Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин структурные изменения

    Следует еще раз подчеркнуть, что нарушение или выпадение любого звена, участвующего в синтезе белка, почти всегда приводит к развитию патологии, причем клинические проявления болезни будут определяться природой и функцией белка, синтез которого оказывается нарушенным (структурный или функциональный белок). Иногда синтезируются так называемые аномальные белки как результат действия мутагенных факторов и соответственно изменения генетического кода (например, гемоглобин при серповидно-клеточной анемии). Последствия этих нарушений могут выражаться в развитии самых разнообразных синдромов или заканчиваться летально. [c.544]


    Тонкие различия в первичной структуре родственных белков часто удается выявить методом отпечатков пальцев . Метод этот состоит в том, что белок подвергают частичному перевариванию с помощью одного или нескольких протеолитических ферментов, а затем разделяют продукты гидролиза и идентифицируют их, пользуясь для этого либо электрофорезом, либо хроматографией на бумаге. На фиг. 32 приведены полученные таким способом отпечатки пальцев , или пептидные карты , нормального и аномального гемоглобинов. Детальное изучение этих пептидных карт показывает, что все пептидные пятна, за исключением одного, идентичны. Таким способом генетически измененный структурный элемент выявляется очень легко, и для установления природы структурного изменения нет надобности устанавливать полную аминокислотную последовательность всей молекулы. Действительно, в ряде случаев весьма определенные указания относительно природы имеющегося замещения можно получить просто исходя из результатов анализа аминокислотного состава соответствующих пептидов, выделенных из двух белков. Но, конечно, однозначные доказательства замены одной аминокислоты на другую получают только после установления аминокислотной последовательности анализируемых пептидов. [c.96]

    Кооперативный эффект связывания кислорода гемоглобином имеет структурную природу и может быть объяснен на основе данных конфор-мационного анализа. В геме гемоглобина за счет стерического отталкивания, возникающего между проксимальным остатком гистидина и атомами азота пиррольных колец порфиринового цикла, аксиальный лиганд вытягивает ион Ре " из плоскости порфиринового макроцикла на 0,75 А. При взаимодействии с кислородом ион Ре " возвращается в плоскость порфирина (рис. 5.10). При этом высокоспиновое пирамидальное состояние координационного узла гема переходит в октаэдрическое искаженное состояние. Дистальный остаток гистидина не взаимодействует с молекулой О2, но обеспечивает оптимальные условия для ее эффективного связывания. Одновременно с ионом железа происходит перемещение остатка проксимального гистидина, что, в свою очередь, вызывает конформационные изменения белка данной субъединицы и полипептидных цепей остальных субъединиц гемоглобина. В результате этого после присоединения первой молекулы О2 к субъединице гемоглобина активные центры — гемы выходят из глобул наружу, благодаря чему [c.213]

    Лиганды гема как пусковые системы структурных изменений. гемоглобина млекопитающих [c.255]


    Какие структурные изменения происходят в гемоглобине прн связывании кислорода Данные рентгеноструктурного анализа показали, что оксигенирование гемоглобина сопровождается рядом изменений. При низком разрешении установлено, что в этом случае структура становится более компактной (атомы Fe ( -цепей сближаются примерно на 0,6 — 0,7 нм), субъединицы поворачиваются друг относительно друга и оси второго порядка приблизительно на 10— 15. Результаты исследования при высоком разрешении свидетельствуют о том, что особенно значительные изменения происходят в области ар-контактов.  [c.207]

    Вызывают структурные изменения ткани печени Ингибируют ферменты, участвующие в активации кислорода, взаимодействуют с гемоглобином крови [c.60]

Рис. 29. Структурные изменения в молекуле гемоглобина при оксигенации. Рис. 29. <a href="/info/25090">Структурные изменения</a> в <a href="/info/154083">молекуле гемоглобина</a> при оксигенации.
    С помощью электрофоретических методов можно также анализировать отдельные полипептидные цепи, составляющие молекулу гемоглобина. Такие анализы проводят для того, чтобы выяснить, в какой из цепей локализованы структурные изменения. Более того, электрофорез отдельных полипептидных цепей глобина иногда позволяет обнаружить такие варианты гемо- [c.325]

