Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь напряжения с деформацией

    Природа такой зависимости не выяснена и не ясно, является ли она следствием изменения структуры материала при повторной деформации или следствием нелинейности связи напряжение— деформация, а также не учитываемого в работах [3] разогрева массивного образца при динамическом нагружении. [c.180]

    Обе величины р и е, являются функцией абсолютного передвижения и, а так как напряження линейно связаны с деформациями, то Ср и 0 также являются функциями от и. [c.457]


    Это приводит к возникновению в теле внутренних напряжений. Под действием этих напряжений частицы стремятся восстановить прежнее состояние и выделить избыточную энергию большей частью в форме теплоты или работы. Если при деформации происходят только процессы, которые легко обращаются после прекращения действия внешней силы, например искажение валентных углов, то деформация не достигает предела упругости если же она связана с менее обратимыми процессами, например с разрывом химических связей, то деформация переходит в область пластической деформации и после прекращения действия внешней силы полностью самопроизвольно не устраняется. [c.572]

    Естественно, что перед обсуждением современных аспектов теории полимеров и композитов, а также экспериментальных и численных методов изложен необходимый подготовительный материал — теория напряжений и деформаций, связь напряжений с деформациями с учетом влияния температуры, разнообразные постановки статических и динамических задач. [c.6]

    Чтобы решить поставленную задачу, нужно располагать данными о начальных и граничных условиях, а также подобрать соответствующее уравнение состояния, связывающее напряжения с деформациями. При равновесных условиях и малых деформациях поведение несжимаемых эластомеров можно описать с помощью равновесного модуля упругости, который удается связать с молекулярной структурой. В случае больших эластических деформаций, когда зависимость напряжение — деформация становится нелинейной, задача существенно усложняется. Впервые более или менее корректное уравнение состояния для чисто упругого изотропного материала было предложено Фингером [26]  [c.572]

    Изучение кинетики установления стационарного ламинарного течения, т. е. изменения Р во времени с увеличением у при заданной скорости сдвига. Этот способ позволяет по полученным зависимостям Р(у) или P(t) определять характер связи напряжения сдвига со скоростью деформации в условиях установившегося течения. [c.155]

    В природе нет идеально упругих тел. Для каждого тела существует предельное напряжение Р, р, превышение которого приводит к нарушению пропорциональности. Если тело хрупкое, происходит внутреннее разрушение структуры (разрыв внутренних связей). В других случаях внутренние силы сцепления под влиянием внешнего напряжения ослабевают, происходит перераспределение связей, и деформация становится [c.427]


    Акустические колебания совершаются с малой амплитудой, т. е. они соответствуют начальному участку кривой напряжение — деформация. Прогнозировать по параметрам акустических волн поведение кривой при больших напряжениях и деформациях аналитически невозможно. В связи с этим ищут корреляционные зависимости акустических параметров от прочности материалов. Для повышения точности предсказания иногда используют несколько акустических параметров или помимо акустических учитывают другие свойства (электрические, магнитные), контролируемые соответствующими неразрушающими методами. [c.252]

    Для изготовления искусственного угля в качестве исходного сырья применяют нефтяной и каменноугольный кокс, реже антрацит и графит. Промытый соляной кислотой для удаления золы и прокаленный углеродистый материал в виде порошка смешивают с каменноугольным пеком и антрацитовым маслом, прессуют под давлением 200—1 500 ат в изделия или блоки, а затем подвергают обжигу без доступа воздуха при температуре 1 350— 1 400°С. Во избежание возникновения внутренних напряжений, деформаций и трещин обжиг ведут в течение 5— 8 суток и охлаждение в течение 6— 10 суток. В процессе обжига связующее вещество массы превращается в кокс, происходит спекание и усадка угольной массы, удаляются летучие прочность массы значительно повышается, она превращается в монолит. Угольные яблоки имеют пределы проч- [c.59]

    Если изотермическая поверхность кристаллизации совпадает с равновесной границей раздела фаз, силы поверхностного натяжения удерживают поднятый столб расплава и на фронте кристаллизации не возникает дополнительных напряжений. В противном случае (например, при вогнутой к расплаву изотерме кристаллизации) жидкий столбик стремится оторваться от кристалла и поддержание его будет непременно связано с деформацией поверхности кристаллизации. [c.101]

    Очень интересен подход к проблеме вязкости Максвелла (1868), который определил явление вязкости как отклонение от равновесия системы, вызванное возбуждением системы, обусловленным напряжением или упругой силой F. Как известно, упругая сила связана с деформацией [c.131]

