Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закон изменения энергетических

    Данные, соответствующие таблицам работы [4], приведены на рис. 15, а пунктирной линией. Из сравнения показанных на рисунке графиков видно, что ошибки, соответствующие двум разным законам изменения энергетических характеристик помех, практически мало отличаются друг от друга. [c.137]

    Методику выбора параметров вычислительных схем можно показать на следующем примере. Примем, что количество членов вычислительной схемы равно двум. Тогда параметрами вычислительной схемы будут величины Со, С,, Хд и х,. Далее примем, что Хо = О, х, = г , = 2г и = 0,2г (г - радиус корреляции аномалии). При этих заданных значениях постоянных определим оптимальное значение отношения п = ,/ q. На рис. 30 приведены полученные для закона изменения энергетических спектров аномалий по формуле квадратичной экс- [c.182]


    Большинство процессов переработки газов сопровождается отводом или подводом энергии к системе в виде работы или тепла. Эти изменения энергетического уровня системы проще всего выразить с помощью первого закона термодинамики, который является законом сохранения энергии и наиболее просто выражается в виде уравнения [c.103]

    Все протекающие в природе процессы, связанные с изменением энергетического состояния, подчиняются первому закону термодинамики, но не всякий процесс, не противоречащий первому закону, осуществим на практике. Из первого закона термодинамики следует лишь, что энергия изолированной системы постоянна, но определить направление процессов, происходящих в системе, с помощью этого закона нельзя. Поэтому первого закона недостаточно для полного описания термодинамических процессов. Он позволяет точно найти энергетический баланс процессов, но не дает никаких указаний об их направлении и о возможности проведения. Между тем реальные процессы протекают в определенном направлении,и, как правило, не изменив условий, нельзя заставить процесс пойти в обратном направлении. [c.93]

    Закон действия масс может быть выведен исходя из термодинамических соображений. Протекание рассмотренной выше реакции сопровождается не только изменением концентрации реагирующих частиц, но также изменением энергетических параметров системы. Из термодинамики известно, что энергия Гиббса С равна разности между энтальпией Н и произведением абсолютной температуры Т на энтропию 5  [c.39]

    Как известно, закон плотнейшей упаковки представляет собой геометрическое выражение более общего закона максимальной энергетической выгодности состояния вещества в земной коре и поэтому может быть использован при рассмотрении возможностей химической селекции минералов. Проблема связи и строения не может обсуждаться без рассмотрения изменений энергии, в связи с чем энергетический подход необходим и в данном случае. Заметим, что с таким подходом связана предложенная Н. М. Федоровским и имеющая большое будущее, как считал А. Ф. Капустин-ский, идея классификации минерального сырья по затратам энергии, необходимой на его переработку в полезные продукты. По существу, с этой же идеей связан предложенный В. Л. Райзманом фактор технологичности, величина которого прямо пропорциональна извлечению полезного компонента, обратно пропорциональна изменению стандартной энтропии комплекса химических превращений по технологической схеме в целом. Эта величина, рекомендуемая в качестве критерия при сравнительной оценке способов переработки минерального сырья, подтвердила предпочтительность гидрохимических способов переработки алюминийсодержащих руд и минералов по сравнению с обжигово-спекательными, что согласуется с тенденцией развития глиноземного производства [28]. [c.8]


    Хотелось бы обратить внимание еще на один возможный подход к описанию плазмохимических реакций, обладающих относительно небольшим суммарным тепловым эффектом. Выше был получен закон изменения температуры в реакторе на основе общего энергетического баланса процессов, связанных с испарением жидкости и нагреванием ее пара. Предложенный выше механизм закалки приводит к достаточно большой скорости охлаждения плазменной струи, находящейся в согласии с экспериментальными данными. При этом энергетический вклад химических реакций в процесс охлаждения плазменной струи не учитывался, так как он относительно мал. Последнее позволяет сделать следующий шаг в изучении плазмохимических реакций рассматриваемого типа. Полученный выше закон изменения температуры в реакторе можно использовать для рассмотрения кинетики неизотермических реакций в плазменной струе. [c.194]

