Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выступы плотность

    С целью более полного использования биологического потенциала действующих веществ гербицидов, уменьшения их доз внесения на объекты обработки необходимо увеличивать качество рабочих растворов, получаемых из исходных препаративных форм. Показателем качества в этом случае выступает плотность отложения капель рабочих растворов на обрабатываемой поверхности. Использование АГВ, смонтированного непосредственно на типовых агрохимических агрегатах приготовления рабочих жидкостей позволило увеличить плотность отложения капель более чем в 10 раз с 22-30 шт/см (без АГВ) до 280-300 шт/см с применением ГА техники. [c.30]


    Основная идея термодинамики Гиббса состоит в том, что поверхностная область представляется в виде отдельной фазы, которая обладает своими термодинамическими параметрами, отличными от объемных параметров в обеих фазах. Квантово-статистические исследования рассматривают поверхностный слой как область между двумя фазами, в которой любые термодинамические или какие-либо другие величины изменяются непрерывно на протяжении всего поверхностного слоя, оставаясь постоянными в глубине контактирующих друг с другом фаз. В квантово-статистических представлениях в качестве основной переменной, определяющей поверхностные свойства, выступает плотность свободных электронов металла, распределение которой вблизи поверхности металла неоднородно. Более того, часть электронного облака выступает за пределы поверхности металла, участвуя во взаимодействиях с контактирующей средой. В подобной ситуации трудно себе представить, что электроны проводимости металла ие дадут заметного вклада в свойства границы металл жидкость. Чтобы [c.296]

    От рельефа поверхности. На выступах плотность тока больше и они травятся быстрее. В углублениях травление замедлено. [c.288]

    Образование гипервалентной связи отвечает перетеканию электронной плотности от центрального атома (донор) на лиганды (акцептор) (см. рис. 139, б). Поэтому в роли лигандов эффективнее всего выступают наиболее электроотрицательные атомы (фтор, кислород), этим же объясняется стабилизация высших степеней окисления элементов в их фторо- и оксо-соединениях. [c.270]

    Сравнение реакционной способности ступенчатых поверхностей кристалла с реакционной способностью нанесенных Р1-катализаторов показывает, что структура полидисперсных частиц Р1 в катализаторе может быть с успехом воспроизведена ступенчатыми поверхностями. Установлено, что атомарные ступени играют определяющую роль при превращениях углеводородов, а также при диссоциации Н2 и других двухатомных молекул с большой энергией связи [237]. Показано, что реакция дегидрирования циклогексана до циклогексена не зависит от структуры поверхности монокристалла Р1 (структурно-нечувствительная реакция). В то же время реакции дегидрирования циклогексена и гидрогенолиза циклогексана структурно-чувствительны. В свете полученных результатов предложена [238] расширенная классификация реакций, зависящих от структуры поверхности металла. А именно, предложено отнести к особому классу реакции, скорость которых зависит от размера активных частиц катализатора или от плотности атомарных ступенек и выступов на них, и реакции, скорость которых зависит от вторичных изменений структуры поверхности катализатора (например, из-за образования в ходе реакции углеродистых отложений, а также других эффектов самоотравления). На основе проведенного анализа предложена модель каталитически активной поверхности Р1, учитывающая атомную структуру поверх- [c.165]


    При развальцовке конец трубы обычно выступает на 3—5 мм ИЗ гнезда. Это повышает прочность и плотность соединения. [c.162]

    Рассмотрим семейство случайных величин Л(т), т О, зависящих от параметра времени т. Условимся говорить о некоторой физической системе, возможные состояния которой обозначены целыми числами 1 = 0, 1, 2,. .., и интерпретировать А х) как состояние системы в момент времени т. Для системы кристаллов в качестве случайной величины может выступать характерный размер кристалла а(т ), который принимает дискретные значения Оа,. .., а . В этом случае распределение вероятностей N (х) для Л(т) по состояниям а,, 02, .., Яи есть ничто иное, как плотность распределения кристаллов по размерам. [c.134]