    Вызывает удивление, почему связывание с кислородом сопровождается столь сильными структурными изменениями в гемоглобине. Дело в том, что природа создала остроумный триггерный механизм. Ион Fe + в дезоксигемоглобине находится в высокоспиновом состоянии, и его радиус слишком велик, чтобы ион мог располагаться в плоскости порфиринового кольца гема (рис. 8.12). При связывании Ог ион Fe + переходит в низкоспиновое состояние, и его радиус уменьшается на 13%. Теперь Fe + может занять энергетически выгодное положение в плоскости порфиринового кольца и перемещается приблизительно на 0,6 А. Это вызывает перемещение гистидина, связанного с Ре +, что сопровождается конформационными изменениями молекулы гемоглобина [3, 26]. [c.271]

    Для трех гемоглобинов крови человека А, 8 и С, структурные различия между которыми локализуются на расстоянии 30 А (3 нм) от центра ионизации, такая линейная зависимость действительно существует. При исследовании поведения некоторых других аномальных гемоглобинов крови человека с известной структурой, одни из которых, подобно 8 и Р, имеют специфические различия в месте, удаленном от гема, а другие — в месте поблизости от гема, был сделан вывод, что тесту на чистый эффект поля удовлетворяют те системы, в которых изменение заряда происходит на расстоянии более [c.918]

    В других случаях возможна обратимая диссоциация глобулы до отдельных полипептидных цепей. Для гемоглобина разделение на а-, р-цепи происходит достаточно легко, тогда как воссоединение отдельных а- и (3-цепей — трудно выполнимая задача. Однако понятие четвертичной структуры основано совсем не на возможности реконструкции фермента из отдельных субъединиц. Строгое определение четвертичной структуры означает, что в сложную глобулу фермента объединяются структурно независимые элементы — отдельные субъединицы. Если ассоциация не изменяет строения отдельных частей, то понятие четвертичной структуры приобретает ясный физический смысл. В противном случае речь идет лишь об обратимости построения сложной молекулы белка, не зависящей от иерархии структур — первичной, вторичной, третичной и четвертичной. В действительности отдельные субъединицы ферментов изменяют свои конформации при ассоциации, поэтому понятие четвертичной структуры является еще менее строгим, чем третичной или вторичной. Речь идет просто о том, что пространственное строение белковой глобулы зависит от всех межмолекулярных взаимодействий в системе. Как правило, построение глобулы белка не удается рассматривать в виде последовательности независимых процессов — скручивания цепи в спираль, укладку цепей в отдельные субъединицы и объединение независимых субъединиц. На каждом этапе происходят конформационные изменения, что и делает нестрогим понятие вторичной, третичной и четвертичной структуры. [c.124]

    Рассмотренные выще механизмы способны описывать многие сложные эффекты, и кинетическое уравнение может иметь очень сложную форму. Но в общем случае концентрация [ЕЗ] не может возрастать быстрее, чем растет [3]. Однако при некоторых экспериментальных условиях субстраты или ингибиторы оказывают большее влияние на концентрацию комплекса. Другими словами, получаются 3-образные кривые типа кривой связывания кислорода гемоглобином (разд. 7.13). В особенности это относится к ферментам, играющим важную роль в регулировании обмена веществ. Подобные кооперативные эффекты встречаются в случае ферментов с несколькими активными центрами, поскольку кооперативный эффект подразумевает возрастание сродства второго активного центра к субстрату, когда первый центр занят. Как и в случае гемоглобина, взаимодействия такого типа сопровождаются структурными изменениями. Согласно модели Моно — Шанжо — Ваймана, фермент с несколькими активными центрами может находиться по крайней мере в двух состояниях. Это, вероятно, слишком упрощенная картина, но два является минимальным числом состояний, необходимым для объяснения наблюдаемых эффектов. Предполагается, что в обоих состояниях конформации всех субъединиц одинаковы. Воздействующая на систему молекула (эффектор), которая может быть молекулой субстрата, смещает равновесие в сторону одного или другого из этих двух состояний. Если эффектор смещает равновесие в направлении увеличения скорости реакции, то такой эффектор называется активатором. Если же его действие приводит к снижению скорости реакции, то он называется ингибитором. Как и в случае гемоглобина, воздействие усиливается тем, что одна молекула эффектора оказывает влияние на несколько каталити-21  [c.323]


