Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь водородная поляризуемость

    Адсорбция молекул на поверхности ГТС зависит от природы адсорбирующихся молекул. Поскольку молекулы воды обладают малой поляризуемостью, их неспецифическое взаимодействие с таким неполярным адсорбентом, как ГТС, очень слабое. После обработки водородом на поверхности ГТС не остается полярных функциональных групп, с которыми молекулы воды могли бы образовывать водородные связи. Поэтому изотермы адсорбции [c.15]


    Биполярные апротонные растворители имеющие высокую диэлектрическую постоянную и большой дипольный момент, сильно сольватируют растворенное соединение. Благодаря тому, что их электронная плотность локализована на атомах кислорода (диме-тилсульфоксид, диметилформамид, Л -метил-2-пирролидон, простые эфиры и др.), они являются активными акцепторами протона дри образовании водородной связи, и весьма эффективно сольватируют катионы. Анионы биполярными растворителями сольватируются слабо, особенно если они жесткие, мало поляризуемые. Соли в таких растворителях обычно диссоциируют с образованием сильно сольватированных катионов и слабо сольватированных анионов. [c.162]

    В заключение данного раздела можно сказать, что повышение электронной поляризуемости молекул и кристаллов из-за образования в них водородных связей прочно вошло в арсенал метол,ов и основных результатов изучения водородной связи и сейчас уже невозможно представить теорию этого вида межатомного взаимодействия без изложенных выше фактов. [c.201]

    Для соединений, образующих водородные связи, молекулярное взаимодействие определяется атомной поляризуемостью молекулы, как это было показано в гл. 4, амплитудами колебаний легких атомов. [c.158]

    С изменением строения растворяемых молекул избирательность растворителя будет меняться. Так, например, избирательность одного и того же растворителя будет совершенно различна при извлечении из нефтяных фракций ароматических углеводородов и при извлечении карбоновых кислот из их смеси с углеводородами Если в первом случае основной причиной избирательного растворения является различная поляризуемость молекул углеводородов [6], то во втором случае — различие значений ди-польных моментов, осложненное образованием водородных связей. [c.253]

    В связи с тем, что сольватация в апротонных полярных растворителях. практически происходит без участия водородных связей, анионы в них по сравнению с катионами значительно менее сольватированы [1]. Однако большие поляризуемые анионы сольвати-руются несколько больше, чем малые анионы. [c.10]

    Из-за большого объема переходного состояния и рассредоточенности в нем заряда взаимодействие с протонными растворителями с образованием сильных водородных связей происходит в значительно меньшей степени, чем взаимодействие меньших по размеру анионов с этими растворителями. Вследствие этого бимолекулярные реакции анионов, протекающие через промежуточное образование большого поляризуемого активированного комплекса, содержащего этот анион, осуществляется в апротонных полярных растворителях гораздо быстрее, чем в протонных [12]. Некоторые примеры влияния водородных связей на скорость реакций нуклеофильного замещения в протонных растворителях приведены в табл. 2. При этом надо подчеркнуть следующее. [c.13]


    С высоким дипольным моментом карбонила, наличием на его углеродном атоме частичного положительного заряда и особенно со значительной дальнейшей поляризуемостью двойной О С О) связи согласуется большая часть химических свойств альдегидов и кетонов. Это сказывается, во-первых, в способности альдегидов и кетонов легко вступать в реакции присоединения, во-вторых, в способности водородных атомов [c.131]

    Зависимость удерживания компонентов от особенностей локальной электронной структуры молекул при разделении на полярных сорбентах, содержащих эфирные функциональные группы, проявляется и в элюировании полярных соединений (табл. 10). В отличие от удерживания на поли-сорбе-1 удерживание соединений на полисорбатах определяется не только величиной общей поляризуемости молекул, но зависит и от дипольного момента молекул (время удерживания н-пентана меньше времен удерживания диэтилового эфира, ацетона, ацетонитрила), а также от способности соединений к образованию водородных связей [c.41]

    Удерживание гидроксилсодержащих соединений зависит от величины общей поляризуемости молекул и не зависит от способности соединений к образованию водородных связей с поверхностью сорбента. [c.80]