    Сформулированная таким образом задача является типичной в случае нелинейной оптимизации. При этом определяются три управляющих воздействия. В качестве главных возмущающих воздействий выступают изменения начальных значений расходов 1 и 2 и плотности этих потоков. [c.367]

    Верхняя часть фланца крышки и нижняя часть фланца котла обычно снабжаются невысокими бортиками /, придерживающим болты во время затягивания. Плотность фланцевого соединения достигается б,-а-годаря наличию уплотнительной канавки 2 шириной 10—30 мм (на кромке котла) и уплотнительного выступа 3 (на крышке аппарата). [c.368]

    I. Подготовка прибора для выполнения измерений. 1. Установить ноль на шкале прибора поворотом корректора 1. 2. Установить переключатель 2 в такое положение, при котором О на нем совпадет с точкой на корпусе 7 прибора. 3. Вставить короткозамыкатель б (штепсель, находяш,ийся рядом с клеммами для гальванометра) в отверстие с надписью нормаль . 4. Вставить в оправу соответствующий светофильтр. 5. Поставить переключатель питания 5 в положение и включить прибор в электросеть. 6. Вставить кюветодержатель с двумя кюветами, наполненными растворителем, закрыть крышку 9 и при помощи выступов 4 передвинуть кюветодержатель в одно из крайних положений. 7. Поставить стрелку прибора в положение 100% по шкале светопропускания ( о — по шкале оптической плотности). Для этого установить переключатель 2 в положение, при котором стрелка прибора пройдет 100%, а затем, поворачивая ручку точной установки, 3 влево, довести стрелку до положения 100% . 8, Начинать измерения через 5—15 мин после успокоения стрелки. 9. Откорректировать показания по шкале Т и передвинуть кюветодержатель в противоположное положение. Проверить разницу в показаниях по шкале. Если разница не более одного деления по шкале Т, прибор готов к работе. 10. Если разница больше одного деления по шкале Т, то необходимо откорректировать положение лампы накаливания. [c.381]

    Характер течения аэрозоля в волокнистом фильтре очень сложен, поскольку поток, огибая отдельные, беспорядочно расположенные волокна, все время изменяет свое направление. Действие волокнистых фильтров сводится к инерционному осаждению, прилипанию движущейся частицы к какому-нибудь выступу на поверхности волокна (эффект зацепления), седиментации и, наконец, к диффузии, частицы к поверхности волокна с последующей фиксацией. Различные факторы действуют неодинаково на разные явления, на которых основано выделение дисперсной фазы при фильтрации аэрозоля. Инерционное осаждение и седиментация увеличиваются при возрастании размера и плотности частиц, а также скорости течения, диффузионному осаждению способствует уменьшение размера частиц, но оно не зависит от плотности частиц. [c.361]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]

    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]


    Ион водорода здесь выступает в качестве катализатора. Скорость реакции возрастает, так как атака нуклеофила на атом углерода происходит легче, когда электронная плотность последнего понижена [183]. [c.56]

    Если обрабатываемое изделие имеет сложную форму, то возникает сложная задача обеспечения равномерного осаждения металла по всей поверхности изделия, так как плотность тока на выступах, расположенных ближе к аноду, соответственно и толщина осадка металла на выступах будут больше, чем в углублениях. Для более равномерного осаждения металла используют несколько способов, в том числе повышение катодной поляризации. Так как поляризация возрастает с увеличением плотности тока, то ее величина на выступающих участках будет выше, чем в углублениях. Это вызывает перераспределение тока и соответственно толщины осадка в сторону большей равномерности. Катодную поляризацию повышают, добавляя в раствор комплексные соединения, поверхностно-активные вещества. [c.425]

    Необходимо, впрочем, отметить, что для решения вопросов, связанных с тепловыми колебаниями, нейтронография более перспективна, чем РСА. При рассеянии рентгеновских лучей тепловые колебания выступают как фактор, размазывающий электронную плотность атомов, и остается не до конца ясным, какая часть этого размазывания определяется колебаниями, а какая — перераспределением электронной плотности при переходе от изолированных атомов к атомам в кристалле. В нейтронографии же фиксируются непосредственно тепловые колебания ядер, так как последние сами по себе не размыты. [c.139]