    Может возникнуть вопрос, каким образом открытие и закрытие канала синхронизируется с изменениями числа и специфичности участков связывания ионов. Напомним, однако, о тех структурных изменениях, которые происходят при оксигенации гемоглобина (рис. 4-19). Хотя поворот субъединиц друг относительно друга вызывает лишь незначительные изменения в геометрическом расположении групп, выступающих в центральный канал, это обусловливает весьма существенные изменения в связычании 2,3-дифосфоглицерата. Аналогичным образом в нашем случае благодаря незначительным перемещениям могут стать недоступными участки связывания ионов Ма+ и сформироваться новые участки связывания для более крупных ионов К+ при этом могут использоваться те же самые группы, способные к образованию хелатных комплексов, что и в случае с На+. [c.365]

    Хотя молекулы, играющие роль строительных блоков, очень малы по сравнению с клетками и органеллами, они могут влиять на форму и функции этих гораздо более крупньк структур. Так, при генетическом заболевании человека-сериовмднок леточ ной анемии в эритроцитах больных обнаруживаются дефектные молекулы гемоглобина, осуществляющего перенос кислорода. Это обусловлено тем, что при синтезе молекул гемоглобина, состоящих почти из 600 аминокислотньЕС остатков, два из них заменяются на другие. Столь незначительное структурное изменение крошечного участка молекулы гемоглобина приводит [c.72]

    При таком движении атом железа увлекает за со1бой и гистидиновый остаток Р8 боковой цепи, и амплитуда этого движения составляет примерно 0,75 А. Смещение затем передается другим частям белковой цепи, в котЬрую вхОдит Р8, и, в частности, происходит большой сдвиг фенольной боковой депи, содержащей тирозин Н02. А это в свою очередь вызывает различные смещения атомов в соседних субъединицах, что оказывает влияние на способность к связыванию кисл орода гем-групп а ми в них. Так, движение атома железа и гем-группы в. одной субъединице гемоглобина действует как спусковой механизм , который запускает в движение существенные структурные изменения в других субъединицах. Один из вопросов, который еще остается нерешенным в этой про блеме связывания кислорода гемоглобином, касается строения группировки Ре— Ог. Три возможных типа структуры показаны на рис. 31.5. Наименее реально линейное строение, и таких структур еще не обнаруживалось. Боковое расположение Должно быть таким же, как в простых комплексах кислорода с другими метал- [c.643]

    Изменение спинового состояния при изменении ионного радиуса железа. Из предыдущего обсуждения следует, что обратимая оксигенация гемоглобина и миоглобина — процесс, сопровождающийся обратимыми переходами от высокоспинового к низкоспиновому состоянию [105],— должна быть связана со значительными изменениями детальной конфигурации и размеров железопорфириновой простетической группы. В связи с этим представляет интерес определить, распространяются ли стереохимические изменения, связанные с гемовым центром одной субъединицы, в случае гемоглобина через кооперативные движения белковых групп таким образом, что они чувствуются в одной из соседних цепей. В работе [98] подробно обсуждались экспериментальные доказательства реакционной способности при таких кооперативных взаимодействиях. Предполагается, что эти изменения происходят вследствие изменений в контактах боковых цепей аминокислот на поверхности субъединиц [103]. В связи с этим было постулировано, что стереохимические изменения гемового центра инициируют [104] структурные изменения, механизм которых должен объяснять кооперативную природу обратимой оксигенации в гемоглобине [98, 100] и сопутствующие движения субъединиц гемоглобина друг относительно друга [101, 102]. [c.51]

    Однако отсутствие кооперативного взаимодействия субьединиц в окислительно-восстановительной реакции при pH 6 не может быть обусловлено только различной ориентацией порфирина относительно ближайшего белкового окружения гемовых групп. Кооперативное взаимодействие является следствием передачи структурных изменений, берущих начало с изменения ионного радиуса железа и завершающихся при передаче структурных изменений через поверхностные области субъединиц. Как указывалось выше, ответственными за передачу эффекта изменения ионного радиуса оказываются несвязывающие взаимодействия каркаса порфирина с белковым окружением. Увеличение pH не только вызывает увеличение доли низкоспиновых окисленных производных предположительно с копланарной конфигурацией железопорфирина, но также может приводить к ионизации боковых цепей аминокислот, переводя их в форму, благоприятную для несвязывающих взаимодействий с порфирииовым кольцом низкоспинового производного. Тем не менее эти малые изменения необходимы для полного проявления кооперативного взаимодействия субъединиц гемоглобина. Они не могут рассматриваться как структурные по сравнению с [c.59]

    Такасима и Ламрц нашли, что соединение О3 или СО с атомами железа в гемоглобине изменяет диэлектрические свойства молекулы, как изображено на рис. 42. Это указывает на то, что реакция с О2 или СО сопровождается структурными изменениями— заключение, к которому приводят также приблизительно парал- [c.133]

    Битлстоун и Ирвин вывели формулу для расчета влияния кулоновского поля па изменение свободной энергии, энтропии и энтальпии при ионизации метагемоглобина. Кроме того, они дали теоретическое объяснение случаю, когда влияние структурного изменения на кислотно-основное равновесие является полностью кулоновским. Они исходили из того, что потенциал изменяется обратно пропорционально первой степени расстояния, и любые взаимодействия с быстро затухающим силовым полем не вносят существенного вклада. Если имеется структурное изменение такого типа, то изменения в величинах АС, АН и Т1 8 должны быть пропорциональны друг другу или, другими словами, зависимость между любыми двумя величинами из АС, АН и ТА8 (например, АН от ТАЗ) должна быть линейной. Это справедливо в случае гемоглобинов, для которых наблюдается достаточно чистый эффект поля (гл. XVI). [c.918]

    Структурные изменения, происходяш ие в гемоглобине при оксигенации (объяснение см. в тексте) (по Д. Мецлеру, 1980) [c.259]

    Несфероцитарные гемолитические анемии. В 1953 г. Даше с соавторами описали группу заболеваний, родственных гемолитической анемии, которые назвали несферо-цитарными в отличие от наследственного сфероцитоза [1049]. Больные страдали повышенным гемолизом, сопровождавшимся желтухой разной степени тяжести, небольшим увеличением селезенки и образованием камней в желчном пузыре. Эти признаки отличали описанное ими заболевание от наследственного сфероцитоза (18290). Устойчивость эритроцитов к осмотическому давлению у больных несфероцитар-ной анемией оказалась нормальной, не было обнаружено и структурных изменений гемоглобина. С помощью тонких методов гематологического анализа установлено, что заболевание гетерогенно по своей природе, хотя наблюдается заметное перекрывание параметров для различных форм болезни. Для детального изучения этой группы нарушений необходимо дальнейшее развитие методов энзимологии. [c.17]

    Если при функционировании происходят структурные изменения, прежде всего необходимо выяснить, на каком структурном уровне они осуществляются и какие участки в них вовлечень . Можно подумать, что в случае окси- и дезоксигемоглобина (рис. 1.5) главное структурное изменение, сопровождающее оксигенацию, состоит в перестройке четвертичной структуры, но это не обязательно так. Кислород связывается с группами гема, расположенными вблизи участков контактирования четырех субъединиц белка. Но для того, чтобы произошло изменение четвертичной структуры, свойства остатков на поверхности должны быть как-то изменены. Действительно, когда кислород связывается с гемом гемоглобина, атом железа в геме сдвигается, что вызывает ряд небольших изменений третичной структуры, изменяющих поверхность субъединиц. Эти изменения не менее важны для понимания механизма кооперативного связывания кислорода гемоглобином, чем значительно более заметные изменения четвертичной структуры. Иногда в макромолекуле не происходит структурных перестроек при связывании с ней другой молекулы, но зато последняя претерпевает такие изменения. Прекрасным примером такого рода является связывание гексасахарида с молекулой фермента лизоцима. Как показано на рис. 1.12, один из участков связывания сахара в молекуле лизоцима не способен присоединять сахар в нормальной конформации кресла. Для того чтобы произошло такое связывание, сахарное кольцо должно деформироваться и перейти в форму полукресла, что энергетически не выгодно. Тем не менее этот переход осущестмяется, так как затрата энергии с лихвой компенсируется энергией связывания остальных молекул сахара. Грубо говоря, лизоцим способен использовать энергию связывания, сконцентрировав ее в одной точке углеводного комплекса. Это помогает разрыву связи С—О в одном из сахаров, что является частью механизма каталитического действия фермента. [c.34]