    Автоколебания возникают в нелинейных системах за счет сил, зависящих от состояния движения самой системы размах автоколебаний не зависит от начальных условий (см. гл. 15 и 16). Автоколебания ЛМН возбуждаются при наличии обратной связи между деформацией и напряжением. Соотношение между ними изменяется в зависимости от состояния активности системы. Но-видимому, в ЛМН имеется элемент-преобразователь , реагирующий на механические события и контролирующий состояние сократительной системы. Этот элемент локализован в миофибриллах, что доказывается наличием автоколебаний и у препаратов ЛМН, отмытых глицерином. [c.411]

    В этой теории предпринята попытка количественно связать напряжения, возникающие в материалах, и скорость развития стресс-коррозионного дефекта с помощью термодинамики необратимых процессов. Деформация металла рассматривается на стадии линейного упрочнения, когда дислокации выстраиваются и двигаются в системе параллельных плоскостей скольжения при отсутствии поперечного скольжения. Из математических построений этой теории вытекает ряд феноменологических уравнений, указывающих на взаимосвязь процессов пластической деформации и стресс-коррозии в металлах, которые при одновременном процессе деформирования и электрохимической коррозии принимают следующий вид  [c.66]

    Многие исследования посвящены изучению механических и электрических свойств полиэтилентерефталата вытяжке волокна [1134, 1136, 1140, 1141], вынужденной эластичности [1135], деформации [1137], влиянию скорости на кинетическое трение нальду [1138],модулюупругости при различных степенях растяжения [1139], релаксации напряжений [1203], связи напряжения деформации и двойного лучепреломления [1142], трибоэлектрическим свойствам [1143], электропроводности [1144], диэлектрической прочности, сопротивлению изоляции и другим [1145]. [c.40]

    Важную роль в процессах усиления невулканизованных резиновых смесей за счет кристаллообразования играют факторы, обуславливающие появление начального ориентационного эффекта, после чего процесс кристаллизации развивается лавинообразно появление такого эффекта при растяжении связано с образованием стабильных связей каучук — каучук или сажа — каучук [6]. Увеличение молекулярной массы и введение полярных групп в полимерные цепи, находящиеся в сажекаучуковой матрице, увеличивают количество связей и ускоряют развитие процесса кристаллизации именно за счет создания ориентационного эффекта соответственно, увеличивается когезионная прочность смесей. Это положение иллюстрируется данными, приведенными на рис. 3, где представлены кривые напряжение — деформация для 3-х смесей, полученных на основе одного и того же каучука — полиизопрена с высоким содержанием цыс-1,4-звеньев, но приготовленных различным способом на вальцах в условиях, обеспечивающих отсутствие процессов механохимической деструкции наконец, на вальцах в присутствии модификатора (промотора), усиливающего взаимодействие сажа —каучук. [c.75]


    Силовые и моментные напряжения в среде Коссера связаны с деформациями соотношениями [ 4]  [c.8]

    Если течение не является типичным свойством твердообразных систем, что особенно характерно для конденсационно-кристаллизационных структур, то реологические зависимости строят по отношению к деформации, а не к ее скорости. Типичная кривая зависимости деформации от напряжения для твердых тел показана на рис. VII. 15. Прямолинейный участок кривой ОА отвечает пропорциональности деформации напряжению сдвига в соответствии с законом Гука (VII. 3). До напряжения Ри отвечающего точке А, размер и форма тела восстанавливаются после снятия нагрузки. Важными параметрами такой системы являются модуль упругости (модуль Юнга) и модуль эластической деформации. Считают, что в суспензиях с коагуляционной структурой модуль упругости (модуль быстрой эластической деформации) характеризует твердую фазу дисперсий, а модуль медленной эластической деформации — пространственную сетку с прослойками дисперсионной среды (возможно скольжение частиц относительно друг друга без разрыва связей). Напряжение Р соответствует пределу текучести (правильнее — пределу упругости). С увеличением напряжения проявляется пластичность, а после его снятия — остаточные деформации. При напряжении Рг (точка ) происходит течение твердообразной системы. При дальнейшем увеличении напряжения до величины Рз (точка В), соответствующей пределу прочности, обычно наблюдается нег<оторое упрочнение тела, затем наступает разрушение системы. [c.380]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    Кинетическая теория высокоэластического состояния была в основном разработана в период 1930—1943 гг. Детальное описание процесса разработки данной теории и ее современного состояния дано, например, в классических работах Флори [1] или Трелоара [2]. Необходимыми условиями существования высокоэластического состояния являются наличие длинной цепной молекулы, обладающей внутренней гибкостью (свободно поворачивающимися звеньями), и отсутствие сильных вторичных связей, действующих между сегментами одной и той же цепной молекулы или между сегментом данной молекулы и окружающими сегментами других молекул. Тогда соотношение напряжение—деформация для одиночной конечной цепи получается из распределения конформационных преобразований цепи. Следуя Трелоару, кратко напомним, какие свойства цепи входят в соотношение между нанря кением и деформацией и каковы допустимые значения силы. [c.118]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    В разд. 1.1 уже рассматривалось соотношение напряжение-деформация одиночного сегмента цепи, нагруженного в точках на концах. Однако в (несшитых) термопластах большие осевые усилия не могут быть приложены в точках вдоль основной цепной связи, а будут равномерно распределены по цепи благодаря более слабым межмолекулярным силам. Силы, действующие между молекулами, представляют собой сумму сил короткодействующего (ядерного) отталкивания и сил (электронного) вандерваальсового притяжения (которые включают электростатические силы между ионами, диполями и квадрупо-лями, наведенные силы, вызванные поляризацией атомов и молекул, и, в общем, более существенные квантовомеханические дисперсионные силы). Вандерваальсово притяжение вызывает отверждение и кристаллизацию полимеров теоретически оно достаточно хорошо изучено и детально рассмотрено Ланг-бейном [16]. С учетом этой работы и общего списка литературы к гл. 1 можно утверждать, что вторичные силы не насыщены и не направлены, т. е. не ограничены точными положениями соседних атомов, например тетраэдрическими углами связей. В соответствии со справедливостью данных предположений потенциал межмолекулярных сил, действующий на цепь или сегмент, может быть заменен суммой потенциалов взаимодействия всех подходящих пар атомов. Парные потенциалы содержат в себе составляющую силы притяжения, которую определяют теоретически и которая убывает как шестая степень межатомного расстояния [16], и составляющую силы отталкивания, для которой существуют лишь полуэмпирические выражения. Тогда полная энергия межмолекулярного взаимодействия, т. е. энергия когезии твердого тела, представляется в виде суммы парных [c.131]

    В этой книге не раз отмечалось, что релаксация напряжения не может и не должна быть связана исключительно с разрывом цепи [2—52]. Тем не менее были продолжены попытки объяснения кривых напряжение—деформация ПА-б [49—51] и волокна поли [пара-(2-гидроксиэтокси) бензойной кислоты] [c.247]

    С использованием ядра / г(<, 5) связь напряжений и деформаций в случае ностояиства коэффициента Пуассона будет иметь вид [c.56]

    Методику определения параметров рассмотрим на следующем примере. Связь между деформацией, напряжением и временем при Т = onst запишем в виде [c.80]

    Будем по-прежиему рассматривать одномерную задачу о распространении волн вдоль оси Ох, однако теперь в уравнении движения (3.149) р(ж)= ро = onst, а вместо закона (3.150) используется связь напряжений с деформациями в форме (2.24) (историю нагружения полагаем начинающейся при t = —°o, индексы опускаем, ядро R считаем разностным) тогда после подстановки выражения для о(х, t) через е х, s) = du dx в уравнение (3.149) получим уравпеппе [c.144]

    Совершенно аналогичным способом устанавливается, что краевые задачи линейной теорпн вязкоупругости в общем случае, когда связь напряжений ац 1) с деформациями ец Ь) дается соотношением (2.11), приводятся к вариационному уравнению [c.170]

    Параметр О, прямо связанный с теорией Гриффитса, является энергетическим критерием сопротивления развитию трещины. Еще шире используется силовой критерий, который можно получить, зная поле напряжений у фронта трещины. Допустив линейную связь напряжения с деформацией, можно следующим образом вьфазить компоненты тензора напряжений, действующие на элементарный параллелетшед, расположенный на расстоянии I от фронта трещины, если / образует с осью х угол (р  [c.45]

