и др., керосина, скипидара, анилина, нитробензола и др. [c.490]

    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Пользуясь сероводородом как осадителем, можно выделить в виде сульфидов металлов целую группу катионов, сходных по их реакциям с сероводородом. Поэтому сероводород называют групповым реагентом. Групповыми реагентами являются также карбонат аммония, сульфид аммония, сульфид натрия. Групповым называют такой реагент, который осаждает апределенные ионы, не осаждая при этом других ионов, присутствующих в том же растворе, и наоборот, переводит в раствор определенные ионы, находящиеся в осадке, не затрагивая при этом других ионов осадка, например, карбонат аммония осаждает катионы кальция, стронция, бария, но не осаждает катионов щелочных металлов. Раствор сульфида натрия растворяет сульфиды мышьяка, сурьмы, олова, ртути и не растворяет сульфидов меди, кадмия, висмута, свинца. Эти особенности групповых реагентов наиболее полно использованы при разработке систематического хода анализа катионов по сероводородному методу анализа, в котором все катионы подразделяют на пять групп (табл. 2). [c.11]

    Определение щелочных металлов в солях Из раствора солей удаляют катион в виде соответствующего малорастворимого соединения, например, из раствора нитрата бария осаждают сульфат бария, из раствора нитрата свинца осаждают сульфид свинца и т. п. Фильтрат выпаривают досуха, остаток прокаливают и извлекают водой. К отфильтрованному раствору добавляют несколько капель H2SO4 и т. д. [425, 540] Можно также удалять катионы меди, кобальта, никеля и других элементов электролизом, и в оставшемся растворе определять сумму щелочных металлов в виде сульфатов [347]. [c.26]

    В новом пламени — смеси этанола и воздуха — натрий можно определять сразу же после разложения силикатов смесью НР и Н2804, так как не обнаружено влияния железа, кальция и других элементов [99]. В пламени кислород—водород при определении натрия по линии 589,6 нм не наблюдалось влияние лития, магния, меди, бария, стронция, алюминия, циркония и ванадия [1207]. Влияние ванадия не наблюдали также при его содержании до [c.122]

    Свойства. Оранжевый порошок. Образует с кальцием флуоресцирующий комплекс зеленого цвета. Применяют для определения кальция в присутствии магния при рН>12 (в среде NaOH). Определяют также стронций и барий. Ярко-зеленая флуоресценция переходит в розовую, почти в бесцветную. Определяют медь, цинк, магний, алюминий при pH 10,0—12,5, [c.274]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    После спекания тигель охлаждают на воздухе. Охлажденный спек не рекомендуется оставлять длительное время на воздухе, так как это ухудшает разделение молибдена и рения при анализе молибденитов за счет перехода окиси кальция в карбонат [376]. Остывший спек вьщелачивают водой при нагревании раствора до кипения в течение 20—60 мин. В полученном растворе (щелоке) содержатся перренат- и в небольших количествах (1—12 мкг/мл) молибдат-, вольфрамат-, ванадат-, сульфат- и другие ионы в осадке — нерастворимые соли молибдена(У1), вольфрама(У1), кремния и др., гидроокиси железа(1П), алюминия, титана(1У), меди(П), марганца(1У) и других элементов. Щелок фильтруют через бумажный фильтр, осадок па фильтре промывают горячей водой. Фильтрат при стоянии мутпеет вследствие образования осадка карбоната, который, однако, не мешает определению рения. Для предотвращения образования этого осадка рекомендуется собирать фильтрат в сосуд, содержащий небольшое количество соляной кислоты ( 1 мл). Для уменьшения содержания в фильтрате молибдат-, вольфрамат- и сульфат-ионов при выщелачивании плава в раствор добавляют соединения бария, образующего с названными ионами малорастворимые в воде соединения [133, 384, 576]. Иногда для удаления из фильтрата кальция к нему прибавляют карбонат аммония [501]. В результате всех этих процедур рений эффективно отделяется также от Са, d, Bi, Sb, Hg, Se, Te и As. [c.236]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Сг207 " = 7 7 1. Максимум светопоглощения находится при 380 и 550 ммк. Метод пригоден для определения 10—80 мкг Со. Мешают ионы трехвалентного железа, никеля, меди, алюминия, цинка, кадмия, бария и свинца. При фотометрическом определении кобальта в форме окрашенного соединения с этилендиамин-гетрауксусной кислотой, образующегося в аммиачном растворе в присутствии Н2О2 [1320], оптическую плотность измеряют при 580 ммк. М ешают железо, титан, никель и медь. [c.146]

    По специфичности флуорексон не превосходит другие комплек-сонометрические индикаторы. Барий и стронций дают с ним в щелочной среде такую же флуоресценцию и титруются так же, как и кальций [852]. Большие количества натрия мешают определению кальция [1128]. Не мешают титрованию <. 1 мг Fe, <., Ъ мг А1 и < 6 Ni. Кобальт и медь гасят флуоресценцию. Титрованию мешают Zn, Мп, d, Сг(П1) [66]. Титрованию 0,2—10 мкг Са/5 мл раствора не мешают до 10 мкг Fe(II), AI и Zn, до 2 мкг Си и Со гасят флуоресценцию индикатора 20 мкг Fe (II) [55, 58]. [c.56]


Смотреть страницы где упоминается термин Барий определение меди: [c.66]    [c.646]    [c.38]    [c.32]    [c.292]    [c.183]    [c.107]    [c.155]    [c.152]   
Фотометрическое определение элементов (1971) -- [ c.452 ]




ПОИСК





Смотрите так же термины и статьи:

Медь, определение



© 2025 chem21.info Реклама на сайте