    Хиншельвуд и Глесс [10а] установили, что иод обладает резко выраженным каталитическим действием при термическом разложении изопропилового эфира и что каталитическая реакция гомогенна. Ими предложен упрощенный механизм-активации реакции, состоящий в миграции водородного атома и разрыве связи, имеющей дипольный момент. Полярный характер разрывающейся связи и поляризуемость молекулы иода облегчают перенос энергии к разрушаемой части молекулы. Связь ослабляется действием катализатора, который представляет собой скорее молекулу иода, чем атом иода. Действие катализатора приводит к увеличению коэффициента пертурбации, требуемому квантовой механико1ь для переноса энергии  [c.562]

    Широко применяется моделирование в исследовании химической связи. Развитие электронных представлений еще до возникновения квантовой механики раскрыло химическую связь, валентный штрих как сложное образование, состоящее из электронной пары. Структурные фомулы (модель Льюиса), где валентные электроны изображались точками, уже позволяли объяснять некоторые новые черты химической связи. Это способствовало уяснению различия между ионной и ковалентной связями, характера комплексной, координационной и водородной связей, условий поляризуемости молекул. На этой основе удалось более глубоко выяснить взаимозависимость между химическим строением и свойствами веществ, в частности таким важнейшим для химии свойством, как реакционная способность. [c.314]

    Между 25°С и точкой кипения данной жидкости замещение в ней водорода, образующего водородные связи, дейтерием вызывает увеличение молярного объема на 0,1—0,2% [200]. Критическая температура при таком замещении понижается [205], как это характерно и для неассоциированных веществ, являющихся жидкими при средних температурах. Электронная поляризуемость дейтеросоединений с водородными связями меньше поляризуемости их обычных аналогов [203], что характерно и для неассоциированных жидкостей [c.58]

    Величина поверхностного натяжения является мерой интенсивности молекулярно-силового поля в поверхностном слое. Поскольку поверхностное натяжение является результатом нескомпенсированности меясмолекулярного взаимодействия в разных фазах, оно определяется разностью интеисивности взаимодействия молекул внутри каждой фазы (когезии) и взаимодействия молекул различных фаз (адгезии). Интенсивность молекулярных взаимодействий внутри ф .зы в теории поверхностных явлений обычно обозначают термином полярность . Полярность вещества в очень больш(л1 степени связана с такими ее параметрами, как дипольный момент молекул, диэлектрическая проницаемость, поляризуемость молекул, способность к образованию водородной связи меясду молекулами. Существенную роль играют также плотность (молярный объем) вещества, геометрия строения ьолекул, ориентация молекул в поверхностном слое, определяющая направление силовых полей, возможная взаимная растворимость граничащих фаз, их химическое взаимодействие. [c.189]

    Самое малое поверхностное натяжение оказывается у сжиженных инертных газов, симметричные молекулы которых обладают ничтожной поляризуемостью. Поверхностное натяжение органических жидкостей возрастает с увеличением их полярности, Обращает на себя внимание большая величшш поверхностного натяжения воды по сравнению с другими жидкостями. Это связано со склонностью воды к образованию водородных связей. Еще выше поверхностное натяжение расплавленных солей и металлов, для которых характерна ионная связь. Поверхностная энергия твердых тел, определенная косвенными методами, оказалась существенно большей, чем в случае жидкостей. [c.190]


    Рассмотренный механизм переноса электронного заряда требует, чтобы связь А—Н отличалась заметной поляризуемостью, атом А— высокой электроотрицательностью, а атом В — донорными свойствами.. Последним способствует наличие у атома В неподеленной электронной пары. Точные квантовомеханические расчеты показывают, что при сближении молекул раньше начинается их взаимная поляризация, а затем уже перенос заряда. Следовательно, ориентационное и индукционное взаимодействие способствует переносу заряда. При образований водородной связи помимо переноса заряда свой вклад в общее понижение энергии вносят электростатическое, индукционное и дисперсионное взаимодействия обеих молекул. Таким образом, специфическое взаимодействие молекул через водородную связь осуществляется наряду с универсальным ван-дер-ваальсовым взаимодействием. Если иногда энергия водородной связи сравнима или меньше энергии последнего, то и при этом водородная связь благодаря свойству направленности играет важную роль в строении образующихся комплексов. Как видно, взаимодействие молекул посредством водородной связи является промежуточным между ван-дер-ваальсовым взаимодействием и химической связью, точнее, включая черты того и другого типа взаимодействий. [c.269]