    Оксигенирование гемоглобина, как и миоглобина, сопровождается структурными изменениями в окружении гемогруппы. При оксигенировании атом железа, который в дезоксигемоглобине выступал на 0,06 нм из плоскости гемового кольца, втягивается в эту плоскость (рис. 6.13). Вслед за атомом железа ближе к гему перемещается и проксимальный [c.57]

    Колоколообразная кривая представляет особый интерес для анализа эффектов структурных изменений в белке, которые сказываются на величине I. Именно на такую кривую ложатся коэффициенты Хилла для широкого круга модифицированных и мутантных форм гемоглобина (рис, 8.9) [19]. [c.266]

    Встречающиеся в природе высокополимеры можно разделить на два класса полимеры, изменения которых под действием излучения высокой энергии представляют только технический или академический интерес, и полимеры, радиационные изменения которых имеют первостепенное значение в области биологии и в отношении благополучия всего живого, в особенности человека. В первом классе находятся в основном полисахариды целлюлоза и ее производные, крахмал, декстран, пектины и т. п. полимеры. К этому классу можно отнести также некоторые белки, например коллаген и кератин, которые и.меют только структурные функции, а также уже рассмотренные (гл. VIII) натуральный каучук и гуттаперчу. Ко второму классу относятся нуклеиновые кислоты, или, более правильно, неуклеопро-теиды, котО рые образуют генетическое вещество клеточного ядра, а также белки, имеющие метаболическую функцию, например гемоглобин, миоглобин и ферменты. Небольшие дозы излучения, например 500—1000 р, почти не влияющие на большинство полимеров, оказывают очень сильное воздействие на природные полимеры второго класса, приводя к серьезным для организма и даже смертельным последствиям. В настоящее время детальные данные о характере воздействия излучения высокой энергии па протеины почти полностью отсутствуют, несмотря на накопление значительного количества фактического материала, касающегося суммарного действия излучения. [c.204]

    Выбор модели часто зависит от характера эксперимента. Исследователи, изучающие, скажем, влияние структурных изменений в молекуле гемоглобина на сродство кислорода и коэффициент Хилла, предпочитают пользоваться моделью Моно и др., поскольку она является по своей природе структурной. Эта модель позволяет легко предсказать характер связывания лиганда и интерпретировать экспериментальные данные. Использование ее для нахождения коэффициента Хилла и анализа результатов исследования равновесных процессов дает очень хорошие результаты. Ученые, занимающиеся кинетическими исследованиями, предпочитают модель Кошланда и др., поскольку кинетические параметры более чувствительны к существованию промежуточных состояний. В теории Кошланда и др. больше параметров и больше возможностей для подгонки. [c.268]

    При сжатии пленок, образованных глобулярными белками (например, альбумином, глобулином, гемоглобином, трипсином и др.), вплоть до давления около 20 мН/м изотермы двухмерного давления вполне обратимы. При несколько большем сжатии пленок, когда площадь на одну аминокислотную группу составляет приближенно 0,17 нм , дву. с-мерное давление резко возрастает и в пленках происходят необратимые изменения они могут приобретать специфическую нерастворимость и своеобразные структурно-механические (реологические) свойства во многом связанные с изменением конформации и структуры белковых молекул. Более сильное сжатие пленом (до 0,05—0,1 нм на группу) приводит к их коллапсу — образованию складок (а возможно, и по-лимолекулярпых слоев) и отрыву от поверхности. [c.66]

    В гл. 4, разд. Д, 5, мы рассматривали замечательную способность гемоглобина эритроцитов к кооперативному связыванию четырех молекул Ог, а также структурные взаимоотношения гемоглобина и мономерного миоглобина мышц, который способствует диффузии Оа в ткаиИ [5] и, вероятно, используется для депонирования кислорода. Железо в гемоглобине и миоглобине всегда находится в ферроформе. В эритроцитах имеется специальная система для восстановления железа, если оно случайным образом перейдет в феррисостояние (см. гл. 4, разд. Д, 7, а также дополнение 10-А). Согласно наиболее распространенной точке зрения, при связывании Ог с железом гема не происходит временного изменения состояния окисленности металла. Однако на этот счет имеются и другие суждения [6]. Согласно Ингрэму, окисление металла не происходит из-за упомянутых выше трудностей в присоединении одного электрона к молекуле кислорода. В то же время перенос двух электронов от металла на кислород затруднен, поскольку состояние Ре(IV) является неустойчивым. [c.367]

    Пример дезоксигемоглобина показывает, почему бывает трудно распознать химическое взаимодействие, которое дает толчок решающим изменениям четвертичной или третичной структур белка запускающее событие должно быть структурно незаметным. В случае гемоглоб1Ша потребовались многие годы, прежде чем удалось установить, что пусковой механизм связан с атолюм железа, который приводит в движение субъединицы гемоглобина [666]. [c.257]

    Разностный метод Фурье, однако, применим только тогда, когда, сравниваются кристаллы со сходными структурами. В тех случаях, когда исследуемый белок образует при химической модификации кристаллы с различными пространственными группами симметрии, например в случае гемоглобина морской миноги 172], или огда при связывании малых молекул изменения структуры слишком велики для прямого применения метода, как в случае трио-зофосфатизомеразы [73], необходимо проводить новый структурный анализ. В этих условиях сравнение двух независимо разре-игенных белковых структур приводит к менее точным количественным данным. В результате такого сравнения не может быть получено столь детального описания стереохимии, которое в принципе достигается разностным методом Фурье. [c.25]

    Структурные правила, основанные на стереохимии модельных металлопорфиринов и особенно железопорфириновых комплексов, представленных в табл. 6, оказались очень полезными при определении геометрии железопорфиринов, соответствующей спиновым состояниям гемопротеиновых комплексов. Однако данные по стереохимии и геометрии этих комплексов не могут быть прямо применены для рассмотрения конфигурации гема в белках без некоторого видоизменения. В частности, как указывалось ранее Хордом и сотр. [120], модельные низкоспиновые ферри-комплексы — пентакоор-динационные, тогда как высокоспиновые ферри-комплексы гемопротеинов содержат шесть лигандов. В связи с этим могут несколько измениться длины связей металл — лиганд и смещения металла из плоскости порфиринового кольца (разд. 2.1.3). Кроме того, расстояние С1...К, равное 201 пм, в высокоспиновом пентакоор-динационном комплексе, возможно, определено не точно. В действительности величина С1... М, вероятно, завышена. Следует подчеркнуть, что величины длин связей в табл. 6 определяют лишь общие принципы структуры, согласно которым происходит изменение стереохимии железопорфирина при изменении спинового состояния в гемопротеинах. Тем не менее, как будет указано в разд. 2.1.3, правила Хорда [115—117] и длины связей в табл. 6 дают возможность точно предсказывать стереохимию центральной железопорфириновой группы гемопротеина для каждого из обычных состояний окисления гемового железа в гемоглобине. [c.44]

    Аналогично взаимодействие белка с порфирииовым кольцом через остатки, участвующие в вандерваальсовых взаимодействиях, не только позволяет регулировать ориентацию порфирина, но и контролирует спиновую мультиплетность центрального катиона. Сравнение магнитных свойств феррипроизводных гемоглобина и миоглобина показывает, что при комнатной температуре последние имеют более высокое процентное содержание высокоспинового состояния, чем соответствующие производные гемоглобина [111, 112]. Как указывалось ранее, катион металла в миоглобине проявляет более выраженную тенденцию к тому, чтобы оставаться смещенным из плоскости порфиринового кольца. Безусловно, это свойство отражает накладываемые белком стерические ограничения, которые благоприятствуют максимальной спиновой мульти-плетности. Этот структурный эффект дает некоторое представление о том, каким образом структурные искажения полипептидной цепи, происходящие при изменении природы поверхностных остатков, могут передаваться к порфириновому центру, чтобы управлять спиновым состоянием гемового железа. [c.63]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    Многие теоретические представления в этой области базируются на аналогии между негиперболической зависимостью скорости реакции от концентрации субстрата в тех случаях, когда реакцию катализируют регуляторные ферменты, и сигмоидным характером зависимости связывания кислорода гемоглобином. Судя по тому, что рентгенограммы кристаллов гемоглобина и оксигемогло-бина имеют различный вид, связывание кислорода сопровождается определенным изменением конформации по аналогии возникло предположение, что механизм действия регуляторных ферментов также связан со структурными явлениями. Посмотрим, насколько удачна эта аналогия. [c.232]

    Далее, исследование структурных формул белков показало, что все молекулы данного белка математически тождественны друг другу, и только в результате генетической мутации может появиться измененная мутированная клетка, способная синтезировать измененный белок, причем все молекулы этого измененного белка также идентичны друг другу. Впервые Ингрэм на примере гемоглобина, а затем многие другие ученые показали, что простая генетическая мутация приводит к изменению одного единственного аминокислотного звена в полинентидной цепи белка. При этом свойства белка могут сильно измениться, хотя химическое повреждение и кажется весьма незначительным. Это проистекает из того, что макромолекулы белков свертываются в спиральную вторичную структуру вследствие образования огромного числа внутримолекулярных водородных связей, а спиральные з частки изгибаются и складываются в компактную третичную структуру, определяемую весьма тонким балансом различных молекулярных сил сцепления и отталкивания. Часто изменение природы одного звена цепи может вызвать катастрофические изменения третичной структуры. [c.10]

    Гемоглобинопатии. Структурные аномалии гемоглобина, приводящие к клиническим признакам болезни, называют гемоглобинопатиями. При этом изменяется одно из трех свойств гемоглобина растворимость сродство к кислороду устойчивость к денатурации. Изменение растворимости наблюдается при серповидноклеточной анемии эритроциты содержат НЬ8, у которого в Р-цепи в 6-м положении вместо глутаминовой кислоты находится валин. Такое замещение полярного радикала на неполярный приводит к резкому снижению растворимости дезоксигемоглобина 8. В результате образуется волокнистый осадок, который деформирует эритроцит, придавая ему форму серпа (полумесяца). Такие эритроциты быстро разрушаются, возникает гемолитическая анемия. Последняя бывает только у гомозигот, у гетерозигот течение бессимптомное. Эта мутация имела приспособительное значение в регионах распространения малярии. Люди оказались более устойчивыми к заболеванию, так как в быстро разрушающихся эритроцитах нет условий для развития малярийного плазмодия. Мутации, приводящие к замене аминокислот вблизи гема, вызывают нарушение связывания кислорода. [c.434]

    В ЭТОМ разделе мы в основном будем рассматривать взаимодействие лиганда с группой гема в гемоглобине (НЬ) и миоглобине <МЬ). В этих молекулах связывание лиганда с гемом сопровождается структурными перестройками в белке. Конформационная релаксация в белке после такого быстрого локального возмущения, как связывание лиганда с активным центром или изменение окислительно-шосгановител ьного потенциала центрального иона ме- [c.101]


Смотреть страницы где упоминается термин Гемоглобин структурные изменения: [c.215]    [c.36]    [c.37]    [c.52]    [c.55]    [c.57]    [c.60]    [c.10]    [c.76]    [c.172]    [c.50]   
Биофизика (1983) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин

Структурные изменения



© 2025 chem21.info Реклама на сайте