Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез-газ вязкость

    Более перспективным и эффективным методом получения топлив с высокими энергетическими характеристиками является создание синтетических топлив. Путем синтеза углеводородов можно получить топлива с энергетическими характеристиками на 13—15% лучше, чем у керосина. В настоящее время известны топлива на основе изопарафиновых углеводородов с компактным расположением боковых групп, некоторых нафтеновых углеводородов с боковыми цепями на основе би- и полициклических нафтеновых углеводородов. Характерной положительной чертой этих топлив является также высокая термическая стабильность при температурах до 260° С, а недостатком — высокая вязкость при отрицательных температурах. [c.91]


    Базовые масла различаются между собой вязкостью, химическим составом и некоторыми другими свойствами. Базовое масло - это основа товарного масла, готовая к смещению, но еще без присадок. Сырьем для смазочных масел могут быть минеральные и синтетические базовые масла. Химический состав минеральных масел зависит от нефти, из которой произведено масло. Химический состав синтетических масел зависит от исходного сырья (мономеров) и метода синтеза. [c.10]

    Это маслообразные синтетические жидкости - полимеры или олигомеры, полученные методом синтеза из разных мономеров. Ни одно синтетические масло не имеет всей совокупности свойств, характерной для минерального масла, но отдельные синтетические масла обладают некоторыми выдающимися эксплуатационными свойствами, превышающими свойства минеральных масел. Например, некоторые синтетические масла имеют особенно высокий индекс вязкости, пониженную температуру застывания, повышенную стойкость к высоким температурам и деформациям сдвига, отличаются пониженной летучестью и горючестью. Эти свойства обеспечивают универсальность применения и продолжительность срока службы. Каждое синтетическое масло необходимо применять в условиях, позволяющих наилучшим образом использовать его отличительные особенности. [c.16]

    Синтетическое моторное масло для высокофорсированных спортивных 4-х тактных двигателей. М асло изготовлено на основе синтеза эфиров растительных масел и благодаря этому и запасу вязкости сохраняет защитные смазывающие свойства даже в случае значительного разжижения топливом. Основное применение гонки на выносливость. 24-х часовые гонки, гонки в условиях пустыни, ралли. [c.155]

    Процесс синтеза бутадиен-стирольных статистических каучуков может осуществляться в батарее из двух и более аппаратов, соединенных последовательно. Следует учитывать, что вязкость живого ассоциированного полимера быстро увеличивается как за счет повышения содержания полимера в растворе, так и за счет молекулярной массы, которая непрерывно растет с повышением конверсии мономеров. Вязкость живого ассоциированного полимера с молекулярной массой каучука (Зн-3,5)-10 при его содержании в растворе около 15% (масс,) достигает 20—40 Па-с. При дезактивации (разрушении литийорганических концевых групп) вязкость раствора уменьшается в несколько раз за счет распада ассоциатов. [c.276]


    Процессы полимеризации циклоолефинов с раскрытием кольца не только приводят к синтезу новых полимерных материалов, но и открывают пути коренного изменения традиционной технологии полимеризации в растворе. Как известно, при полимеризации бутадиена и изопрена выделяется значительное количество теплоты (свыше 1260 кДж/кг), отвод которой затрудняется из-за высокой вязкости реакционной смеси, поэтому концентрация полимера в растворе обычно не превышает 10— 12% (масс.). [c.318]

    Промышленное применение саженаполненных композиций на основе жидких каучуков осложнено тем, что в данном случае реакционные смеси представляют собою не жидкости (как это имеет место при синтезе ненаполненных резин), а пасты. В связи с этим казалось бы отпадает такое важное преимущество жидких каучуков, как возможность их применения для перевода резиновой промышленности на прогрессивную технологию производства изделий методом литья. Однако, как это видно из табл. 10 [76], при прочих равных условиях кажущаяся вязкость. сажевых смесей на основе жидких каучуков на 1,5 порядка и более меньше, чем у обычных резиновых смесей на основе высокомолекулярных каучуков. [c.448]

    Для проведения большинства лабораторных МФК-синтезов можно использовать магнитную мешалку. Однако следует иметь в виду, что иногда результаты не воспроизводятся, особенно в тех случаях, когда для реакции используют 50%-ные растворы гидроксида натрия или калия, которые из-за их вязкости перемешиваются слишком медленно. Рекомендуются следующие скорости перемешивания для МФК-реакций в нейтральных условиях в системе вода/органическая фаза более 200 об/мин [27], для реакций в присутствии гидроксида натрия и в системах твердая фаза/жидкость 750—800 об/мин [31, 32]. В некоторых случаях в системах твердая фаза/жидкость приходится использовать высокоэффективные скребковые мешалки. [c.89]

    Указанные обстоятельства обусловливают третий подход к синтезу операторов ФХС, основанный на модельных представлениях о внутренней структуре процессов, происходящих в технологических аппаратах. Основу этого подхода составляет набор идеальных типовых операторов, отражающих простейшие физико-хими-ческие явления (модель идеального смешения, модель идеального вытеснения, диффузионная модель, ячеечная модель, комбинированные модели и т. п.). Математическое описание технологического процесса сводится к подбору такой комбинации простейших операторов, чтобы результирующая модель достаточно точно отражала структуру реального процесса [1 ]. Такой подход позволяет сравнительно просто учесть влияние важнейших гидродинамических факторов в системе на макроуровне (зон неидеальности смешения, циркуляционных токов, байпасных потоков и других гидродинамических неоднородностей в аппарате), а также стохастических свойств ФХС (распределения элементов потока по времени пребывания в аппарате, коалесценции и дробления частиц дисперсной фазы, распределения частиц по размерам, вязкости, плотности, поверхностному натяжению и т. д.). [c.14]

    При внедрении присадок в промышленное производство очень важным вопросом является разработка рациональных технологических процессов, что весьма затруднительно из-за ряда специфических особенностей производства присадок (многостадийность, высокая вязкость конечных и промежуточных продуктов синтеза, необходимость использования специального оборудования и др.). Разработка технологических схем производства различных присадок осуществляется с учетом общности отдельных стадий их синтеза, в частности стадии нейтрализации, сушки и отделения механических примесей от присадок. При производстве присадок [c.12]

    Нейтрализация продукта конденсации и сушка присадок, имеющих относительно большую вязкость, являются наиболее трудоемкими и продолжительными стадиями в их производстве. Внедрение непрерывных процессов позволит значительно улучшить общие технико-экономические показатели процесса [279]. Промежуточные продукты синтеза смешивают и направляют в реактор через печь, где они нагреваются до ПО—120°С. Реактор непрерывного действия обеспечивает время контакта, необходимое для завершения реакции нейтрализации. [c.249]

    Западные полубитуминозные угли США легко подвергаются ожижению и десульфированию в результате некаталитического процесса под действием синтез-газа и водорода при 400—450 °С и 27—31 МПа. Минеральные компоненты этих углей оказывают каталитическое действие на изменение соотношения СО Н2 в синтез-газе и на восстановление карбонильных групп угля, приводящее к образованию растворимых продуктов. Содержание серы и вязкость каменноугольного масла снижаются с увеличением расхода водорода при использовании как синтез-газа, так и чистого водорода, однако общее количество водорода, необходимое для получения масла одного и того же качества, в случае синтез-газа гораздо меньше, чем в случае чистого водорода. [c.335]


    На фиг. 27 изображена зависимость вязкости от температуры для топлива, полученного из нефти и аналогичного по фракционному составу топливу, полученному синтезом окиси углерода и водорода (синтин). [c.57]

    Технологические процессы производства присадок существенно отличаются от процессов производства нефтяных и многих нефтехимических продуктов. Высокая вязкость сырья, промежуточных и готовых продуктов, сильная коррозионная агрессивность многих используемых реагентов затрудняют создание непрерывных технологических процессов, поэтому большая часть установок по производству присадок работает по периодической или полунепрерывной схеме. Периодические процессы не могут быть в достаточной степени автоматизированы и механизированы, имеют и другие недостатки, что увеличивает себестоимость присадок. Производство присадок, особенно многофункциональных, осуществляется путем многостадийного синтеза. Сырьем служат продукты переработки нефти и нефтехимического синтеза (олефиновые, ароматические и парафиновые углеводороды, сульфокислоты, алкилфенолы, спирты, а также различные неорганические реагенты — гидроокиси металлов, пятисернистый фосфор, однохлористая сера, серная и соляная кислоты и т. д.). [c.312]

    Меры предупреждения брака при отклонениях технологических свойств олигомерных композиций. Если технологические свойства исходных продуктов и композиций отличаются от оптимальных значений, то для исключения брака необходимо внести корректировку в рецептуру или технологический процесс. Так, если при изготовлении изделий из полиуретанов по двухстадийной схеме синтеза вязкость преполимера окажется выше допустимой, то для ее снижения можно использовать псевдопре-полимерную технологию, введя в преполимер избыток изоцианата. Можно также снизить вязкость преполимера за счет введения в исходные продукты олигомера меньшей молекулярной массы и вязкости, модифицирующих добавок и т. д. При использовании преполимера, вязкость которого ниже оптимальной величины, при реакционном формовании в вакуумируемую форму процесс заполнения будет протекать слишком быстро и изделие оформится не полностью. В этом случае для повышения вязкости композиции ее следует выдержать некоторое время перед подачей в форму в копильнике либо уменьшить сечение литникового канала. [c.101]

    Так, при синтезе вязкость латекса оказывает решающее влия-ние на условия отвода теплоты полимеризации в процессе концен- трирования вязкость латекса определяет предельно достижимое содержание полимера в конечном продукте при изготовлении различных изделий с применением латексов их вязкость предопределяет поведение смесей в целом ряде технологических процессов — пропитке и промазке, макании, вспенивании и т. д. [c.57]

    В соответствии с часто высказывавшимся взглядом, что хорошими смазочными свойствами обладают только углеводороды, в молекуле которых имеются циклы, исследовались возможности получения смазочных масел конденсацией высших хлористых алкилов с ароматическими углеводородами. Исходным сырьем для этого применяли газойль с (пределами кипения приблизительно 230—320" , получаемый при синтезе углеводородов по Фишеру — Тропшу, известный под названием когазин П. Этот исходный материал хлорировали и затем подвергали его взаимодействию с ароматическими углеводородами по Фриделю — Крафтсу в присутствии безводного хлористого алюминия. Таким спосо-болМ удавалось получать смазочные масла любой требуемой вязкости, отличавшиеся хорошими низкотемпературными свойствами, стойкостью к окислению и низкой коксуемостью. Однако важнейшая характеристика смазочных масел — их вязкостно-температурная зависимость, выражаемая высотой полюса вязкости или индексом вязкости, для таких масел оказывалась неудовлетворительной. Вязкость этих масел сравнительно круто падает с повышением температуры. Высота полюса вязкости таких масел лежит около 3 индекс вязкости соответственно равен около 30. [c.235]

    Оксиэтилированные жирные кислоты ЮЖК). Аля синтеза ОЖК исиол1,зу — ется кубовый остаток синтетических жирных кислот (СЖК) с числом углеродных атомов более 20 (С >20) или 25 (С >25). Деэмульгирующая активность и физические свс йства (температура застывания, вязкость, плотность и др.) образцов ОЖК зависят от числа групп ОЭ (в пределах 14 — 25 на одну молекулу ОЖК) вязкость и температура засгывания ПАВ снижаются, а плотность и деэмульгнрующая его способность [c.149]

    Вязкость известных чистых углеводородов была определена в результате исследовательских работ, проведенных Микеска (М1кезка) [65] (который получал чистые углеводороды посредством синтеза) а также ряда других работ, проведенных в рамках Американского нефтяного института. Проблема исследования смазочных масел еще более усложнилась, когда Мебери установил на основании элементарного (не слишком тщательного ) анализа заметный недостаток водорода в смазочных маслах различных нефтей. Теоретическое количество водорода рассчитывалось исходя из формулы строения нормальных алканов С Н2 +2. [c.23]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    При полимеризации на литийалкилах в неполярных средах температура реакции хотя и влияет на структуру полибутаднена [38], но в пределах 40—80 °С это влияние незначительно (увеличение содержания 1,2-звеньев на 1 —1,5%), поэтому процесс синтеза можно проводить при повышенных температурах до 70—80 °С, что также способствует снижению вязкости раствора и улучшению теплообмена. Несомненно, в большей степени на образование 1,2-звеньев влияют микропримеси, содержащиеся в товарном бутадиене, и применяемый растворитель. [c.276]

    После завершения синтеза полимер дезактивируют, вводя антиоксиданты (ионол, ТБ-3 и т. д.). Вязкость полимеризата при этом [c.286]

    II возникает ряд научных проблем, которые необходимо решать уже сегодня, таких, как создание эффективных, стабильных, долгоживущих катализаторов и методов их контакта с нефтяным сырьем подбор высокоселективных и стабильных раство11ителей для разделения углеводородных фракций по типам структур и ]ш молекулярной массе повышение селективности катализаторов до уровня четко управляемого перераспределения водорода в перерабатываемом сьсрье пер( ход в производстве смазочных масел массовой выработки на целенаправ генный синтез высокостабильных углеводородных систем с оптимальными параметрами по вязкости. [c.355]

    Для получения катализатора или силикагеля микросферической формы струю золя распыляют сжатым воздухом в слой формовочного масла, в данном случае трансформаторного масла определенной вязкости. При быстром смешении исходных растворов образуется коллоидный раствор алюмосиликата, спосрбный превращаться в гидрогель через строго определенный промежуток времени. Управление синтезом алюмосиликатного катализатора заключается в регулировании таких параметров, как температура, концентрация, кислотность или щелочность среды (pH золя), продолжительность операции и т. д. [c.47]

    Основная характеристика смазочного материала - вязкость. В большинстве случаев сырьем для синтеза смазок служат про дукты перегонки нефти. В зависимости от вязкости смазки могут быть жидкими (текучими), консистентными (густые пластнчные смазки) и твердыми (в качестве твердой смазки используется графит). [c.44]

    Основные ваправления исследовательских работ в области синтеза углеводородов, соответствующих по количеству углеродных атомов углеводородам смазочных масел, проводились с целью сопоставить физические свойства си1[тетическпх углеводородов с их химической структурой. При этом из физических св011ств принимались во внимание только вязкость и температура застывания. [c.283]

    С увеличением в молекуле числа групп окиси пропилена иовышается вязкость полигликолевого эфира. Одновременно его температура застывания снижается в случае синтеза эфира из фенола и повышается в случае синтеза эфира из спиртов. [c.407]

    Построение более сложных реологических уравнений, описывающих вязкоупругие свойства сополимера, вытекает из возможности положения упругих и вязких свойств реальной среды. С другой стороны, такой синтез сложных уравнений вязкоупругости может быть существенно облегчен, если для описания поведения реальных полимерных систем в механических полях использовать. модельные представления, основанные на применении тех же общих законов упругости (закон Гука) и вязкости (закон Навье — Стокса). [c.309]

    Анализ научных публикаций последних лет показал, что основное направление работ в области синтетических масел для турбореактивных самолетов — синтез и применение смешанных или комплексных эфиров и диэфиров. Комплексные эфиры диорто-кремниевой кислоты [пат. США 3444081] предложены в качестве основ масел, пригодных для работы в высокотемпературных условиях. Эти эфиры могут содержать радикалы ортокремниевой кислоты, пентаэритрита, двухосновных карбоновых кислот, трехосновных карбоновых кислот, полигликолевого. эфира и некоторые другие. Эфиры этого типа характеризуются значительной молекулярной массой (более 1400), высокой плотностью и вязкостью (126 мм /с при 100°С) и низкой температурой застывания (—50 °С). В качестве высокотемпературных смазочных масел предложен ряд диарилдиалкоксисиланов с алкильными радикалами Сз—С12 [англ. пат. 971598]. [c.165]

    Присадка ИХП-388. Технология синтеза присадки ИХП-388 разработана в ИХП АН АзССР [102, с. 23]. Присадка ИХЬ 388 предназначена для улучшения эксплуатационных свойств автомобильных и дизельных масел. Она обладает высокими моюще-диспергирующими, противокоррозионными, антиокислительными и нейтрализующими свойствами. В отличие от других присадок ИХП-388 улучшает вязкостно-температурные свойства масел, повышая их индекс вязкости на 5—12 она также обладает высокой гидролитической стойкостью. [c.239]

    Реакции поликонденсации очень медленно протекают при обычной температуре, и поэтому синтез конденсационных полимеров ведут обычно при температурах порядка 150—300° С и даже выше, т. е. температурный режим синтеза является одним из макрокине-тических факторов, влияющих на процесс синтеза. Поликонденсация может быть гетерофазной, например эмульсионной. Эмульсионным может быть также процесс полимеризации, при котором радикальная полимеризация протекает в эмульсии мономера [32], причем реакционная масса в этом случае имеет невысокую вязкость. При эмульсионном процессе синтеза существенное влияние оказывают такие показатели, как размер капель мономера и скорость транспорта мономера к поверхности раздела фаз [46]. Тем самым гидродинамический режим синтеза также является макрокинети ческим фактором, влияющим на процесс синтеза. [c.5]

    Колонна синтеза работает под давлением 30 МПа с вторичной конденсацией аммиака. Соотношение Нг N2 в исходной азотоводородной смеси близко к стехиометрическому. Содержание инертных примесей ( H4-fAr) в газе Син = 0,96% (об.). Динамический коэффициент вязкости газовой смеси при 30 МПа Рг 3,0-10 Па-с. Данные материального баланса колонны синтеза для этих исходных условий приведены без расчета в следующей таблице  [c.145]

    Ожижение иопытуемых углей под действием чистого водорода в аналогичных условиях протекало с меньшей степенью превращения и более низкой селективностью по каменноугольному маслу, а продукт, образующийся без добавки катализатора, имел более высокую вязкость. Содержание серы и вязкость масла снижались с увеличением количества поглощенного водорода, однако для получения каменноугольного масла одного и того же качества в случае применения синтез-газа требовалось меньше водорода, чем в случае чистого водорода. Экспериментальные данные, полученные с водородом и синтез-газом, представлены в табл. 4. [c.333]

    Ожижение углей под действием Л1 — Со — Мо-катализатора и компонентов минеральной части углей. Для некоторых низкозольных углей, например для VYO-74-14 и УО-74-3, наблюдались низкая степень превращения угля и селективность образавания каменноугольного масла при действии синтез-газа в типичных условиях. Иопользование карбоната калия, пирита или молибдата кобальта (Со — Мо на АЬОз) в качестве катализаторов значительно увеличивало и общую степень превращения угля и селективность образования масла при существенном снижении вязкости продукта, растворенного в антрацене. Для угля Ш 0-74-14 [c.333]

    Однако, хотя изонарафиновые углеводороды п отличаются предельно пологой температурой кривой вязкости, последняя по абсолютной величине крайне мала. Поэтому все же бесспорно больший интерес в качестве модельных углеводородов смазочных масел должны представлять циклические углеводороды, потому что они преобладают в смазочных маслах из природных нефтей и потому что им должно принадлежать важнейшее значение в деле синтеза высоковязких синтетических масел. [c.376]

    В целях учета изменения в вязкости, температуры застывания и т. д. в молекулах и с одним и тем же числом атомов углерода в результате возникновения в них одного, двух, трех колец (фенильного, циклогексильного, циклопентильного) Шислер, Кларк, Роуланд, Слотмен, Герр [23] провели исследование. Параллельно с синтезом три-н-октилметана они осуществили синтез ряда углеводородов, также содержащих в молекуле 25 атомов углерода и того же структурного типа — триал-килметана, но заключающих одно, два,три кольца.Свойства этих углеводородов представлены в табл. 83. Из приведенных в ней данных видно, что в результате возникновения двух колец (фенильных, циклогексильных или циклопентильных) в молекуле с тем же числом атомов углерода температура застывания снижается с —13 до —40° и даже до —50°. Вязкость по абсо- [c.376]

    В схемах глубокой переработки нефти предусматривается использование тяжелых нефтяных остатков - гудронов и асфальтитов для получения Н2 и синтез-газа путем их газификации. Процесс газификации основан на неполном окислении углеводородного сырья кислородом, воздухом, обогащенным кислородом, в присутствии водяного пара или одним воздухом. Факельная газификация осуществляется в пустотелом реакторе. Основными продуктами являются окись углерода и водород, наряду с которыми образуются небольшие количества двуокиси углерода, иетана, сероводорода, выделяется также дисперсный углерод - сажа (от 0,1 мас.% для метана до 2-4 мас.%-тяжелых нефтяных остатков). Переработка тяжелых нефтяных остатков с температурой н.к. выше 500°С встречает затруднения, связанные с их высокой вязкостью, зольностью, температурой размягчения, коксуемостью, большим содержанием серы и металлов. [c.120]