    Приложение теории донорно-акцепторных взаимодействий к проблеме структуры воды привело Гутмана к интересным выводам. Высокая поляризуемость водородной связи, которая еще увеличивается в растворах с ростом расстояния от заряда, ведет к стиранию границы между структурой раствора, в которой преобладают сольварационные сферы, и полностью дезорганизованной структурой растворителя. Отсюда Гутман заключает, что чистая жидкая вода не может существовать. Даже в очень чистой воде гидратированные ионы Н+ и ОН образуют равновесную систему. Наглядным геометрическим образом может служить куб, внутри которого находится ион и каждое ребро куба занято 820 молекулами воды. Растворение газов, например воздуха (при 0°С растворимость соответствует приблизительно 1,25-10 М), ведет к тому, что каждая молекула азота и кислорода окружается примерно восемнадцатью слоями молекул воды. На этом основании Гутман рассматривает жидкую воду как высокоорганизованную гибкую псевдомакромолекулу, содержащую ионы, которые нарушают ее структуру, и подвижные полости — дыры . Дыры могут быть частично заняты, например, молекулами воздуха или другими частицами. Находясь в дырах , частицы, в зависимости от своей природы, могут укреплять или разрушать структуру воды. Поэтому эти частицы и дыры играют роль центров регулирования структуры. [c.266]

    Описывая сдвиги частот, факторы Р1 характеризуют способность связей Х Н к динамическому взаимодействию со связями Н...У. Р. и факторы, как было сказано, характеризуют локальные свойства активных центров Х Н и Уу в молекулах. Из правила факторов следует, что взаимодействие этих центров, приводящее к образованию водородной связи, лишь в малой мере затрагивает строение молекулы в целом. Поэтому Р. и Ej факторы не коррелируют с дипольными моментами, поляризуемостями, потенциалами ионизации и другими молекулярными параметрами. Р. и Ej факторы не имеют простой общей связи с другими химическими реакциями, более глубоко меняющими электронное состояние молекул КХН и УКг, чем реакция (111.22). Вместе с тем, правило факторов не является специфической особенностью Н-связей. Аналогичныеэмпирические соот-отяошения справедливы и для некоторых других типов слабых химических взаимодействий между молекулами (см. гл. IV). Средняя энергия дипольных взаимодействий и энергия лондоновских взаимодействий в сущности тоже следует правилу факторов. В этом отношении водородная связь и ряд других типов химических связей имеют общие черты с вандерваальсовыми взаимодействиями. [c.73]

    Образование водородной связи было обнаружено и вот уже более полувека интенсивно изучается по своим молекулярно-физическим проявлениям. Еще со школы мы знаем, что при обычной температуре НзТе — жидкость, НаЗе — легкокипящая жидкость, НгЗ — газ, а Н2О —снова жидкость, хотя по экстраполяции ей полагалось быть еще лучшим газом, чем сероводород. Такую же цепь примеров представляют собой галогеиоводороды. Однако эти примеры дают скорее эмоциональное, чем научное удовлетворение, так как в изменении температур плавления галогенидов одновалентных металлов или халькогенидов двухвалентных мы увидим точно такую же закономерность. Действительная причина заключается в том, что при переходе сверху вниз в периодической системе в группах галогенов и халькогенов монотонно уменьшается их электроотрицательность и поэтому будет уменьшаться полярность связей любого атома М (в том числе и водорода) с указанными элементами. Поскольку плавление или кипение вещества характеризует разрыв МбЖМОЛбКуЛЯрНЫХ СВЯ30Й, 1 ггл и i К1ТП будут как-то отражать прочность этих связей. А прочность межмолекуляр-но1 о взаимодействия будет определяться двумя факторами, которые действуют в прямо противоположных направлениях — сверху вниз будет уменьшаться, как только что было сказано, полярность атомов в молекулах и поэтому ослабевать ион-дипольная ассоциация, но одновременно вниз будет расти молекулярный вес, а следовательно, поляризуемость и ван-дер-ваальсовское, дисперсионное взаимодействие. Суперпозиция двух тенденций и приводит к тому, что внизу и вверху периодической системы химические соединения типа АВ и АВг будут иметь повышенные температуры плавления и кипения. Это обстоятельство и привело к необходимости изучения особенностей водородной связи методами структурного анализа — дифракционными (рентгене-, электроно- и [c.166]