    Так как законы изменения сил отталкивания и притяжения различны, результирующая сила имеет два энергетических минимума (потенциальные ямы), при достижении которых возможно сцепление частиц друг с другом. [c.41]

    Энергетический выход люминесценции данного фосфора зависит от температуры фосфора, энергетического спектра возбуждения, а также от концентрации активирующей примеси. Изменение энергетического выхода люминесценции связывается с изменением вероятности безызлучательных переходов, т. е. потерей энергии электронов в результате рассеяния на фононах или путем излучения ее в далекой инфракрасной области спектра ). Для фотолюминесценции С. И. Вавиловым [1] было установлено, что квантовый выход в широком интервале длин волн возбуждающего света остается неизменным н падает лишь при антистоксово м возбуждении, когда длина волны возбуждающего света превышает длину волны, соответствующую максимуму спектра люминесценции (закон Вавилова). [c.11]

    Такой случай относится к обмену энергиями между однородными Б физическом отношении газами. Более эффективно происходит процесс при изменении объема в неоднородной газовой среде, например в случае, когда в объеме находится паро-газовая бинарная смесь. В этих условиях благодаря взаимным столкновениям энергетические уровни молекул разных газов меняются по-разному. Значение энергии молекулы после столкновения может быть определено при помощи квантовомеханических законов. Изменение энергии взаимодействующих частиц сопровождается деформацией молекул, которая проявляется в смещении зарядов противоположных знаков по отношению друг к другу. В силу того, что изменение энергетических уровней молекул газовой смеси происходит по-разному для каждого газа, в рассматриваемом объеме создается неустойчивое состояние газа, — основные термодинамические характеристики меняются при переходе от одной точки к другой. В таких условиях происходит непрерывный процесс возникновения и испарения ассоциированных групп размером порядка 10 см. [c.150]

    Алгоритм оптимизации неустановившихся режимов функционирования ГТС по рассмотренному выше критерию предполагает предварительное проведение с использованием ГДС прогнозного расчета физических параметров транспортирования газа через ГТС для заданного временного интервала по заданным законам изменения во времени параметров работы оборудования ГТС и параметров течения газа на границах ГТС. На каждом временном шаге данного расчета определяется значение функции энергетических (или финансовых) затрат на транспортирование газа через ГТС, непосредственно связанной с параметрами работы ее оборудования и параметрами течения газа. Таким образом, в процессе прогнозного расчета автоматически формируется зависимость изменения затрат во времени для так называемого неоптимизированного прогноза. [c.268]

    Перейдем теперь к рассмотрению законов изменения корреляционных функций и энергетических спектров некоторых часто встречающихся в природе случайных процессов, которыми можно аппроксимировать многие гравитационные и магнитные аномалии или контактные поверхности. [c.101]

    При решении различных задач грани- и магниторазведки почти всегда возникает необходимость учета влияния погрешностей наблюдений. Поэтому очень важно выяснить законы изменения их автокорреляционной функции и энергетического спектра. Необходимо также выяснить чувствительность вычислительных схем к погрешностям наблюдений и получить формулы, позволяющие оценить их точность. Существующие формулы оценки их погрешности дают только предельное, следовательно, во многих случаях и завышенное значение погрешности. [c.113]

    Но обычно г > Ах, и это происходит из-за наличия в погрешностях наблюдений, кроме некоррелируемых между соседними точками измерений помех (ошибка в отсчете, ошибка в нивелировке и др.), случайной составляющей, коррелируемой между несколькими пунктами наблюдений. Последняя может быть обусловлена неравномерными в течение рейса условиями транспортировки, неравномерным изменением температуры, неравномерными атмосферными условиями (ветер, дождь), ошибками учета нуль-пункта и другими причинами. Для определения более правильных законов изменения автокорреляционной функции, энергетического спектра ошибок наблюдений и оценки соотношения между г п Ах были получены экспериментальные данные погрешностей наблюдений с гравиметрами (выборка из 400 значений). [c.114]


    Наиболее часто встречаются отклонения, связанные с протеканием различных процессов в исследуемых растворах. Как уже упоминалось ранее, поглощение прямо пропорционально числу поглощающих частиц. Однако в результате различных процессов, таких, как гидролиз и сольватация, ионная сила раствора при сохранении постоянства общей массы веществ, число поглощающих частиц данного вида и их энергетическое состояние могут изменяться, что является основной причиной, вызывающей отклонение от закона Бугера — Ламберта — Бера. Известно, например, что многие химические процессы, протекающие в растворах, связаны с концентрацией Н+-ионов. Кроме того, изменение pH раствора приводит к различной степени связанности иона металла в комплексное соединение, к изменению его состава или даже к его разрушению. [c.467]

    Если сделать вертикальный разрез потенциальной поверхности вдоль пути перехода и развернуть поверхность разреза в одну плоскость, то полученная кривая, называемая профилем пути реакции (рис. 10) характеризует динамику изменения потенциальной энергии системы в ходе элементарного акта. Разность энергий между состоянием системы в седловинной точке и начальным состоянием ( энергетический барьер ) есть наименьшая энергия, которую необходимо сообщить системе А Аа + Ад, чтобы реакция осуществилась. Эта разность называется энергией активации прямой реакции Е =Еа-Е . Величины Е л, Е л называются классическими энергиями соответственно прямой и обратной реакций и представляют действительно тот барьер, который надо преодолеть, если бы частицы полностью подчинялись законам классической физики. Квантовомеханическая картина, однако, [c.70]

    Во второй и третьей частях, посвященных реакционной способности веществ, главное внимание уделено их химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако, если принять во внимание специфичность и большое разнообразие скоростных факторов и также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления знаний и, наконец, то обстоятельство, что большинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Шателье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т.д.)—это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики это проблемы возможности и действительности и что значение энергетического (термодинамического) и кинетического факторов неодинаково для различных типов процессов для реакций в растворах электролитов (например, при нейтрализации), для высокотемпературных реакций и других быстрых процессов кинетические соотношения не существенны наоборот, для медленных реакций и таких, продукты которых гораздо устойчивее исходных веществ (например, при горении), не играют ощутимой роли равновесные соотношения. [c.4]

    Вместе с тем изменение ассортимента продукции обусловливает необходимость существенных изменений методов и алгоритмов управления. Очевидно, что реализация других технологических процессов может потребовать изменения параметров настройки автоматических регуляторов законов регулирования алгоритмов управления последовательностью смены функциональных состояний и интерактивными режимами работы технологических аппаратов, расчетов материальных и энергетических балансов, составов сырья, расписания функционирования систем, размещения новых процессов на действующем оборудовании и т. п. [c.52]

    I. Законы фотохимии. В фотохимии рассматриваются закономерности влияния электромагнитных колебаний видимого и ультрафиолетового участков спектра на реакционную способность химических систем. Общая реакционная способность химической системы характеризуется значениями стандартного сродства реакций АО (Т) и стандартного сродства в процессе образования переходного состояния Значения А0 (7 ) и АС (7) изменяются с изменением температуры. При повышении температуры в системе изменяется кинетическая энергия поступательного и вращательного движения молекул и энергия колебательного движения ядер атомов. В области средних температур энергия движения электронов при изменении температуры практически остается постоянной. Чтобы перевести электроны на более высокие электронные энергетические уровни, надо нагреть систему до высоких температур, при которых многие реагенты разлагаются. При воздействии на химическую систему электромагнитными колебаниями с частотой видимого и ультрафиолетового участков спектра изменяется энергия движения электронов. Поглощая квант энергии, электроны переходят с ВЗМО на НО Ю. Образуется возбужденная молекула, обладающая избыточной энергией. Распределение электронной плотности в возбужденных молекулах существенно отличается от распределения электронной плотности в исходных молекулах. Повышается энергия колебательного движения ядер. Физические и химические свойства возбужденных молекул отличаются от свойств молекул в невозбужденном состоянии. Появляется возможность получения новых веществ, синтез которых невозможен при термическом воздействии на систему. [c.610]

    Найденная зависимость наблюдается благодаря тому, что слагаемое, характеризующее энергетический вклад металла в ДН реакции, одно и тоже, и при рассмотрении относительных изменений его вклад в ДН с ростом молекулярной массы исходного углеводорода сокращается. Исходя из закона Гесса, реакцию образования Ре,С из углеводорода С Н представим в виде  [c.251]

    Процессы химической технологии связаны с разнообразными физическими и химическими явлениями. Однако большинство этих процессов характеризуется сравнительно ограниченным числом физических законов. Применение основных законов физики к изучению процессов химической технологии составляет теоретическую основу курса Процессы и аппараты . Так, на законах сохранения массы и энергии основаны материальный и энергетический балансы. Для большинства процессов весьма важное значение имеют законы, характеризующие условия равновесия процессов, а также законы, описывающие изменения в системах, не находящихся в равновесии. [c.19]

    В заключение еще раз отметим, что сформулированный Прустом закон постоянства состава Пропорции, в которых два элемента соединяются при образовании определенного химического вида, не способны к непрерывным изменениям — действителен лишь для молекул, состоящих из небольшого числа атомов и настолько мало взаимодействующих между собой, что этим можно пренебречь. Любое кристаллическое вещество, не имеющее молекулярного строения, в большей или меньшей степени должно иметь переменный состав. Причина этого лежит в энергетических закономерностях—проявлении энтропийного фактора (см. с. 124). Полное структурное упорядочение может реализоваться лишь при абсолютном нуле, О К. [c.107]

    Энергетический баланс. Этот баланс составляют на основе закона сохранения энергии, согласно которому количество энергии, введенной в процесс, равно количеству выделившейся энергии, т. е. приход энергии равен ее расходу. Проведение химико-технологических процессов обычно связано с затратой различных видов энергии — механической, электрической и др. Эти процессы часто сопровождаются изменением энтальпии системы, в частности, вследствие изменения агрегатного состояния веществ (испарения, конденсации, плавления и т. д.). В химических процессах очень большое значение может иметь тепловой эффект протекающих реакций. [c.16]

    Первый закон термодинамики позволяет предсказывать изменения в исследуемой системе и окружающей среде, происходящие в результате термодинамических процессов, в отсутствие на самом деле самих процессов. Причем вопрос о возможности реализации рассматриваемого процесса никак не отражается на результатах расчетов. Например, при расчете тепловых эффектов реакций или других энергетических явлений, сопровождающих их, безразлично, происходят ли эти процессы или они — лишь плод воображения. [c.82]

    В-гречъих, сольватная оболочка вокруг ядра каждой частицы дисперсной фазы характеризуется определенными законами изменения компонентного состава, структуры, интенсивности и природы ММВ, устойчивости надмолекулярных структур, а следовательно, и свойств вдоль радиуса. Разнозвенность молекул органических соединений, составляющих сольватную оболочку, предполагает ее ажурность. В связи с этим можно допустить возможность проникновения молекул дисперсионной среды в эти пустоты, где они, очевидно, будут находиться в состоянии, отличающемся от состояния молекул в объеме дисперсионной среды. По этой же причине и вследствие относительной неустойчивости обратимых ассоциатов и комплексов, составляющих сольватную оболочку, она играет роль проницаемой мембраны для НМС как в сторону ядра частицы дисперсной фазы, так и в сторону объема дисперсионной среды. Кроме того, нельзя исключать возможность того, что сольватная оболочка обменивается молекулами составляющих его соединений с подобными молекулами, имеющимися в объемах, к ней примыкающих. Наконец,важно то, что сольватная оболочка в процессе карбонизации представляет собой реакционную подсистему и изменения ее состава происходят не только вследствие указанных выше причин, но и вследствие протекания химических реакций в ее объеме и на поверхностях соприкосновения с ядром и дисперсионной средой. Таким образом, нефтяная СДС является системой весьма чувствительной к воздействию различных внешних и внутренних энергетических факторов, интенсивность которых определяет степень изменения всех ее характеристик. [c.96]