    В теории жидкостей, как и в теории газов, термическому уравнению состояния уделяется существенное внимание, и нередко термодинамические функции жидкости рассчитывают, опираясь именно на это уравнение. В таком случае уравнение состояния выступает как результат молекулярно-статистического рассмотрения, а другие термодинамические функции находят с помощью чисто феноменологических соотношений. Путь расчета аналогичен описанному ранее для реальных газов. Приведенные в гл. XI, 2 дифференциальные соотношения, очевидно, могут быть применены и к жидкостям они могут быть проинтегрированы от нулевой плотности до плотности, соответствующей исследуемой жидкой системе, если для всего этого интервала плотностей известно термическое уравнение состояния (таким образом, требуется уравнение для областей как жидкого, так и газообразного состоянии). Учитывая, что при нулевой плотности вза- [c.377]

    Координация этилена может происходить как за счет а-связи, образующейся при взаимодействии заполненной связывающей л-орбитали этилена с вакантной гибридной ( , Рг, гО-орбиталью металла, так и за счет я-связи, возникающей при взаимодействии заполненной (р, г)-гибридной орбитали металла с пустой разрыхляющей я -орбиталью этилена. При образовании <т-свя-зи этилен выступает как донор электронов, а при образовании я-связи — (как акцептор электронов. При подобном связывании на я-связывающей орбитали этилена возникает дефицит отрицательного заряда, электронная плотность уменьшается, на я -разрыхляющей орбитали — избыток отрицательного заряда, а в целом молекула поляризуется. [c.172]

    В стакан опускают взвешенный сетчатый электрод и закрепляют его в одной из клемм штатива так, чтобы он не соприкасался ни с дном, ни со стенками стакана и находился везде на одинаковом расстоянии от них. Платиновую спираль (анод) закрепляют в другой клемме так, чтобы анод находился в центре сетчатого катода. Это важно потому, что иначе медь будет оседать преимущественно в тех точках поверхности катода, которые находятся ближе всего к аноду, плотность тока в этих точках будет значительно больше, чем в других следовательно, здесь может образоваться губчатый, легко осыпающийся осадок меди. Коичик спирали должен немного выступать из-под сетки и на несколько миллиметров не доходить до дна стакана. [c.442]

    Как правило, любой макромасштабный процесс является суперпозицией нескольких элементарных процессов переноса и энергосилового взаимодействия. Каждый процесс, в свою очередь, является химическим, физико-химическим, тепловым и/или механическим процессом, связанным с изменениями в пространстве и времени состояния некоторых интенсивных параметров (ф) макропроцесса (температуры, плотности, скорости движения и т. п.). Это неравновесные процессы, и с ними связан спектр характерных временных и пространственных масштабов [436]. Пространственный масштаб 1-й стадии Lf) выступает метрической характеристикой области, в которой изменяется параметр ф. Время 1 , в течении которого изменяется параметр ф в -й стадии, принимается как характеристическое время элементарного" процесса г по параметру ф. Совокупность величин и 1/ представляет собой хронопрост-ранственную метрику г-й стадии по параметру ф. [c.153]

    Для конденсатов характерно закономерное уменьшение плотности от центральной части Восточно-Кубанского прогиба к Адыгейскому выступу и Ейско-Березанской зоне поднятий (от 0,810 до 0,731 г/см ), сопровождающееся увеличением содержания бензинов от 50 до 82 %. В Терско-Каспийском прогибе наиболее тяжелые нефти приурочены к западной части Терско-Сунженской зоны и Предгорному Дагестану. [c.184]

    Ассоциация молекул и структура жидкостей и твердых тел. Молекулы таких жидкостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)з, (Н.,0)2, (СНзОН)2, трнмеры, тетрамеры и т. д., пока тепловое движение не разрушит образовавшегося кольца или цепочки молекул. Когда тепловое движение понижено, через водородные связи создается кристаллическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две докорные Н-связи и через два атома Н —две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты, и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (ближний порядок). Эта структура делает воду уникальным по свойствам растворителем. Ассоциация через водородные связи приводит к аномально высоким значениям диэлектрической проницаемости таких жидкостей, как НС , НзО, метанол и др. Водородные связи типа —СО...Н—N1 — [c.139]

    Н. М. Караваев (92, 93, 94] из смол пиролиза керосина выделил нафталин в количестве 3,1% на смолы (из фракции 200—230°С) а- и р-метилнафталин в количестве 1,87о на смолу (из фракции 226—250°С) инден в количестве 1,4% на смолу (из фракции 175—182 °С) пирен (из фракции 160—290 °С) антрацен и хризен. Молекулярный вес асфальтенов при этом снижается (табл. 8 и 9). Следовательно, и молекулярный объем их уменьшается довольно значительно. Разукрупнение молекулярных структур тяжелых пиролизных остатков, естественно, приводит к уменьшению истинной плотности получаемого кокса в большом диапазоне значений. Образующиеся при этом карбоиды по размерам частиц (0,1—5 мк) и по высокой поверхностной активности сходны с обычной термической сажей. Они, надо полагать, играют немаловажную роль в формировании молекулярных структур органических соединений при пиролизе и выступают в роли катализаторов. Механизм происходящих при этом процессов наиболее удачно объясняется, по нашему мнению, если исходить из современных представлений об ионе карбония. При электронной недостаточности, возникающей в процессе пиролиза (особенно при глубоких формах пиролиза), ион карбония сковывается действием активных центров твердых контактов — сажеобразных высокореакционных карбоидов. [c.30]

    Для предотвращения окислительных процессов и смолообразования, приводящих к ухудшению качества дизельного топлива ДЛ-0.2 предложена полифункциональная присадка, содержащая стабилизатор — третичный амин, нейтрализующий кислотные продукты окисления, которые являются катализаторами уплотнения (Агидол-3) дисперсант, уменьшающий размеры частиц и увеличивающий их число (ионол), и деактиватор металлической меди (2-метил-2-этилиндолин). При этом стабилизатор и дисперсант одновременно выступают в качестве антиоксидантов, а деактиватор является синергическим агентом, усиливающим действие антиоксидантов. Образцы разработанной присадки были испытаны в составе товарного дизельного топлива, содержащего нестабильные продукты вторичных процессов, лабораторным методом [5]. Окисление топлива молекулярным кислородом проводили на газометрической установке при 120°С в присутствии медного кольца (5сц = 166 см /л) в течение 7 ч с одновременной регистрацией концентрации поглощенного кислорода (А[02], моль/л) и оптической плотности топлива (А), характеризующей смолообразование в системе (рис. 5.21). [c.204]

    Если капли собираются в верхней части колонны, рекомендуют применять двухступенчатый туманоуловитель. Нижняя ступень представляет собой сетчатую констр.укцию высокой плотности (190 кг/м ), которая выступает в роли агломератора капель верхняя ступень — сетчатая конструкция низкой плотности (95— 110 кг/м ), служащая для улавливания крупных капель. Для эффективного агломерирования в нижней сетчатой конструкции создаются условия затопления, что обеспечивает скруббирование газов и повышает скорость капель, облегчая процесс улавливания [c.374]

    Пористая среда при движении в ней жидкости выступает как множество поровых каналов различных размеров и сечений, в различной степени насыщенных нефтью и водой. Естественно, существует и необходимость рассмотрения модели пластов в виде сложной системы неоднородных по размеру и насыщенности поровых каналов. При избирательной фильтрации модель или расчетную схему неоднородной пористой среды можно представить в виде набора п слоев различной длины, каждый из которых состоит из поровых каналов равного размера и обладает одинаковыми запасами нефти Qi — Qзяn n. Длина поровых каналов, состоящих из пор с малой плотностью вероятности их в пористой среде, будет больше, чем каналов, состоящих из пор с большой плотностью вероятности. Расход жидкости по слою г, состоящему из каналов, по формуле Пуазейля равен  [c.81]

    Действие присадки объяснялось тем, что при растворении в углеводороде молекулы полимерной присадки вследствие значительных межмолекулярных взаимодействий друг с другом, а также обнаруженной инактивности на границе углеводород—вода, распределяются в объеме нефти и создают некоторые образования плотности при понижении температуры. Последние выступают в роли зародышеобразователей для кристаллов парафина. При дальнейшем понижении температуры наблюдается быстрая сокристаллизация парафиновых углеводородов с присадкой. Возникновение больших кристаллов либо сплошной парафиновой сетки предупреждается тем, что образование кристалла происходит в пределах, ограниченных собственным размером макромолекулы присадки, включая длинные боковые алкильные цепи. Кроме того, возникающий кристалл стабилизируется избыточным количеством полимерной присадки. [c.142]

    Здесь Р — выравнивающая способность а, /у, ср — первичная плотность тока на выступе, в углублении и средняя на микронрофиле а, у, (4р — соответствующие значения толщины осажденного слоя Ао и Нх — высота (глубина) мнкронеровностей до и после электролиза. [c.17]

    Электроосаждение металлов в присутствии определенных органических веществ, называемых выравнивающими агентами, обеспечивает заполнение рисок, царапин и впадин на поверхности металла и получение гладких осадков. В качестве выравнивающих агентов используют кумарин, хинолин, 2,2-дипиридил и другие органические вещества. Большинство выравнивающих агентов является одновременно и бле-скообразователями. Блеск осадка существенно улучшается, если в раствор вместе с выравнивающим агентом добавляют специальные органические вещества — блескообразова-тели (я-толуолсульфамид, сульфонаты ароматических эфиров и др.). Выравнивающие и блескообразующие добавки адсорбируются преимущественно на различных выступах поверхности и препятствуют осаждению металла на них, тогда как в углублениях плотность тока соответственно повышается. Преимущественная адсорбция органических веществ на выступах связана прежде всего с тем, что условия диффузии органических [c.375]

    Электроосаждение металлов в присутствии определенных органических веществ, называемых выравнивающими агентами, обеспечивает заполнение рисок, царапин и впадин на поверхности металла и получение гладких осадков. В качестве выравнивающих агентов используют кумарин, хинолин, 2,2-дипиридил и другие органические вещества. Большинство выравнивающих агентов является одновременно и блескообразователями. Блеск осадка существенно улучшается, если в раствор вместе с выравнивающим агентом добавляют специальные органические вещества — блескообразователи (п-толуол-сульфамид, сульфонаты ароматических эфиров и др.). Предполагается, что выравнивающие и блескообразующие добавки адсорбируются преимущественно на различных выступах поверхности и препятствуют осаждению металла на них, тогда как в углублениях плотность тока соответственно повышается. Преимущественная адсорбция органических веществ на выступах связана прежде всего с тем, что условия диффузии органических молекул к выступающим участкам поверхности оказываются более благоприятными. Механизм блескообразо-вания изучался в работах Н. Т. Кудрявцева, К. М. Горбуновой, Ю. Ю. Матулиса, С. С. Кругликова и др. [c.391]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Ассоциация молекул и структура жидкостей. Молекулы таких жиД Хостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)2, (НзО) , (СНзОН)2 и т. д. Однако ассоциация на этом не останавливается, образуются тримеры, тетрамеры и т. д., пока тепловое движение не разрушает образовавшеюся кольца и]ш цепочки молекул. Энергия на одну водородную связь в таких цепочках возрастает с числом молекул в димере воды 26,4, в тримере 28,4 кДж/моль, Для фтористого водорода в цепочках (НР)2, (НР)з, (НР)4 и (НР)5 и в кольце (НР)б на одну водородную связь приходится 28,9 32,5, 34,6 36,9 и 39,5 кДж/моль соответственно [к-32]. Когда тепловое движение понижено (в кристалле), через водородные связи создается кристал тическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две донорные Н-связи и через два атома Н — две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (б.иижний порядок). Эта структура воды определяет многие свойства воды и растворов. Структурированы и спирты, но по-иному, так как молекула спирта образует одну донорную и одну акцепторную связь. Эта структура разрушается тепловым движением значительно легче. Возможно структурирование и смещанных растворителей, как водно-спиртовые смеси и др. Оказывая особое влияние на структуру воды, водородные связи налагают отпечаток на всю термодинамику водных растворов, делая воду уникальным по свойствам растворителем. [c.274]

    На прочность агломератов оказывает влияние ряд факторов, из которых важнейшими являются число (площадь) контактов между зернами системы и прочность этих контактов. Очевидно, что площадь контактов 5конт пропорциональна общей площади 5 порошкообразной системы. Кроме того, 5коят зависит от формы частиц, их относительной ориентации, плотности упаковки, обусловленной приложенным к системе усилием (давлением). Очевидно, что сферические частицы образуют наименьшее число контактов, пористость (пустотность) системы в таком случае наибольшая. Частицы же неправильной формы, особенно игольчатые, волокнистые, с шероховатостями и выступами создают значительно большее число контактов. Плотность упаковки частиц определяется в значительной степени гранулометрией порошка. В монодисперсных системах плотность контактов между зернами меньше, чем в полидисперсных, так как во втором случае пустоты между крупными зернами заполняются более мелкими частицами. Таким образом, чем меньше пористость порошка и плотнее его упаковка, тем больше контактов между зернами порошка. При прессовании число таких контактов еще более увеличивается, а прочность прессовки возрастает. [c.298]

    Большинство реакций замещения у алифатического атома углерода представляют собой реакции нуклеофильного замещения. Для ароматических систем ситуация обратная, поскольку вследствие высокой электронной плотности ароматического кольца ОНО притягивает положительные, а не отрицательные частицы. В реакциях электрофильного замещения атакующей частицей является положительный ион или положительная часть диполя или индуцированного диполя. Уходящая группа (электрофуг) обязательно должна отщепляться без своей электронной пары. В реакциях нуклеофильного замещения уходящими группами в основном выступают те, которые более всего склонны нести электронную пару Вг , Н2О, ОТз и т. д., т. е. наиболее слабые основания. В реакциях электрофильного замещения важнейшие уходящие группы — это те, которые наиболее устойчивы без пары электронов, необходимой для заполнения внешней оболочки, т. е. самые слабые кислоты Льиса. Наиболее часто в реакциях ароматического электрофильного замещения уходящей группой служит протон. [c.304]

    Рассмотренные выще потенциалы относятся к молекулам, взаимодействия между которыми имеют характер вандерваальсовых. Однако во многих системах, наряду с такими взаимодействиями, имеются и взаимодействия типа слабой химической связи, которые отличаются от вандерваальсовых большей энергией, локализацией в пространстве, насыщаемостью. Указанными особенностями обладает донорно-акцепторная связь, образование которой сопровождается перераспределением электронной плотности не только внутри молекул (поляризация), но и между ними (перенос заряда). Одна из взаимодействующих молекул выступает как донор электронов, другая — как акцептор. Донором может быть молекула, содержащая на внешнем энергетическом уровне неподеленную электронную пару, т. е. пару не участвующую в образовании связи с другой частицей. Это, например, спирты, органические сульфиды, иодиды, и азотистые основания, в которых неподеленные пары локализованы на атомных орбиталях кислорода, серы, иода и азота. [c.123]

    Р. Бойль сконструировал ареометр со шкалой, которым определял плотности различных веществ. Он считал, что плотность — это важная характеристика, необходимая для распознавания веществ. Чем больше Р. Бойль изучал химические явления, тем больше убеждался в том, что учения Аристотеля и Парацельса не дают правильного объяснения экспериментальным наблюдениям. Он считал, что химия как наука должна широко использовать корпускулярные представления для рассмотрения химических явлений. Выступая за союз химиков и философов-корпускуляристов, Р. Бойль писал Сколько химических экспериментов можно объяснить корпускулярными понятиями, столько же корпускулярных понятий можно легко иллюстрировать или подтвердить посредством химических экспериментов . Корпускулы Бойля, состоящие все из одной и той я е первичной материи, обладают тремя основными свойствами величиной, формой и движением (или покоем). [c.34]

    На конгрессе особенно большой успех имел доклад С. Канниццаро, горячо выступившего в защиту закона Авогадро и системы Hiepapa. Он ясно и убедительно изложил правильную систему определения молекулярных и атомных масс на основании измерений плотностей наров и состава соединений того или иного элемента. [c.185]

    Все благородные газы и многие молекулярные вещества с простыми симметричными молекулами кристаллизуются в молекулярных решетках с плотнейшей упаковкой. Это указывает на то, что для межмолекулярпых связей характерны ненасыщенность и нена-правленность. В молекулярных кристаллах из несимметричных молекул структура может быть более рыхлой (приспособленной к асимметрии молекул), но все же определяющим здесь выступает геометрический фактор, а не природа составляющих частиц. Структуры молекулярных кристаллов относятся к гетеродеслшческим в них сосуществуют два типа связи — внутри молекул и между молекулами. Связи, действующие между молекулами, намного слабее, чем межатомные внутри молекул. Поэтому именно мел<мо-лекулярные силы в первую очередь определяют многие физические свойства веществ (температуры плавления, твердость, плотность, тепловое расширение и др.). Низкие температуры плавления, высокая летучесть, малая твердость, незначительная плотность и высокий коэффициент теплового расширения — все это свидетельствует о слабости ван-дер-ваальсовой связи. Оценку величины энергии межмолекулярного взаимодействия можно получить, исходя пз экспериментальных данных по теплотам сублимации молекулярных [c.136]

    Скорость роста идеально гладкой грани пропорциональна частоте появления на ней двумерных зародышей. Этот этап является весьма чувствительным к пересыщению, и вероятность образования нового слоя при пересыщениях ниже 25—50% совсем ничтожна. Дальнейшее разрастание слоя происходит быстро и от пересыщения не зависит. Однако в реальных кристаллах рост кристалличеекой поверхности становится непрерывным и осуществляется при ма/гых пересыщениях порядка 1 % и ниже. Это противоречие между теорией и практикой объясняет так называемая дислокационная теория. В настоящее время эти представления о механизме и кинетике роста кристаллов из пара являются общепринятыми. Согласно дислокационной теории винтовые дислокации, всегда присутствующие в реальном кристалле и выходящие на растущую поверхность, обеспечивают наличие готовых ступенек. Частицы, адсорбировапные поверхностью, свободно по ней перемещаются и, наконец, присоединяются к имеющемуся дислокационному выступу — ступеньке. В процессе кристаллизации ступеньки не зарастают, а сохраняются в новых слоях. Поэтому вся кинетика роста определяется движением ступенек и нет необходимости в появлении новых двумерных зародышей. При таком механизме роста полностью заполненных плоскостей нет, присоединение частиц происходит по спирали. -Для образцов с достаточно ( свершенной структурой плотность дислокаций, выходящих на поверхность, достигает 10 Поэтому рост такой поверхности происходит во многих точках одновременно и микрорельеф ее оказывается не гладким, а шероховатым. [c.60]

    Таким образом, наличие шероховатостей, выступов и впадин, активных граней, точечных де([)ектов, дислокаций образует весьма сложную микротопографическую картину, не говоря уже о влиянии химической природы и предыстории образца. Поэтому однозначного ответа на вопросы о локализации адсорбционных центров, их плотности и поверхностной энергии быть не может без привязки к конкретной структуре и составу поверхности. [c.126]


Смотреть страницы где упоминается термин Выступы плотность: [c.347]    [c.190]    [c.93]    [c.114]    [c.18]    [c.12]    [c.120]   
Трение и смазка эластомеров (1977) -- [ c.10 , c.38 , c.52 , c.96 ]




ПОИСК







© 2025 chem21.info Реклама на сайте