    Вместе с тем, как уже говорилось, водородные связи вследствие своего направленного характера препятствуют плотнейшей упаковке ионов и по этой причине влияют иа геометрические характеристики веществ, но только не па линейные, а иа объемные [207]. Образование водородных связей влияет и на величины электронных поляризуемостей. Рассмотрим этот вопрос подробнее, а другие методы изучения водородной связи будем затрагивать лишь попутио для иллюстрации рефрактометрических выводов. [c.173]

    Рефракцию связи N—Ы...О в растворах можно определить, сравнивая ионные рефракции N1 4+ для кристаллического и растворенного в воде состояния. Обычно катионы в кристаллическом состоянии имеют рефракцию, равную или большую, чем в растворах (уменьшение ре( 1ракцин обусловлено изменением поляризуемости молскул воды в ноле катиона, см. стр. 51). Исключение составляет ион аммония, который в воде имеет большую рефракцию, чем в кристалле 4,26 против 3,70 см . Повышение рефракции вызвано образованием водородных связей N—Н...0, каждая из которых имеет рефракцию 0,14 см т. е. почти такую же величину, как н рефракция водородной связи О—Н...0 в жидкой воде. [c.193]

    Снлы притяжения, возникающие между этими соединениями (особенно нитрилоэфирами) и неполярными и насыщенными органическими соединениями, невелики, тогда как с полярными и ненасыщенными веществами, которые могут образовывать водородные связи, возникает сильное притягивающее взаимодействие. Последнее объясняется тем, что нитрилы при наличии в них цианогрупп сами сильно полярны (дипольный момент алкилциани-дов составляет (х = 3,60 /), а фенилцианида [х = 4,05 О) и легко поляризуются, в связи с чем может проявляться действие ориентационных сил. В то же время нитрилы, будучи полярным , индуцируют в ненасыщенных, поляризуемых молекулах электрическое поле, в результате чего возникает некоторое притяжение и к этим молекулам. Но еще сильнее проявляются силы донорно-акцепторного типа, и это прежде всего водородные связи. Донорно-акцепторные силы возникают вследствие того, что нитрилы благодаря электроотрицательности групп N действуют как акцепторы электронов и больше задерживают в колонке вещества, обладающие системой я-электронов с низкой энергией ионизации (ароматические вещества) (ср. разд. В.1). Образование водородных мостиков происходит между нитрилоэфирами, с одной стороны, и спиртами, фенолами, карбоновыми кислотами (т. е. соединениями, содержащими группы ОН) и первичными (в меньшей степени также вторичными) аминами — с другой. Как уже было указано выше (см. разд. В), удельные объемы удерживания пропанола при применении , 2,2>-трис-(цианэтокси)пропана и менее полярного диоктилсебацината почти одинаковы, так как в обоих случаях водородные связи с этими веществами приводят к взаимодействиям с большей энергией по сравнению с другими типами взаимодействий. [c.207]

    О—150°С) энергия связи N—Н 389,4 к Дж/моль. Поляризуемость молекулы 22,6-10 см . У атома N имеется неподеленная пара электронов, к-рая обусловливает способность А. к образованию донорно-акцепторной и водородной связей. Существование водородных связей и значительная полярность молекул А.-причины сильного взаимодействия между ними, вследствие чего физические свойства А. во многом аномальны по сравнению со св-вами однотипных соединений (РН3, 8ЬНз, АзНз). Для NH3 т. пл. -77,7°С, т. кип. - 33,35 °С, d 0,790 (-40°С), 0,681 (- 33,35 °С), 0,639 (0°С), 0 580 (40 °С), 133 С, [c.149]

    Осушка, т. е. удаление воды, представляет собой весьма специфическую операцию как вследствие химической уникальности воды, так и вследствие ее практически неограниченной распространенности. Химические особенности воды включают в себя следующий, довольно редкий набор физикохимических характеристик большие значения дипольного момента и поляризуемости, амфотерность, способность выступать в качестве долора и акцептора при образовании водородных связей, малые размеры молекулы. [c.177]