    Авторы другой теории (Ламри и Эйринг [45, 461, Дженкс [29. 47]) полагают, что силы сорбции используются для создания напряжений (деформаций) в молекулах реагирующих компонентов, способствующих протеканию реакции. Если же активный центр фермента жесткий, то субстрат, чтобы он мог с ним связаться, должен претерпеть некоторую деформацию (см. рис. 17, III). При этом предполагается, что активный центр устроен так, что в результате деформации молекула субстрата активируется (т. е. приобретает некоторые свойства, важные для образования переходного состояния реакции). В противном случае, когда жесткой является молекула субстрата, а конформа-ционно лабилен фермент, схему катализа можно представить так же, как для механизма индуцированного соответствия (рис. 17, II). Легче всего представить индуцированное субстратом (или, в противном случае, белком) искажение конформации, которое включает сжатие (или растяжение) связей или изменение углов между связями. В общем случае, рассматривая строение молекулы субстрата или белка в более общем виде, под напряжением структуры можно понимать также и, например, десольватацию функциональных групп, принимающих участие в химической реакции. [c.60]

    Наиболее информативный акустический параметр для оценки прочности материала — это скорость распространения волн. Она аналитически связана с упругими постоянными, описывающими начальный участок кривой напряжение — деформация. Для нераз-рушающего контроля прочности ряда материалов достаточно измерения скорости. [c.252]

    Ползучесть. Под ползучестью понимают развивающуюся во времени деформацию образца под воздействием постоянного напряжения в различных схемах нагружения, например в условиях растяжения, сдвига или сжатия. Полная деформация нагруженного полимерного образца в любой момент времени суммируется из упругой, высокоэластической и необрау1мой деформации. Упругая деформация возникает вследствие изменения валентных углов и длин связей. Высокоэластическая деформация развивается во времени с убывающей скоростью и стремится к достижению равновесного значения. Время установления равновесной деформации зависит от конформационного набора цепей, температурных условий опыта и приложенного напряжения. Деформация вязкого течения наблюдается главным образом в полимерах линейного строения. Здесь существенно отметить, что в условиях релаксации макромолекула стремится перейти в равновесное состояние путем превращения вытянутой конформации в свернутую конформацию, а при [c.124]

    Если в процессе деформирования среды вся работа внешних сил диссипирует (рассеится), то это процесс течения в чистом виде, и после прекращения действия внешних сил вся совершенная деформация окажется необратимой, и достигнутое новое состояние будет равновесным. Характер процесса течения будет определяться связью напряжений, возникающих в жидкости, и скоростью деформации. [c.13]

    При приложении к твердому телу, адгезированному к подложке, силы Р в последнем возникают касательные напряжения, которые могут привести к изменению его формы (рис. 27). При этом верхняя грань тела площадью 5 сместится в направлении действия силы на А/. Эти касательные напряжения связаны с деформацией по закону Гука [c.76]

    Как обычно, рассмотрим кривую напряжете — деформация, состоящую из трех стадий легкого скольжения (I), деформационного упрочнения (II) и заключительной (III). Последняя стадия деформации, называемая также стадией динамического возврата, связана с разрушением дислокационных скоплений, перегруппировкой дислокаций путем поперечного скольжения, выстраиванием их в полигональные субграницы. Эти процессы ведут к уменьшению энергии деформации, запайенной в материале, и к частичной взаимной аннигиляции дислокаций. Коэффициент упрочнения на этой стадии уменьшается до нуля с ростом деформации, как это и наблюдается на кривых напряжение— деформация. [c.43]

    Для железа и малоуглеродистой стали по мере приближения к пределу текучести кривая напряжение—деформация немного закругляется, в связи с появлением небольшой неупругой деформации совместно с микродеформацией, обусловленной образованием дислокационных нагромождений еще до наступления текучести. В начале деформирования тонкий поверхностный слой упрочняется раньше всего объема металла, поскольку предел-текучести этого слоя ниже [55] и взаимодействие дислокаций в тонком поверхностном слое приводит к росту деформационного унроч- / нения на начальной стадии пластической деформации, сконцент- рированному в тонком поверхностном слое (эффект Сузуки [56]). Этим объясняется увеличение А г перед началом легкого сколь- i жения, пропорциональное росту деформационного упрочнения At в области напряжений между пределом упругости (е = 0,2%) и началом легкого скольжения (см. рис. 9). [c.69]

    Повреждения конденсаторов обычно связаны с деформацией их кор- пусов. В частности, сильной деформации подвергаются алюминиевые корпуса электролитических конденсаторов. Емкость такого деформированного конденсатора может и не измениться, но номинальное рабочее напряжение может значительно уменьшиться. Многие типы конденсаторов, залитых в пластик, удовлетворительно переносят перепады давления. [c.482]

    Гибкие циклические системы стремятся принять конформацию с минимальной энергией, в которой сумма всех классических компонентов энергии напряжения (напряжение деформации связей, торсионное напряжение, напряжение, обусловленное невалентными взаимодействиями и взаимодействием электронов) мпнимизована для всех валентных углов и межатомных расстояний (см. разд. 2.1.7.) Для шестичленных насыщенных циклических соединений жесткая кресловидная конформация соответствует наиболее устойчивому конформационному изомеру например, циклогексану соответствует конформация кресла (22), обладающая симметрией Оз  [c.43]

    Простейшие реологические уравнения. Различные реологические среды по-разному реагируют на внешние механические воздействия. Связь между деформациями и напряжениями для конкретного материала выражается реологическим уравнением состояния. Примерами простейших уравнений состояния идеализированных сред являются линейные изотермические соотношения для упругих твердых тел и вязких жидкостей — закон Гука и закон Ньютона [22, 24].  [c.15]

    В тиксотропных системах сравнительно высокая вязкость затруд- няет броуновское движение, благодаря чему сокрашается количество контактов частиц или макромолекул и уменьшаются силы сцепления между ними. Это и обуславливает получение структур, легко разрушаю- щихся при перемешивании или встряхивании. Тиксотропия эмульсий и растворов высокополимеров связана с деформацией частиц и макромо-1 лекул под нагрузкой и замедленным восстановлением их первоначальной формы после снятия напряжения. [c.428]

    Особенно важно установить критерии разрушения, так как они позволяют прогнозировать пределы безопасной эксплуатации двигателя или его транспортировки и определять недопустимые режимы нагружения. Существуют разные подходы для идентификации недопустимых отклонений. Можно использовать определение, основанное на отклонениях параметров рабочего процесса РДТТ от номинальных, например отклонениях давления в двигателе, времени сгорания заряда, скорости горения и т.д. Некоторые из такого рода аномалий можно непосредственно связать с целостностью топливного заряда. Для определения разрушения используются и другие подходы, например, считают, что разрушение наступает при появлении первой видимой трещины или при разрыве образца, при достижении максимального значения напряжения на кривой напряжение — деформация или при максимально допустимом возрастании того или иного параметра. Разумеется, само разрушение имеет статистическую природу, и при расчетах на прочность это тоже следует принимать во внимание. [c.52]

    Из данных, приведенных в табл. 5,18, видно, что при повышении температуры и увеличении влажности прочность соединений снижается. Незначительный рост прочности после вакуумирования обусловлен, по-видимому, восстановлением межмолекулярных связей. Различие между исходной прочностью к прочностью после вакуумирования вызвано, видимо, разрушением химических связей на границе раздела. Эти процессы имеют место и при эксплуатации соединений в атмосферных условиях, особенно при повышенной влажности, но они протекают с значительно меньшей скоростью. Тот факт, что происходит разрушение химических связей, дополнительно подтвержден результатами испытаний образцов эпоксидных полимеров, отвержденных по указанному выше двухступенчатому режиму, — после их предварительной выдержки в течение 72 ч при 100 °С на воздухе и в воде с последующим определением прочности в той же среде при различных температурах (табл. 5.19). Образцы, выдержанные при 100 °С и испытанные в воде, имеют более высокие прочность и удлинение по сравнению с образцами, выдержанными на воздухе. Можно предположить [113], что в процессе испытя-нщТвода, проникающая в полимер, разрушает более напряженные связи, происходит их перегруппировка. В этом случае удлинение повышается в большей степени, чем при пластификации клея водой [113], а кривая напряжение — деформация характеризуется наличием значительного плато вынужденной эластичности. [c.149]

    В таком виде полученное уравнение реологии систем с цепочечной структурой описывает связь напряжения и скорости деформации в любом режиме течения. Первое слагаемое уравнения представляет структурную часть сопротивления, а второе — его эйшитейнову часть, обусловленную лишь присутствием определен- [c.715]

    Это означает, f4T0 в вязкотекучем состоянии максимальная деформация будет наблюдаться не при максимальном значении напряжения, а при наибольшей скорости изменения его, т. е когда само напряжение равно ну По/(рис. 101). Такая связь напряжения со скоростью деформации характерна для вязкой жидкости, для которой [c.391]


Смотреть страницы где упоминается термин Связь напряжения с деформацией: [c.111]    [c.158]    [c.125]    [c.43]    [c.399]   
Смотреть главы в:

Длительная прочность полимеров -> Связь напряжения с деформацией




ПОИСК





Смотрите так же термины и статьи:

Связь между напряжениями и деформациями

Связь напряжений со скоростями деформации ньютоновских жидкостей. Уравнения Навье — Стокса



© 2025 chem21.info Реклама на сайте