    Введение. Работа посвящена построению и обоснованию эффективного численного метода решения ряда нелинейных одномерных щ>аевых задач теплопроводности и диффузии. Тлеются в виду краевые задачи для одномерных параболических уравнений в областях с подвижными границами, на которых заданы условия энергетического или материального баланса. Подобные задачи возникают, например, при математическом моделировании процесса теплопередачи в конденсированном веществе в условиях интенсивного нагрева, когда фронты различных фазовых превращений (плавление, испарение, резкое изменение электромагнитных свойств) перемещаются по неподвижноь1у веществу [1-3]. Аналогичная ситуация имеет место при изучении распределения концентраций в некоторых химических реакциях, процессы массопереноса в которых можно трактовать как задачи типа Стефана с исчезающе малой теплотой фазового перехода [4 ]. Наличие подвижных 11)аниц с неизвестным законом изменения во времени и нелинейных условий на заданных подвижных границах приводит к необходимости развития приближенных методов. Предлагаемые ва- [c.79]

    Серьезным подтверждением ассоциации и существования ионных пар может быть применимость к ним в первую очередь закона действия масс, а также электростатических теорий ассоциации ионов в ионные пары в растворах с низкими д. п. Настораживает несостоятельность попытки теоретически учесть сольватацию ионных пар, предпринятой Гилькерсоном [12, 13], но из этого не следует, что результатом ассоциации будут молекулы, ибо при ассоциации ионов в молекулы нужно ожидать значительного изменения энергетических явлений сольватации, связанных с частичной десольватацией [c.268]

    Поэтому скорость реакции определяется не столько его движением, сколько реорганизацией растворителя, и модель протонного адиабатического терма для реакции АН- -В —> А - -НВ+ не законна. Соответствующая энергетическая диаграмма показывает изменение энергии всей системы (протон—растворитель) в зависимости от некоторой обобщенной координаты, относящейся к растворителю и к протону. При этом, в частности, не может происходить туннелирования протона из одной ямы в другую. [c.203]

    Достаточно сильно взаимодействовать с окружением могут не только ионы, но и ионные пары. Известно, что само существование ионных пар обязано сильной поляризации среды. Это взаимодействие может обеспечить достаточно большое число сильно связанных с протоном осцилляторов N и высокие значения Q и AQ. Что же касается величины S, то оценка ее представляется затруднительной. Модель двойной симметричной потенциальной ямы для протона здесь едва ли применима. В самом деле, реакцию образования ионной пары RAH -BRiJl RA" - -HBRi, по-видимому, нельзя сводить просто к переходу протона, как это часто делается в литературе. Она невозможна без сильной поляризации среды (в газе, как правило, не идет). Главную роль играет, по всей вероятности, ориентационнаяполяризация. Последняя, как известно, много медленнее, чем движение протона (характеристические времена равны соответственно 10 —10" и 10 —10 сек.). Поэтому скорость реакции определяется не столько его движением, сколько реорганизацией растворителя, и модель протонного адиабатического терма для реакции АН - - В А" - -НВ+ ие законна. Соответствующая энергетическая диаграмма показывает изменение энергии всей системы (протон—растворитель) в зависимости от некоторой обобщенной координаты, относящейся к растворителю и к протону. При этом, в частности, не может происходить туннелирования протона из одной ямы в другую.  [c.203]

    Задачей теории моделирования измельчителей, как известно, является установление закона изменения помольных характеристик измельчителей при изменении их энергетических параметров и геометрических размеров. Этот закон позволяет определить основные характеристики серии подобных измельчителей на основе показателей модельного образца, экспериментально опти-мализированного при определенных условиях [48]. [c.118]

    На рис. 64 представлена полученная С. И. Вавиловым кривая, выражающая изменение энергетического выхода люминесценции водного раствора аммиачной соли флуоресцеина в зависимости от длины волны возбуждающего света. Мы видим, что вначале от Х = 254жа до ), = 410. ии., номере увеличения длины волны возбуждающего света, идёт пропорциональное нарастание выхода, затем величина выхода стабилизируется, оставаясь на спектральном интервале от 410 до 510 почти постоянной, и, наконец, в области длинных волн от Х==510 до Х = 560 М л происходит быстрое падение выхода. Такое изменение выхода при изменении длины волны возбуждающего света наблюдается у большинства веществ. Закон Вавилова может быть сформулирован следующим образом. При возбуждении люминесценции коротковолновой частью спектра поглощения [c.150]

    Вынесение ветровых электростанций в открытое море считается за рубежом сейчас одним из перспективных направлений ветроэнергетики. Это связано по крайней мере с тремя причинами. Первая — возможность получения больших, чем на суше, удельных мощностей с 1 м площади, ометаемой рабочим колесом, вследствие того, что по мере удаления от побережья средние годовые скорости ветров увеличиваются. Так, удаление от берега на 40 км дает приращение скорости на 20—25 %, что при тех же размерах турбин позволяет увеличить среднегодовую выработку электроэнергии почти в 2 раза. Это увеличение в скорости обнаруживается на высоте 10 и 100 м от морской поверхности [88]. Причина увеличения — существенное снижение трения о водную поверхность по сравнению с трением о поверхность сущи и уменьшение пограничного слоя, в котором это трение проявляется, с десятков метров примерно на порядок. В обзоре [8] есть ссылка на оценки, согласно которым энергия ветрового потока над прибрежными водами шириной в 5,5 км примерно вдвое больше, чем над прибрежным участком суши той же ширины. Такое локальное увеличение энергии может объясняться, например, сильными неровностями побережья. Здесь же необходимо отметить, что детально в энергетическом плане ветры над морем еще не исследованы, и если для ветра над сушей мы знаем, например, закон изменения с высотой (степенной закон с показателем примерно 0,143), то для ветра над морем такой четкой зависимости пока нет. Все полученные к настоящему времени данные базируются на измерениях, проводившихся в разное время с судов, и более систематических наблюдениях, которые проводятся лишь в нескольких точках планеты. [c.100]

    Наиболее интересным и важным законом, позволившим разобраться в механизме фотохимических реакций, является закон фотохимической эквивалеитностн Штарка — Эйнштейна (1912), который гласит, что каждому поглощенному кванту излучения /IV соответствует одна измененная молекула. Под изменением, как будет показано ниже, подразумевают как энергетическое, так и химическое превращение. [c.230]

    Применение закона Гесса избавляет от проведения большого числа излищних экспериментов в термохимии (так называется раздел химии, посвященный теплотам реакций и энергетическим свойствам веществ). Совершенно не обязательно измерять и табулировать изменение энтальпии каждой возможной химической реакции. Например, если известны теплота испарения жидкой воды [уравнение (2-10)] и теплота разложения пероксида водорода с образованием жидкой воды [уравнение (2-9)], то совсем не обязательно измерять теплоту разложения пероксида водорода с образованием водяного пара эту величину гораздо проще получить путем вычислений. Если какая-либо интересующая нас реакция трудно поддается проведению в лабораторных условиях, нужно попытаться подобрать последовательность легче осуществляемых реакций, сумма которых дает необходимую реакцию. После измерения изменений энтальпии для всех индивидуальных реакций в такой последовательности можно просуммировать соответствующие изменения энтальпии подобно самим химическим уравнениям и найти теплоту труднопроводимой реакции. [c.92]

    Механическая работа внешних сил вызывает соответствующее увеличение энергии деформащ1и. В то же время увеличение длины трещины приводит к релаксации напряжений, что, в свою очередь, вызывает изменение энергии деформации по закону упругости. Отсюда получаем энергетический критерий разрушения  [c.194]

    При недостаточно критическом применении второго закона термодинамики из него можно сделать принципиально неправильный вывод. Согласно второму закону, в изолированной системе во всех обратимых- процессах энтропия не претерпевает изменений, а в необратимых только возрастает. Поэтому, если течение необратимых процессов не исключено, то энтропия такой системы может только возрастать, и это возрастание должно сопровождаться постепенным выравниванием температуры различных частей системы. Если рассматривать вселенную в целом как систему изолированную (не вступающую ни в какое-взаимодействие с другой средой), то можно заключить, что возрастание энтропии должно привести в конце концов к полному выравниванию температуры во всех частях вселеггной, что означало бы, с этой точки зрения, невозможность протекания каких-нибудь процессов и, следовательно, тепловую смерть вселенной . Такой вывод, впервые четко сформулированный в середине XIX в. Клаузиусом, является идеалистическим, так как признание конца существования (т. е. смерти ) вселенной требует признаиид и ее возникновения. Статистическая природа второго начала термодинамики не позволяет считать его универсально применимым к системам любых размеров. Нельзя утверждать также, что второй закон применим к вселенной в целом, так как в ней возможно протекание энергетических процессов (как, например, различные ядерные превращения), на которые термодинамический метод исследования но может механически переноситься. В определенных видах космических процессов происходит возрастание разности температур, а не выравнивание их. [c.220]

    Энергетический баланс основывается на законе сохранения энергии. Технологические процессы часто сопровождаются изменением теплосодерн ания системы, а также затратой энергии (электрической, механической и др.). Поэтому при расчетах аппаратов необходимо составлять энергетические балансы. Энергетический баланс отражает основное содержание закона сохранения энергии, согласно которому количество энергии, введенной в процесс (приходные статьи баланса), равно количеству энергии, получаемой в результате процесса (расходные статьи баланса). [c.10]

    Таким образом, особый характер макрокинетики физикохимических процессов в МСС, является следствием непрерывного изменения химической и структурной природы системы в процессе ее наблюдения. Любые такие системы описываются законом типа у = ехр ( к I " ). Эти законы выполняются для всех относительно медленных физических и химических процессов. Это явление универсально для всех систе.м, если время эксперимента превышает время изменения последовательности структурно-энергетических состояний системы. Это возможно, когда система, в которой течет жидкость гит протекает реакция, изменяет свою природу. В быстрых процессах, если время эксперимента (наблюдения). меньше времени изменения состояния систелш, в которой развивается процесс, имеет место обычная кинетика. [c.41]

    Тают образом, в физико-химических процессах в МСС при условии небольших отклонений от равновесия при общем нел инейном изменении концентраций отдельных компонентов от времен или температуры, изменения средних значений функции распределения состава этих компонентов происходит по закону экспоненты или линейно. На рис.3.3 приведен, рассчитанной на компьютере процесс временной эволюции концентрации одного из компонеетов смеси, как функции от времени и значения среднего термодинамического потенциала системы Особенностью процесса является его линейность в значительном временном и энергетическом диапазоне Нелинейные области существуют в самые начальные моменты релаксации системы к равновесию В интервале времен и энергий система квазилинейна. Это оправдывает применение линейных статистических моделей при исследовании таких систем. [c.50]

    Опыт работы печей прямой графитации показал, что качество электродов не всегда оказьшается стабильным. Причина этого связана с влиянием множества факторов на термические напряжения в заготовках и конечную максимально достигаемую температуру в печи. Для оптимизации процесса требуется информация об изменении температурного поля и термических напряжений в нагреваемых заготовках. На ОАО НЭЗ разработан комплекс различных математических моделей (ММ) процесса прямой графитации. Процессы нестационарного теплообмена моделировались на основе метода элементарных энергетических балансов с формированием объемной пространственной сетки по заданной схеме укладки заготовок и геометрии печи. Для каждого узла сетки электродного пространства, помимо расчета температур выполнялся расчет термических напряжений. Распределение тока в пространстве печи решалось на основе законов Кирхгофа итерационным методом. С помощью ММ проведены исследования и оценено влияние различньге параметров технологии. [c.123]

    Знакомством с энтропией завершилось изучение основных законов тсрхгоди-намнки. Руководствуясь ими, можно производить полный анализ физико-химических процессов любой термодинамической системы определять энергетические эффекты, сопровождающие рассматриваемые процессы выяснять направление процессов предсказывать возможные физические изменения в системе и т. д. Но для решения поставленных задач необходимо, по крайней мере, иметь общие представления о физических свойствах рассматриваемой системы, а еще лучше — знать уравнение состояния этой системы. Без этих сведений невоз.уюжно получить конкретные результаты, а любые допущения приводят к соответствующим отклонениям от действительности. [c.102]


Смотреть страницы где упоминается термин Закон изменения энергетических: [c.400]    [c.469]    [c.9]    [c.613]    [c.110]    [c.30]    [c.44]   
Спектральный анализ гравитационных и магнитных аномалий (2002) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Закон изменения энергетических характеристик погрешностей наблюдений

Энергетические законы



© 2024 chem21.info Реклама на сайте