    Четвертая глава посвящена водородной связи в Н2О. На примере полиморфных форм льдов (полностью водородосвязанных структур) показывается, что большие амплитуды атомных колебаний протонов во льдах определяют большую анизотропную поляризуемость молекул Н2О, В результате чего дальнодействующее взаимодействие в водородосвязанной структуре одинаковых молекул осуществляется при помощи дисперсионных сил типа Лондона, обусловленных колебаниями атомов молекулы Н2О, Возможность дисперсионного взаимодействия водородной связи, определяемую туннельными переходами протона в растворах кислот и оснований, рассматривал Цундель (1972). Однако близость спектральных характеристик льдов с дефектами кристалла и без дефектов показывает, что процессы переходов протонов от молекулы к молекуле не определяют водородную связь во льдах и воде. [c.6]

    Поляризуемость и сверхполяризуемость водородной связи растет с уменьшением частот атомных колебаний или туннельных переходов протонов (Цундель, 1971). В связи с этим водородные связи в D2O оказываются более прочными, чем в Н2О. Это справедливо для всех соединений, образующих межмолекулярные водородные связи. [c.158]

    Другая серьезная проблема, возникающая при учете электростатических взаимодействий, связана с диэлектрической проницаемостью е. Выше отмечалось, что этот параметр характеризует макроскопическое свойство среды ослаблять взаимодействие зарядов, находящихся на большом расстоянии друг от друга. В конформационном анализе одной молекулы такая трактовка параметра е, строго говоря, теряет смысл. Тем не менее от использования диэлектрической проницаемости не отказались и вводят В расчет в виде эмпирического параметра, величина которого может существенно отличаться от величины известной физической константы. Определение е, используемой в конформационном анализе, связано с большими трудностями и вряд ли является однозначным. В отсутствие молекул растворителя в промежутке между близко расположенными атомами значение диэлектрической проницаемости определяется поляризуемостью взаимодействующих атомов и полем, создаваемым окружающими атомами и молекулами растворителя. Для неполярной среды Брант и Флори рекомендуют величину е = 3,5 [86]. Выбор был сделан при сопоставлении результатов конформационного анализа полипептидов с опытными данными. В работе Скотта и Шераги, посвященной конформационному анализу регулярных структур полипептидов, значение е варьируется от 1 до 4, что, однако, мало сказывается на профиле потенциальной поверхности [85]. Учитывая величину диэлектрической проницаемости в алкиламидах (е = 4), значения от 1 до 4 можно считать разумными при оценке электростатических взаимодействий атомов полипептидов в неполярных средах. В случае водных растворов значение зф должно быть больше, так как для самой воды е = 81 и, что весьма важно, вода при образовании водородных связей оттягивает на себя заряды атомов амидной группы. С. Кримм и Дж. Марк в расчете конформаций полипептидов с заряженными группами в водной среде использовали величину е, равную 10 [95]. В работе Е.М. Попова и соавт. [96] была рассмотрена возможность учета влияния растворителя на конформационное равновесие низкомолекулярных пептидов в рамках механической модели. Наилучшее совпадение с экспериментальными данными было получено при е = 4 для растворов в ССЦ, е = 6-7 - СНСЦ и е = 10 - Н2О. [c.119]

    О и вакантной орбитали акцептора А (см. также разд. 2.2.6). Такой подход к определению понятий кислота и основание был расширен Пирсоном, который разбил льюисовы кислоты и основания на две группы — жесткие и мягкие в зависимости от их электроотрицательности и поляризуемости (принцип жестких и мягких кислот и оснований концепция ЖМКО) [66, 67]. Жесткие кислоты (например, Н , Ь1 , Ыа , ВРз, А1С1з, доноры водородных связей НХ) и жесткие основания (например, Р , С1 , НО , КО , НгО, КОН, КгО, ЫНз) обычно построены из сильно электроотрицательных и обычно слабополяризуемых небольших атомов. Мягкие кислоты (например, Ад , Нд , Ь, 1,3,5-тринитробензол, тетрацианэтилен) и мягкие основания (например, Н , I , К , КЗ , КЗН, КгЗ, алкены, СеНе) обычно содержат большие атомы, обладают слабой электроотрицательностью и, как правило, легко поляризуются. Такое разделение позволяет прийти к простому правилу, устанавливающему устойчивость комплексов кислота Льюиса — основание Льюиса жесткие кислоты предпочтительно связываются с жесткими основаниями, а мягкие кислоты — с мягкими основаниями [66, 67]. Это правило (концепция ЖМКО) качественно хорошо описывает большое число химических явлений и широко используется в органической химии [66—70] (критику концепции ЖМКО см. в работах [71, 72]). Недавно Пирсон опубликовал [c.110]

