Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тирозин определение содержания в белка

    Возможно прямое определение белка путем измерения оптической плотности (поглощения) при 280 нм, основанное иа присутствии в белке остатков тирозина и триптофана. Зная удельный коэффициент экстинкции е (оптическая плотность 1%-иого раствора белка при 280 им и длине оптического пути 1 см), можно, исходя из измеренной экстинкции раствора белка неизвестной концентрации, установить содержание белка (в мг/1 мл). [c.356]


    Способностью восстанавливать реактив Фолина в синее соединение обладает не только свободный тирозин, но и белок. Можно было бы ожидать, что интенсивность окраски, возникающей при взаимодействии реактива Фолина с белком, пропорциональна содержанию в белке тирозина и цис-теина. В действительности, оказалось, что если белок обработать предварительно солями меди, то даваемая им с реактивом Фолина окраска намного превышает ту, которую могли бы дать только названные аминокислоты. Считают, что в составе белковой молекулы, образовавшей медный комплекс, с реактивом Фолина взаимодействуют также и другие аминокислоты, а поэтому интенсивность возникающего окрашивания в известной мере пропорциональна содержанию белка. Лоури и сотрудники использовали этот принцип для количественного определения белка. [c.45]

    Ультрафиолетовые спектры белков отличаются сильным поглощением, характеристическим для ароматических фрагментов аминокислот, входящих в их состав фенилаланин, тирозин, триптофан. Эти спектры поглощения используют для аналитического определения остатков указанных аминокислот. Резкий максимум поглощения, характерный для нуклеиновых кислот и нуклеопро-теидов, позволяет определить их содержание в отдельных клетках. [c.361]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др, В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами — фенилаланином /--макс— 260 м х), тирозином и триптофаном 280 жр-), причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 лр., что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Брумберг). Зависимость ультрафиолетовых спектров поглощения от pH, сос- тава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м а было обнаружено образование комплекса между белками и полисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощения в видимой и ближней ультрафиолетовой областях спектра. [c.61]


    Высокая молярная экстинкция тирозина при 280 нм используется для определения содержания белка в растворах. [c.35]

    Недостаток спектрофотометрического метода определения белков состоит, очевидно, в том, что содержание тирозина и триптофана (от которого зависит величина е) в разных белках варьирует. Этот метод дает хорошие результаты с гетерогенной смесью белков, а также с достаточно чистыми препаратами индивидуального белка, коэффициент поглощения которого может быть точно измерен или вычислен исходя из аминокислотного состава (при условии, что последний известен). [c.56]

    Анализ белков.— Белки обычно гидролизуют кипячением с 20%-ной соляной кислотой или 35%-иой серной кислотой. Щелочной гидролиз сопровождается глубокой рацемизацией и применяется только при определении триптофана и тирозина, чувствительных к минеральным кислотам. Ферментативный гидролиз протекает медленно и, вероятно, не полностью, однако он не осложняется деструкцией лабильных продуктов, образующихся при гидролизе. Если аспарагиновая и глутаминовая кислоты присутствуют в белке в виде амидов, то кислотный гидролиз превращает амидный азот в соответствующие аммонийные соли. Методом Кьельдаля определяют количество общего азота содержание амидного азота устанавливают подщелачиванием аликвотной порции и отгонкой аммиака в отмеренный объем титрованной кислоты. В этом случае количество аммиака соответствует количеству присутствующих в белке амидов дикарбоновых аминокислот. [c.640]

    В области видимого спектра растворы важнейших аминокислот практически не поглощают, а в УФ-области поглощают растворы только тех аминокислот, которые содержат в молекуле бензоидные фрагменты или гетероциклические ядра ароматического характера - фенилаланин, тирозин, гистидин, триптофан. Относительно интенсивное поглощение при X = 260-290 нм характерно для тирозина и триптофана. Высокая мольная экстинк-ция тирозина при 280 нм используется для определения содержания белка в растворах. [c.455]

    Для нахождения молекулярной массы белка предпочтительным является определение содержания аминокислотных остатков, находящихся в белке в небольшом количестве (тирозин, гистидин, аланин). Например, при аминокислотном анализе белка, образованного одной полипептидной цепью, было установлено, что содержание лизина в нем составляет 24, а аргинина — 45 моль остатков на 100 ООО г белка. После гидролиза белка [c.78]

    Гидролиз пищевых продуктов. Чаще всего при определении аминокислотного состава пищевых продуктов используют кислотный гидролиз в 6 н. растворе НС1, проводимый в запаянных ампулах при температуре ПО—120°С в продолжение 22—24 ч [38, 48, 61]. Необходимо отметить, что гидролиз — наиболее несовершенная операция в аминокислотном анализе, так как в белках содержится несколько лабильных аминокислот (треонин, серин, цистин, метионин, гистидин, триптофан, тирозин), которые, по мнению многих авторов, заметно разрушаются даже при кратком кислотном гидролизе другие (валин, лейцин, изолейцин), наоборот, с трудом высвобождаются из полипептидных цепей при длительных сроках гидролиза (в течение 70—80 ч). Поэтому для определения истинных количеств аминокислот в белках при особо точных исследованиях гидролизуют несколько (3—4) проб белка при различных сроках (20—80 ч). Путем построения графиков зависимости количества аминокислот от длительности гидролиза находят истинное значение содержания лабильных аминокислот, экстраполируя кривую к начальному моменту гидролиза. [c.190]

    Этот способ стал использоваться для определения количества белка с тех пор, как Варбург и Христиан 174] сообщили о методе, основанном на измерении оптической плотности при 260 и 280 нм, что позволяет ввести поправку на содержание в препаратах нуклеиновых кислот и нуклеотидов. Такая поправка очень важна, когда работают с сырыми экстрактами, но становится менее существенной по мере очистки белков и удаления мешающих веществ. В этом случае достаточно просто определить оптическую плотность при 280 нм. Белки поглощают при 280 нм единственно из-за присутствия в их молекулах остатков тирозина и триптофана (если только они не содержат поглощающих в УФ-свете простетических групп). Так как содержание этих двух аминокислот в белках очень сильно варьирует, коэффициент поглощения, выражаемый обычно как 280 или 280 также варьирует в значительной степени. У большинства белков величина 280 лежит в интервале 0,4—1,5, но имеются белки, занимающие по этому показателю крайние положения в ряду всех известных белков — это некоторые пар-вальбумины и сходные с ними Са +-связывающие белки (0,0), с одной стороны, и лизоцим (2,65) — с другой. Поглощение при 280 нм дает лишь приблизительное представление об истинном содержании белка исключение составляют чистые белки. Если точно известен коэффициент экстинкции чистого белка (он должен быть стандартизирован относительно сухого веса или по крайней мере относительно поглощения при 205 нм — см. ниже), то величина поглощения при 280 нм позволяет точно определить его содержание. По существу, это самый точный метод для определения чистых белков, поскольку в этом случае не требуется производить с ним никаких манипуляций, за исключением соответствующего разбавления. Разумеется, растворитель не должен поглощать при 280 нм, а если он поглощает — необходим точный контрольный опыт. Во время измерений белки не подвергаются никаким вредным воздействиям и не ра зрушаются, поэтому, хотя для точного определения нужно около 1 мг бел- [c.312]


    Для определения очень маленьких количеств белка можно использовать способность тирозина интенсивно поглощать свет в ультрафиолетовой части спектра при 280 m t- [47] или же способность белков восстанавливать реактив Фолина (фосфорномолибденовую кислоту) с образованием синей окраски [48]. Оба метода очень просты и быстры. Однако нельзя забывать, что интенсивность поглощения в ультрафиолете и синяя окраска с реактивом Фолина зависят от содержания тирозина и других ароматических аминокислот, которое варьирует от белка к белку. Необходимо поэтому стандартизировать анализируемую пробу белка по известному белку. [c.21]

    Максимум поглощения белков наблюдается при 280 нм он обусловлен присутствием в белках ароматических аминокислот — тирозина и триптофана. Эти две аминокислоты входят в состав почти всех белков, и диапазон колебаний отношения их содержания к содержанию других аминокислот довольно узок. Определение белков в растворе по оптической плотности раствора в [c.361]

    Для белков коэффициент экстинкции при 280 нм намного ниже, чем соответствующая величина для нуклеиновых кислот при 260 нм, и зависит от содержания в белках тирозина и триптофана. Поэтому определение белков в УФ-свете по поглощению при 280 нм представляет собой менее чувствительную процедуру, чем методы окрашивания (рис. 70), К тому же для количественной оценки получаемых данных необходимо учитывать, что разные белки имеют неодинаковые коэффициенты экстинкции. Без построения специальных калибровочных кривых денситометрия в УФ-свете не позволяет производить прямое количественное сравнение кривых различных белковых зон. С помощью отдельных денситометров можно выявлять до [c.182]

    При цитофотометрическом определении содержания белка с помощью ультрафиолетового микроскопа используется область спектра от 230 до 300 нм, где находятся в первую очередь максимумы поглощения ароматических аминокислот, таких, как триптофан и тирозин. Отдифференцировать эти аминокислоты невозможно. Кроме того, [c.315]

    БСИ, детально исследованный группой ВИткопа, применяется для решения различных задач [68—72], а именно а) для расщепления соседней с остатком триптофана пептидной связи при определении первичной структуры белков б) для определения содержания триптофана в) для классификации различных состояний остатков триптофана. В соответствующих условиях [73] этот реагент лишь частично модифицирует остатки триптофана в белках. Например, при pH 5,5—6,0 под действием БСИ окисляются 4 из 8 остатков триптофана в а-химотрипсине, тогда как при pH 4,0—4,5 окисление идет почти по всем точкам [73]. Аналогичные результаты были получены при исследовании трипсина [62, 73]. В этих умеренных условиях НБС модифицирует в указанных белках некоторые остатки тирозина, но не действует на гистидин, метионин и остатки цистина [74, 75]. Из 6 остатков триптофана в лизоциме к БСИ наиболее чувствителен Тгр 62 [76]. Данные по частичной модификации триптофана получены при исследовании бактериальной а-амилазы [77] и дитохрома с лошади [28]. Степень модификации определяют по уменьшению величины поглощения при 280—282 нм [68, 69]. [c.355]

    Поглощение ультрафиолетового излучения. Большинство белков поглощает ультрафиолетовое излучение с длиной волны около 280 тр. Было показано1 [91—94], что это поглощение обусловлено тирозином, триптофаном и (в меньшей степени) фенилаланином. Таким образом, величина поглощения зависит от содержания этих аминокислот в белке. Измерение оптической плотности белкового раствора при 280 пу служит удобным и точным методом определения концентрации белка [95], если известен коэффициент экстинкции и в растворе нет других веществ, поглощающих свет с этой длиной волны. Рассматриваемый метод можно также применять для приближенного измерения общего содержания белков в смеси в тех случаях, когда допустимо использование среднего коэффициента экстинкции. Метод имеет то преимущество, что на поглощение света не влияют растворенные соли и многие другие вещества и что, следовательно, определение можно производить на образцах белковых фракций без всякой специальной их подготовки, Анализ производится быстро, причем требуются всего лишь доли миллиграмма белка. [c.20]

    Методы, основанные на анализе составных частей молекул белка, включают определение элементов азота и углерода, некоторых аминокислот, например тирозина, биуретовой и фор1-мольной группировок. Отдельные белки могут быть иногда определены по специальным группам, например по железу в гемоглобине [2, 3] или иоду в тиро-глобулине. Все эти методы требуют, чтобы определяемая составная часть находилась в испытуемом образце исключительно в белковой части. Поэтому белок должен быть отделен от всех других органических веществ и карбонатов, если он определяется по углеродному составу, и от всех других азотсодержащих составных частей, если основой анализа является метод Кьельдаля. Обычная практика анализа кормов и овощей на белки на основании определения общего азота в этом отношении всегда внушает сомнения. Наличие алкалоидов, аминокислот или других азотсодержащих веществ в таких веществах достаточно вероятно, хотя, как правило, их количества малы по сравнению с содержанием белка. Вследствие изменчивости свойств различных белков нет общих методов их выделения из сложных смесей. В хорошо изученных системах могут применяться специальные методы выделения. [c.15]

    Цуверкалов [656] описал условия приложения реакции Миллона для определения содержания тирозина в негидролизованных белках (см. стр. 57). Кальвери с сотрудниками [657] изучали окраски тирозина и триптофана на различных стадиях пептического и щелочного гидролиза ЯИЧН01ГО альбумина. [c.113]

    Постоянную скорость элюирования задают с помощью перистальтического насоса. Элюат, собираемый на фракционном коллекторе, анализируют в потоке или выборочно по фракциям на содержание белка, для чего обычно регистрируют изменение оптической плотности при 280 нм. Другие методы детектирования используют при отсутствии в белке хромофоров (остатков триптофана и тирозина), при работе иа микроуровне или при слишком высоком поглощении при 280 нм, например благодаря присутствию кофактора. В этих случаях можно определять оптическую плотность при 220 им, интенсивность флуоресценции или радиоактивность (при работе с мечеными белками) [14, 161] наконец, при анализе белковых фракций можно использовать химическую модификацию (разд. 1.4.5.1). Например, определенные объемы (аликвотные части) отдельных фракций можно подвергнуть щелочному гидролизу и последующему анализу по реакции с нингидрином. Для обнаружения белков можно использовать реакцию Лоури или реакцию связывания кра-снтеля. Последний метод вполне можно рекомендовать как наиболее простой и чувствительный, причем этому определению не мешает присутствие химических реагентов. Кроме того, состав фракций можно определять с помощью электрофореза в полиакриламидном геле. [c.23]

    Аминокислотный состав также может дать сведения о предполагаемой гетерогенности препарата, при условии, что точно определены количества двух или более аминокислот и известна молекулярная масса субъединиц фермента. Если молярное содержание этих аминокислот нельзя выразить простым отношением, связанным с размером данного полипептида, то, вероятно, это объясняется присутствием большого количества примеси. Например, если известно, что молекулярная масса полипептида близка к 30000 дальтон, а количества триптофана и тирозина, определенные спектрофотометрически [193], равны соответственно 5,1 и 6,5 остатка на 30 000, то либо эти определения недостаточно корректны, либо в препарате присутствует примесь, отличающаяся от основного компонента соотношением триптофана и тирозина. По очевидным причинам такие аргументы могут быть убедительными только в случае небольших по размерам полипептидов, причем отношение между количествами каких-либо двух аминокислот, равное целому числу, не служит доказательством гомогенности препарата. Эти расчеты становятся более ценными, когда имеются данные о гомогенности препарата, полученные другими методами, но точная молекулярная масса белка не известна. Тогда точное молярное отношение двух или более аминокислот дает возможность рассчитать молекулярную массу с некоторой достоверностью. [c.331]

    Количественный спектрофотометрический анализ. Ряд важных биологических соединений можно полуколичественно изучать с помощью спектрофотометрии в видимой и ультрафиолетовой областях, например, измеряя поглощение белков при 280 нм, а нуклеиновых кислот при 260 нм — длинах волн, соответствующих максимуму поглощения этих соединений. Экстинкция белка при 280 нм зависит от содержания в нем ароматических аминокислот — тирозина и триптофана, поэтому значения молярной экстинкции при 280 нм для всех белков различны, и для определения содержания каждого из них требуется индивидуальная калибровочная кривая. Как правило, биохимики работают со смесью белков, и тогда можно пользоваться градуировочной кривой, полученной для белка или смеси белков со средним содержанием тирозина и триптофана. Это может быть, например, сывороточный альбумин или смесь сывороточных белков. Таким образом, для контрольных измерений надо выбирать соответствующий белок. Проводя измерения при длинах волн, где примесь поглощает больше исследуемого вещества, можно с помощью соответствующих формул оценить количество примеси в образце. Так, пользуясь методом Мортона и Стубса, определяют содержание витамина А в омыленных экстрактах природных масел, а по соотношению экстинкций при 260 и 280 нм (Еш/хо) находят содержание белка в препарате нуклеиновых кислот. [c.155]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    Таким образом, для чисто химических или физико-химических исследований основным требованием является точность для широкого обзора в области пищевых белков самое первое, что нужно, это — получить возможно больше материала по присутствию и содержанию незаменимых аминокпслот. В нашей практике часто встречалось, что пищевой белок является хорошим источником больщинства незаменимых аминокислот, которые легко определить (именно цистин, метионин, аргинин, гистидин, лизин, тирозин и триптофан), и все же неполноценен в отношении других аминокислот, для выявления которых нет простых и точных способов определения. Если в таких случаях руководствоваться только анализами первой группы аЛтинокислот, то можно было бы впасть в серьезную ошибку при биологической оценке данного белка. Поэтому только полный анализ аминокислот, имеющих значение для питания, может дать правильную и полноценную картину исследуемых продуктов, даже если определение отдельных аминокислот будет произведено не абсолютными, а скорее сравнительными методами. [c.9]

    Прямые методы. 1. Сырую биомассу определяют после осаждения клеток центрифугированием. После центрифугирования отмытых клеток можно определить сухую массу. Оба метода не свободны от довольно больших систематических ошибок. 2. Гораздо большую точность обеспечивает определение общего азота (метод микро-Кьельдаля и микродиффузионный метод определения аммиака), а также определение общего содержания углерода (по ван Слай-ку-Фолчу). 3. В повседневной практике часто определяют содержание бактериального белка. Хорошие результаты дают модификации биуретового метода и другж колориметрические методы. Микрометоды основаны на измерении количества характерных компонентов белка тирозина, триптофана (по Лоури или Фолину).  [c.192]

    Некоторые из этих аминов очень ядовиты, как например тирамин> образующийся из тирозина (стр. 300), или гистамин — из гистидина (стр. 346). Интересно, что некоторые декарбоксилазы отличаются резкой специфичностью действия и способны декарбоксили-ровать только одну какую-нибудь аминокислоту. Так, например, аспартикодекарбоксилаза, выделяемая My oba terium nsp декар-боксилирует только /-аспарагиновую кислоту. Эта особенность микробов может быть использована как для препаративного получения некоторых биологически важных аминов из гидролизатов соответствующих белков, так и для количественного определения аминокислот по измерению количества выделившегося СО2. Метод определения аминокислот с помощью препаратов специфических декарбоксилаз при наличии соответствующей аппаратуры очень прост, отнимает мало времени, а главное, позволяет определять процентное содержание отдельных аминокислот, без предварительного выделения их из сложной смеси. [c.248]

    Полученные результаты указывают на присутствие приблизительно половины цистинового остатка на 11 аминокислот. То же самое соотношение было найдено Дейчем и Мортоном [31] при определении цистина непосредственно в виде более стабильной цистеиновой кислоты или в виде S-карбо-ксиметилцистеиновых производных. Поскольку свободные сульфгидрильные группы не обнаружены [5], молекула должна иметь около 8 дисульфидных мостиков на моль (28 800 г). Цистин и метионин фактически содержат всю серу белка (2,2% [5]). Количество лизина находится в полном соответствии с содержанием, найденным при гидролизе полностью динитрофенилированного гликопротеина [32]. Содержание триптофана обычно значительно меньше одного моля на 28 800 г белка, определенного как химически, так и спектрофотометрически [5, 28, 12], однако в литературе не было данных о получении препаратов, не содержащих триптофана. Содержание тирозина в различных [c.28]

    Укажем только на следующее для точного определения аминокислотного состава белка его нужно подвергнуть гидролизу (в вакуумированной запаянной ампуле с 6н. НС1 при температуре 110°) в течение 22 и 70 час [26]. При этом для глицина, аланина, валина, лейцина, изолейцина, метионина (с внесением поправки на 10%-е расщепление при хроматографии), фенилаланина, гистидина и лизина нужно использовать полученное при анализе содержание аминокислоты (в 22- или 70-часовом опыте). В то время как для аспарагиновой и глутаминовой кислоты, серина, треонина, пролина, тирозина и аргинина, которые частично разрушаются при гидролизе (по реакции 1-го порядка), их содержание рассчитывается путем экстраполяции на нулевое время по формуле [c.149]

    Фенилизоцианат легко реагирует со многими белками при pH 8 и температуре 0°. Долгое время считали, что это вещество селективно взаимодействует с аминогруппами белков. Это мнение было основано главным образом на работах Вормелла с сотр. [176, 177], которые исследовали взаимодействие сывороточных глобулинов, казеина, желатины и инсулина с фенилизоцианатом и м-бромфенилизоцианатом. При определении в полученных производных количеств брома и остаточного аминного азота и сравнении этих результатов с известными данными по содержанию аминного азота в исходных белках оказалось, что число вошедших в состав продуктов реакции атомов брома соответствует уменьшению содержания аминного азота, хотя вызывает сомнения строгость проведения количественного анализа. Последующие опыты с уреазой [178], белком вируса табачной мозаики [179] и яичным альбумином [180] показали, однако, что сульфгидрильные группы и, возможно, гидроксильные группы тирозина также реагируют в аналогичных условиях с фенилизоцианатом. [c.368]

    Онределение тирозина стандартным ионообменным методом обычно не вызывает больших затруднений, не считая возможности разложения тирозина в процессе гидролиза, особенно в присутстви углеводов (см. стр. 128). Было показано, что для белков с очень низким содержанием тирозина, таких, как коллаген и желатин, нужны специальные методы количественного определения, так как наблюдается недостаточное разделение тирозина и фенилаланина [371. Кобетт и сотр. [1121 сравнили величины, полученные нри ионообменной хроматографии, с данными двух других методов — специально модифицированного колориметрического метода, включающего реакцию с а-нитрозо-р-нафтолом, и метода прямого поглощения в ультрафиолетовой области. Последний метод был осуществлен так, как описано для триптофана, причем белок растворяли в щелочи и измеряли оптическую плотность раствора при двух длинах волн. В случае желатина, не содержащего триптофана, оптимальными длинами волн для определения тирозина служат 292 и 304 ммк. Вводится поправка на мутность раствора. [c.149]

    ТОК метода состоит в том, что иптепсивпость окрашивания различна для разных белков, причем эти различия могут достигать трехкратной величины. Для точных анализов необходимо поэтому строить калибровочный график по тому белку, который требуется определять, и нельзя пользоваться, как это часто делают, удобным, но произвольным стандартом типа сывороточного альбумина быка. Готтшалк [70] считает, что калибровка с помощью белкового компонента гликопротеинов неосуществима и это делает невозможным применение обсуждаемого метода для точных определений. Структурные особенности белка, определяющие интенсивность окраски, сложны и включают не только содержание тирозина и триптофана, но и последовательность некоторых аминокислот с функциональными группами в боковой цепи, особенно гистидина, аргинина и глутаминовой кислоты 1123]. Можно ожидать, что различие в содержании тирозина во фракциях гликопротеинов само по себе может давать ошибочные результаты [121]. [c.151]

    Чтобы избежать потери иодированных аминокислот при гидролизе, Эдельхох [55] разработал полуколичественный, но воспроизводимый метод спектрографического титрования для определения тирозина, МИТ, ДИТ (вероятно, вместе с Тз) и Т4 в интактном белке. Для высоко очищенного тиреоглобулина быка с молекулярным весом 670 ООО и с общим содержанием иода 1,03% было рассчитано количество остатков тирозина, МИТ, ДИТ и Т4 в молях на моль белка, соответственно равное 106, 10, 11 и 5. Для другого препарата тиреоглобулина быка, очищенного другим методом и с более низким содержанием общего иода (0,64%), Роббинс [19] аналогичным методом нашел содержание соответствующих остатков, равное 126, 10,5, 6,5 и 3,4. [c.223]

    Оптимальное содержание незаменимых аминокислот в пищевом белке зависит в определенной степени от возраста, пола, профессии человека и других причин. Например, по мнению экспертов ФАО и ВОЗ. для взрослого мужчины оптимальным считается содержание в 1 г пищевого белка следующего количества 8 незаменимых аминокислот (в мг) изолейцина - 40, лейцина - 70, лизина -55, метионина в сумме с цистином (метионин у взрослого человека может в организме заменяться цистином) — 35, фенилаланина в сумме с тирозином (фенилаланин также может заменяться тирозином) — 60, триптофана — 10, треонина -40, валина - 50 [8]. Для грудных детей дополнительно считаются незаменимыми гистидин и цистин [23]. Аргинин и гистидин не являются незаменимыми аминокислотами для взрослого человека, но недостаток аргинина сказьюается на сперматогенезе, а недостаток гистидина приводит к развитию экземы и ряду других отрицательных явлений [б]. [c.9]

    Кроме вариабельности в содержании непосредственно белков, что в той или иной степени отражается на содержании аминокислот, имеет большое значение видовая или сортовая вариабельность аминокислот одного и того же продукта. Кроме того, в отличие от метода определения белков метод определения аминокислот дает значительно большой вклад в общую вариабельность аминокислотного состава. Выше бьши подробно рассмотрены причины расхождений в аминокислотном анализе, в том числе проведение одного гидролиза вместо пяти, отсутствие анализа стандартных образцов продукта и внешнего стандарта и т. д. В результате в высокобелковых продуктах (мясо, рыба, птица, зерно и зернобобовые) при определении лизина, лейцина, изолейцина, треонина, валина, аргинина, глицина, пролина, серина, гистидина, аспарагиновой и глутаминовой кислот, фенилаланина, аланина, тирозина, общий коэффициент вариации (относительное среднеквадратичное отклонение) равен 10%, при определении метионина — 15 %, триптофана и цистина — 25% [12]. Для низкобелковых (овощи и фрукты) вариабельность значительно выше — 20, 25 и 30% соответственно [12]. Эти расчеты хорошо совпадают с прямыми экспериментальными данными по межлабораторному испытанию определения состава аминокислот ряда высокобелковых продуктов (казеин, белок яиц, соя, [c.287]

    Сравнение поглои ения при 280 и 260 нм. Большинство белков имеет максимум поглощения при 280 им, что обусловле-1Ю содержанием в них остатков триптофана и тирозина. Нуклеиновые кислоты, присутствующие часто в виде примесей к белкам, также сильно поглощают при 280 нм, но максимум поглощения этих соединенир находится при 260 нм. Барбург и Христиан экспериментально определили коэффициенты экстинкции различных белков и нуклеиновых кислот при 280 и 260 нм и нашли отношение этих коэффициентов (фактор F табл. 8.3) предложен дифференциальный метод определения белка в интервале концентраций 50—500 мкг/мл. [c.300]


Смотреть страницы где упоминается термин Тирозин определение содержания в белка: [c.22]    [c.25]    [c.361]    [c.147]    [c.455]    [c.119]    [c.126]    [c.207]    [c.213]    [c.210]    [c.466]    [c.309]    [c.228]   
Белки Том 1 (1956) -- [ c.222 , c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Белки содержание

Тирозин

Тирозин содержание в белках

Тирозин тирозин



© 2025 chem21.info Реклама на сайте