    Эти олигомеры имеют высокий индекс вязкости и низкие температуры застывания. В отличие от способов получения олигомеров двойными связями, олигомеры винилалкилового эфира, полученные в присутствии агента передачи цепи, не содержат двойных связей. Тем самым в данном случае отпадает необходимость в гидрировании полученных олигомеров, что обязательно при синтезе олигомеров наличие двойных срчзей существенным образом ухудшает термоокислительную стабильность. [c.36]

    ГрозНИИ разработал и внедри на Кременчугском НПЗ технологию производства масла-разбавителя беияольной присадки А-9250, которое является одним из основных компонентов на всех стадиях синтеза присадки. Разработанная технология позволяет получать масла, качество которых соответствует предъявляемым требованиям, в частности, по содержанию серы, вязкости и индексу вязкости. [c.115]

    В табл. 24 приведены данные о смешанных углеводородных структурах, синтезированных с целью моделировать типы углеводородов, составляюш,их основную часть смазочных масел. Понятно что при этом было отдано предпочтение таким структурам, у которых преобладают алифатические атомы углерода, но мало обращали внимания на остальные атомы молекулы, относящиеся к циклической структуре (ароматические или циклопарафиновые). В табл. 25 включены данные о синтезированных нами углеводородах, в молекуле которых соотношение атомов углерода разного типа (алифатические, циклопарафиновые, бензольные, нафталиновые и др.) колебалось в широких пределах. Синтез высокомолекулярных углеводородов гибридного строения таких разнообразных форм вполне оправдан, так как многочисленные данные но исследованию высокомолекулярной части нефтей, начиная с масляных фракций, подтвердили, что углеводородные структуры этой части нефти состоят преимущественно из молекул, содержащих одновременно атомы углерода парафиновой, циклопарафиповой и ароматической природы. Учитывая влияние углеводородов такого типа (в зависимости от их концентрации в масляных фракциях нефтей) на эксплуатационные свойства смазочных масел, мы изучили зависимость вязкостных свойств гибридных структур синтетических углеводородов С24, содержащих в молекуле 1, 2 или 3 кольца (циклопептановое, циклогексановое, бензольное), от их строения [37 ]. Было показано, что в ряду углеводородов j повышается вязкость и ухудшается температурная зависимость вязкости при переходе от чисто алифатических структур к структурам гибридным, в молекуле которых 1, 2 или 3 атома водорода в парафиновой цепи заменены циклогексановым или бензольным кольцом. Гибридные структуры углеводородов, в парафиновой цепи которых два атома водорода замещены бензольными кольцами, заметно различаются по вязкости в зависимости от наличия в бензольном кольце заместителей углеводороды с метилированными бензольными кольцами характеризуются более высокой вязкостью, чем углеводороды аналогичной структуры, но с неметилированными бензольными кольцами. При гидрировании бензольных колец в этих углеводородах картина резко меняется. При переходе от фенилзамещенпых [c.119]

    Значительно более прогрессивны и экономичны процессы каталитического облагораживания масляного сырья и синтеза новых углеводородов в результате глубоких термокаталитических превращений в присутствии водорода. В этих процессах (гидрирования, гидрокрекинга, изомеризации) нежелательные компоненты сырья преобразуются в углеводороды нужной структуры, что позволяет использовать для производства масел сырье различных состава и происхождения. В настоящее время гидроизомеризацией гачей и очищенных парафинов удается получать базовые масла с индексом вязкости до 150. Каталитическое гидрирование как один из процессов очистки в производстве масел стал развиваться сравнительно недавно. В СССР впервые гидроочистка депарафинированного масла фенольной очистки была осуществлена в 1960 г. на Новокуйбышевском НПК- Гидродоочистку используют вместо доочистки глинами или селективной очистки. Условия и результаты процесса гидродоочистки определяются в основном составом сырья, качеством катализатора и требованиями к готовой продукции. [c.45]


Смотреть страницы где упоминается термин Синтез-газ вязкость: [c.503]    [c.436]    [c.427]    [c.406]    [c.197]    [c.334]    [c.255]    [c.379]    [c.428]   
Справочник азотчика Том 1 (1967) -- [ c.424 ]

Справочник азотчика Т 1 (1967) -- [ c.424 ]




ПОИСК







© 2025 chem21.info Реклама на сайте