    В случае таутомерных соединений типа (4а) = (46), когда возможно образование внутримолекулярных водородных связей, доминируют эффекты, обусловленные взаимодействиями за счет полярности и поляризуемости молекул растворителя и растворенного вещества, хотя и здесь различия в стабилизации таутомеров водородными связями играют важную роль. Если между постоянными дипольными моментами двух таутомеров имеется существеннная разница и оба таутомера могут образовывать водородные связи с молекулами растворителя,, то определяющую роль будут играть диполь-дипольные взаимодействия растворителя с растворенным веществом [134]. Та- [c.145]

    Паркер [6] предложил при анализе сольватации анионов подразделять растворители на две группы — протонные и биполярные апротонные (ср. разд. 3, 4 и рис. 3.3). Основное различие между растворителями этих двух групп заключается в их разной способности сольватировать анионы. Небольшие анионы с высокой плотностью заряда (т. е, с большим отношением заряда к объему), являющиеся мощными акцепторами водородных связей, сильнее сольватируются в протонных растворителях. Индуцированные образованием водородных связей взаимодействия наиболее характерны для небольших анионов (например, F , С1 , НО ) и наименее типичны для больших анионов с делокализованным зарядом (например, S N , I , пикрат). Поляризуемые биполярные растворители-НДВС взаимодействуют с поляризуемыми анионами. Такие поляризационные взаимодействия должны быть наиболее сильными в случае больших поляризуемых анионов и наиболее слабыми — в случае небольших слабо [c.306]

    Протонные растворители (вода, спирты, гликоли, карбоно-ые кислоты, фенол и др.) эффективно сольватируют анионы за кет образования водородной связи. Это взаимодействие, согласно финципу ЖМКОу наиболее эффективно реализуется при соль-Ьтации жестких оснований Льюиса (гл. 3). Поэтому в протон-Юй среде в наибольшей степени сольватированы жесткие анио-а небольшого размера малой поляризуемости, относящиеся к ислу слабых восстановителей — Р" НО" ЯО" КСОО" СН"  [c.115]

    Среди адсорбентов и неподвижных фаз выделим прежде всего неполярные, способные только к дисперсионным взаимодействиям. К ним относят углеродные и некоторые полимерные сорбенты, углеводородные (сквалан, апиезоны) и метилсилико-новые неподвижные фазы. Неполярные сорбаты сильнее всего удерживаются на неполярных сорбентах за счет сильных дисперсионных взаимодействий полярные сорбаты при этом удерживаются слабее, во всяком случае, при сопоставлении с неполярными, имеющими близкие температуры кипения. Это связано с тем, что температуры кипения полярных веществ определяются не столько дисперсионными, сколько дипольными взаимодействиями между их молекулами или даже водородными связями, которые при сорбции на неполярных сорбентах никак не проявляются. Самый яркий пример — вода. Ее высокая температура кипения обусловлена почти целиком водородными связями, а почти та же самая температура кипения гептана — дисперсионными взаимодействиями. Ясно, что при разделении на неполярном сорбенте, например, графитированной саже, вода будет удерживаться очень слабо, а гептан сильно. Способность к дисперсионному взаимодействию увеличивается с ростом молекулярной массы, поскольку при этом возрастает число фрагментов молекулы, участвующих во взаимодействии. Количественным показателем способности к дисперсионному взаимодействию является также поляризуемость молекулы. [c.55]


Смотреть страницы где упоминается термин Связь водородная поляризуемость: [c.62]    [c.21]    [c.138]    [c.115]    [c.138]    [c.317]    [c.203]    [c.268]    [c.434]    [c.153]    [c.67]    [c.122]    [c.152]    [c.137]    [c.307]    [c.314]    [c.325]    [c.73]    [c.39]   
Физическая химия Книга 2 (1962) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Поляризуемость

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте