Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотолиз органических молекул

    ФОТОЛИЗ ОРГАНИЧЕСКИХ МОЛЕКУЛ [c.128]

    Фотолиз органических молекул 2  [c.129]

    Фотолиз органических молекул ЬЗТ [c.131]

    Фотолиз органических молекул 3. i [c.133]

    Фотолиз органических молекул 1да [c.139]

    Кислотно-основное равновесие триплетных состояний и радикалов. Импульсный фотолиз успешно применяется для изучения кислотно-основных равновесий короткоживущих продуктов и состояний. Прямое измерение рК триплетных молекул в растворе было впервые проведено с помощью импульсного фотолиза. Кислотно-основные свойства триплетных состояний органических молекул характеризуются сродством к протону этих молекул. Константа основности триплетных молекул (рКг) может быть определена по кривой титрования так же легко, как и в основном состоянии, причем индикатором является молекула в своем Триплетном состоянии. Типичная кривая зависимости [c.301]


    Несколько спектров поглощения короткоживущих радикалов наблюдались Портером и Виндзором [111] методом импульсного фотолиза для большого числа органических соединений в жидких растворителях, например для антрацена в гексане. Эти спектры были отнесены к триплет-триплетным переходам с самых нижних тринлетных состояний органических молекул. В некоторых случаях при одной вспышке до 50% молекул переходило в триплетное состояние. Время жизни молекул в их триплетных состояниях варьируется от 10 до 10 сек в зависимости от исследуемой молекулы и вязкости жидкой среды. Некоторые из этих спектров наблюдались в газовой фазе Портером и Райт [112]. [c.27]

    Если учесть различие и многообразие типов химических соединений, к которым относятся синтетические красители, то становится ясным, что процесс выцветания всех красителей не может иметь простого однотипного механизма. Даже в случае простых органических молекул могут протекать различные фотохимические реакции. Выцветание красителей может явиться результатом трех фотохимических реакций окисления, восстановления и разложения (фотолиза). Кроме того, следует учитывать и фотосенсибилизацию (см. ниже). [c.1388]

    В этих двух случаях свет, вызывающий ионизацию, относился к видимой и ультрафиолетовой областям, и в процессах участвовали нижние возбужденные состояния. Недавно Теренин и сотрудники сообщили о детальных масс-спектрометрических исследованиях газофазной диссоциации и ионизации органических молекул под действием вакуумного ультрафиолетового излучения [647, 650]. Фотолиз ароматических аминов, аминокислот и азотистых оснований в этих условиях приводит к трем основным типам процессов  [c.451]

    Все разработанные до сих пор лазеры действуют либо в инфракрасной области, либо в красной области видимого спектра. Рубин, например, генерирует когерентное излучение при 6943 А. Не изготовлено еще ни одного лазера, работающего при более коротких длинах волн в видимой или ультрафиолетовой областях спектра. Заманчивой представляется возможность использования для создания лазеров фосфоресценции или флуоресценции органических молекул. Имея в своем распоряжении огромное множество органических молекул, можно затем сконструировать лазерные источники света для любой выбранной длины волны, просто подбирая подходящую молекулу. Тонкая настройка может быть осуществлена выбором групп заместителей. В лаборатории автора начиная с 1960 г. были выполнены исследования органических материалов, пригодных для использования в качестве лазерных сред. В то же время было выдвинуто предложение попробовать осуществить лазерный эффект при использовании синглетных и триплетных состояний ароматических молекул [208]. Еще в 1954 г. Портер и Виндзор [167] сообщили о получении 20% конверсии молекул в низшее триплетное состояние при импульсном фотолизе растворов антрацена. Позднее было обнаружено уменьшение нормальной заселенности основного состояния более чем на 50% у других молекул, таких, как коронен, 1,2 5,6-дибензантрацен, тетрацен и пентацен [168, 207]. Учитывая, что энергия вспышки составляла только несколько сотен джоулей, первое требование работы лазера, а именно инверсная заселенность, выполнялось очень легко в случае триплетных состояний ароматических углеводородов. В то время, конечно, не были изобретены ни лазеры, ни мазеры, и потенциальное значение достижения инверсной заселенности у каких-либо молекул не было оценено должным образом. [c.134]


    Большой интерес представляет фотохимия карбонилов металлов, используемых для фотохимического синтеза. При возбуждении светом с А, полосы переноса заряда металл — лиганд происходит первоначально отщепление одной молекулы СО с последующим присоединением других органических молекул или фрагментов. Промежуточные продукты фотолиза смешанных карбонилов металлов могут служить эффективными катализаторами стереоспецифических реакций присоединения или полимеризации. [c.225]

    В идеале, для установления механизма фотохимической реакции следовало бы знать состояния всех молекул, участвую-ш,их в реакции, их энергию и время жизни, а также все побочные реакции. Практически далеко не все эти данные бывают доступны. Установление истинных путей превраш,ения всех молекул, поглотивших квант света, и всех свободных радикалов, образуюш,ихся в фотохимическом процессе, представляет собой аналитическую задачу, решение которой до настоящего времени едва ли было возможно... [47]. Методы определения механизмов фотохимических реакций по существу не отличаются от методов определения механизмов обычных органических реакций (гл. 6) идентификация продуктов, изотопная метка, детектирование и улавливание интермедиатов, изучение кинетики. Однако в случае фотохимических реакций появляется ряд новых факторов 1) образование большого числа продуктов, до 10—15 соединений 2) возможность изучать кинетику реакции в зависимости от большего числа переменных, так как на скорость реакции влияет интенсивность или длина волны падающего света 3) возможность детектировать исключительно короткоживущие интермедиаты, используя технику флеш-фотолиза. Кроме того, имеются еще два специальных метода. [c.321]

    В состав ФПК входят, помимо основной органической составляющей, фотоинициатор и ингибитор. Фотоинициатор служит сенсибилизатором, который под действием УФ излучения приобретает избыточную энергию, возбуждается и обеспечивает образование свободных радикалов, необходимых для развития цепной химической реакции в основной органической составляющей. Ингибитор необходим для предотвращения спонтанных реакций, инициированных теплотой при хранении в период между введением фотоинициатора и непосредственным использованием, и для регулирования скорости фотолиза. Механизм действия ингибитора сводится к отдаче атома водорода его молекулой для насыщения свободной валентности активного радикала. Благодаря значительной вязкости ФПК обрыв органических цепей в результате взаимодействия радикалов протекает медленно. Это позволяет ингибитору оказать сдерживающее влияние [98]. [c.186]

    Ряд веществ легко вступает в реакции со свободными радикалами. Такие вещества (акцепторы радикалов) в весьма низких концентрациях, порядка 10 моль/л, полностью захватывают радикалы. В качестве акцептора органических радикалов в жидкой среде могут служить молекулы галоидов. Если галоидные молекулы содержат радиоактивную метку, то продукты их реакций с радикалами также будут радиоактивны. Это дает возможность проследить за образованием свободных радикалов в любой реакции, например при радиолизе, фотолизе и т. п. [c.514]

    MOB водорода в молекуле и тем самым о ее строении. Методом инфракрасной (ИКС) и электронной спектроскопии в ультрафиолетовой и видимой областях спектра, а также спектров комбинационного рассеяния света (СКР) выявляют функциональные группы, распределение электронной плотности, пространственное строение молекул органических соединений. Метод электронного парамагнитного резонанса (ЭПР) для определения природы свободных радикалов, образующихся при химических реакциях, основан на взаимодействии неспаренного электрона парамагнитного соединения с внешним магнитным полем. Масс-спектроскопия путем определения массы и относительных количеств ионов, возникающих при бомбардировке электронами молекул, исследует их строение. Метод дипольных моментов позволяет установить конфигурацию молекул и отчасти распределение в них электронной плотности. Повысился интерес исследователей к методу полярографии органических соединений (изучение пространственного строения, кинетики, таутомерии и т. д.). Большое значение имеет исследование термодинамических свойств органических соединений (например, при оценке их взрывчатых свойств). Физические методы (особенно кинетические) имеют часто решающее значение при исследовании механизмов реакций органических соединений. Важная роль принадлежит прецизионным кинетическим методам (струевым, релаксационным, импульсного фотолиза), которые применяются при исследовании быстрых реакций. [c.8]

    Возбужденная молекула N02 обладает повышенной реакционной способностью с органическими соединениями. Квантовый выход фотолиза N02 существенно зависит от длины волны света. В интервале 300—410 нм он возрастает от 0,3 до 2. В результате передачи энергии от N02 к кислороду происходит образование возбужденных молекул Ог с энергией возбуждения 0,98 и 1,63 эВ, обладающих высокой реакционной способностью  [c.25]


    Вскоре стало очевидным, что можно достичь селективности в инициировании фотохимических реакций [5—15]. Действительно, в этом обнадеживающем методе используется высокая избирательность вещества по отношению к поглощению света, которая позволяет вводить энергию в отдельные связи или молекулы растворенного вещества, не затрагивая при этом непоглощающих молекул растворителя. При соответствующих условиях фотохимический процесс может явиться кратчайшим путем для синтеза веществ, которые очень трудно получить другими методами. Эта сторона дела, а также появление спектроскопических методик (например, импульсного фотолиза см. гл. 4, раздел 5) непосредственного изучения промежуточных веществ и развитие теории возбужденных состояний сильно способствовали возрастанию интереса к органической фотохимии. Недавно арсенал фотохимика пополнился новым уникальным средством было показано, что перенос электронной энергии представляет собой общее явление, которое играет большую роль в фотохимических реакциях и может быть успешно использовано для их изучения [10, И, 15]. [c.10]

    Под действием света могут идти как реакции разложения молекул на атомы (фотолиз), так и реакции образования новых молекул, нередко более сложных, чем исходные (фотосинтез). Особенно большое значение имеют реакции фотосинтеза, происходящие в растениях под действием солнечного света. В результате фотосинтеза образуются различные органические соединения, главным образом углеводы — крахмал, клетчатка. Познание сущности процесса фотосинтеза — одна из важнейших проблем современного естествознания. [c.121]

    Непосредственное исследование триплетных молекул и их участие в фотохимических процессах стало возможно с появлением метода импульсного фотолиза. Поскольку газы и жидкости, как правило, не фосфоресцируют, что, по мнению Льюиса и Каша, связано с малым временем жизни триплетных молекул, то наблюдение за триплетными молекулами возможно только импульсными методами. В качестве примеров химических реакций, протекающих в триплетном состоянии, следует указать на перенос протона, перепое электрона, отрыв атома водорода и др. Кислотно-основные свойства триплетного состояния органических молекул характеризуются сродством к протону этих молекул. Константа основности триплетных молекул (или рТС) может быть определена по кривой титрования , причем индикатором является молекула в своем триплетном состоянии. Типичная кривая зависимости концентрации триплетных молекул от pH среды приведена на рис. 57 для 9-азафеиантрена. Основность ароматических соединений в триплетном состоянии ие сильно отличается от основности молекул в основном состоянии в противоположность молекулам, находящимся в синглетно-возбужденном состоянии, основность которых существенно отличается от основного состояния. В табл. 15 приведены значения р/С для основного (Sq), первого сииглетпо-возбужденного (S ) и триплетного (Г ) состояний ряда ароматических молекул. Величины р/С (Т) определены ири помощи метода импульсного фотолиза. [c.159]

    Вторичные процессы существенно зависят от температуры, перемешивания и концентрации катализатора или окислителя. В качестве эффективных окислителей выступают озон, кислород, пероксид водорода, персульфаты и др., в присутствии которых подавляющее количество органических веществ может быть разложено до углекислого газа и воды. Современные исследования показали, что в реакциях фотоокисления с участием кислорода, перокида водорода и озона образуются высокоактивные ОН-радикалы, окисли-тельно-восстановительный потенциал которых близок к паре Гг-Р и которые с большой скоростью (порядка Ю - 10 ° л-моль -с ) взаимодействуют с органическими молекулами, приводя к их распаду. Согласно стандарту DIN 38406 Е16 (Германия), при определении Zn, d, Pb, u, Ni, Со в водах используется окислительный фотолиз. [c.51]

    И отрицательный ионы. В третьем случае молекула может выбрасывать электрон. Примеры второго и третьего процессов были установлены при фотолизе тетрафенилгидра-зина и других органических молекул в твердых растворителях при низких температурах. [c.30]

    Этот механизм представляет определенный интерес в связи с выделением иодистого водорода. Так, Люббе и Виллард [53] нашли в облученном у-квантами замороженном стеклообразном иодистом этиле довольно значительные количества этил-радикалов, но в этих же условиях после ультрафиолетового облучения не было обнаружено ни одного такого радикала, хотя и у-, и ультрафиолетовое излучения генерируют в жидком иодистом этиле как этилен, так и НЛ. Неудача постигла Симонса и Таунсена [54], которые пытались определить методом ЭПР какие-нибудь радикалы в замороженной стеклообразной смеси иоддианилоэтила и этилового спирта, облученной ультрафиолетовым светом. Однако последующие эксперименты показали, что при фотолизе данных систем образуется иодистый водород. Таким образом, по-видимому, реакция (9.61) преобладает над всеми другими. Необходимым условием выделения иодистого водорода и возникновения ненасыщенных соединений является наличие в органической молекуле группы, где атом водорода локализован на углероде, присоединенном к углероду с атомом иода. Поскольку иод образуется через стадию синтеза НЛ, то в соответствии с этим при радиолизе и фотолизе найдено, что выход иода увеличивается по мере роста числа атомов водорода, связанных с р-углеродом [48, 55]. [c.294]

    Нами был исследован фотолиз замороженных растворов КзРе(СК)в, а также НдРе(С1 )в в присутствии большого числа органических молекул. При облучении (Я, в области полос 33 и 38 тыс. см ) возникают свободные радикалы. Для различных классов соединений они перечислены ниже  [c.108]

    Как указывалось выше, ориентированная кристаллизация играет существенную роль в разнообразных физических явлениях и процессах. С ориентированной кристаллизацией связаны пробле.мы модифицирования сплавов, объемных превращений, фотолиза, окисления, искусственного обезвоживания облаков и туманов, гетерогенного катализа, образования сложных органических молекул и белковых тел, генезиса минералов и многие другие. В настоящей главе рассматриваются некоторые приложения этого явления, непосредственно связанные с ориентированной кристаллизацией. Наиболее очевидным из них является пол чение монокристальных пленок для нх исследования и практического использования в разнообразных приборах, а также для выращивания крупных монокристаллов. Примерами последнего являются методы Фишфойгта и Корефа [1] выращивания монокристальных проволочек различных металлов на вольфрамовой нити и метод Веста [2] получения больших кристаллов галоидных солей с определенной ориентацией на слюде, а также методика выращивания монокристаллов окиси меди на меди [3]. [c.366]

    Остер с сотрудниками [100—103] впервые показал, что химически активным состоянием во многих фотохимических реакциях красителей является долгоживущее триплетное состояние. В настоящее время реальность этого вывода не вызывает никаких сомнений, так как сделавший эпоху метод импульсной спектроскопии Норриша и Портера позволил получить прямое доказательство образования триплетов красителей в растворе путем наблюдения триплет-триплетных поглощений. Из данных, полученных при изучении органических молекул в обычных жидких растворах с помощью флеш-фотолиза, Портер и Виндзор [75, 104, 105] в 1954 г. постулировали, что образование триплетного состояния — это явление общего характера для большинства соединений . В дальнейшем было доказано, что решающий фактор многих фотохимических органических реакций в растворе — это образование триплетных состояний с временем жизни около 0,1 мс. Триплеты можно обнаружить для ароматических углеводородов [72], хлорофилла [106, 107], Флуоресцеина [108—ПО], Эозина [111], Люмифла-вина [112] и Ретена [113]. Через триплетные состояния протекают и другие фотохимические реакции, например, фотовосстановление Рибофлавина или фотопревращения кетонов и хинонов в растворах [80, 114-120]. [c.387]

    Основной метод определения относительных направлений поляризации моментов перехода органической молекулы заключается в измерении поляризованного возбуждения и люминесценции молекулы в вязком или твердом изотропном растворе. Этот метод не зависит от конкретного свойства молекулы, например величины постоянного дипольного момента и степени растяжения, так как почти все молекулы в стеклообразном растворе при низкой температуре способны люми-несцировать при облучении. Исключение составляют нестабильные образцы, подвергающиеся фотолизу с квантовым выходом, равным единице. [c.1829]

    Успеху экспериментов, выполненных методом импульсного ра диолиза, в значительной мере помогают данные по спектрам погло щения и в некоторых случаях — по коэффициентам экстинкщ триплетных состояний, образующихся при фотолизе органически стекол [421] и при импульсном фотолизе жидкостей [422]. При им пульсном радиолизе были определены спектры поглощения и ра диационные выходы триплетных состояний антрацена, фенантрена нафталина и ацетилантрацена, растворенных в углеводородах [423 424]. Выход триплета антрацена в жидком парафине оцениваете величиной 0,5 молекулы на 100 эВ (1,602 10 Дж) [423]. В бензол также образовывался триплетный антрацен с выходом 0,7 [425 В этой же работе наблюдали, кроме того, запаздывающую флуо ресценцию при 430 нм, которая, по-видимому, связана с триплет триплетными взаимодействиями. Выход триплетов антрацена, наф талина и бензофенона в циклогексане и бензоле зависит о концентрации раствора [426—428]. [c.200]

    В присутствии малых количеств кислорода (ЫО- —Ы0 2М) С (К) =4, т. е. практически равен выходу вторично возбужденных молекул. Поэтому частица X в дальнейшем должна приводить к образованию одного гептильного радикала. Взаимодействие кислорода с возбужденными органическими молекулами и образование активных частиц в результате такого взаимодействия известно также из фотохимических экспериментов. По всей вероятности механизм этого явления одинаков, как при фотолизе, так и при радиолизе. Согласно Каутскому [24], активная частица представляет собой сипглетно возбужденную молекулу кислорода, находящуюся в одном из состояний Дg (1 эв). [c.378]

    Из сказанного ясно, что цепь событий, ведущих к биологическому эффекту, начинается с образования синглетного возбужденного состояния красителя. Однако непосредственно участвуют в первичных фотохимических реакциях не синглетные, а триплетные возбужденные молекулы. Участие триплетного состояния красителя в фотосенсибилизированном окислении доказывается следующими опытами 1) по дезактивации триплетных и синглетных состояний различными тушителями, в которых показан параллелизм между тушением фосфоресценции и уменьшением квантового выхода фотоокисления ряда органических веществ 2) в которых выявлена способность акцепторов, уменьшающих заселенность триплетных уровней красителя за счет три-плет-триплетной миграции, снижать концентрацию радикалов, участвующих в реакции окисления 3) по идентификации триплетных состояний методом флеш-фотолиза при сенсибилизированном окислении яичного альбумина, аминокислот и других органических молекул, а также нуклеиновых кислот 4) где показана способность возбужденной свободно диффундирующей молекулы красителя инактивировать белок при столкновении с ним спустя время, за которое синглетное состояние полностью дезактивируется. Действительно, рост квантового выхода сенсибилизированной инакти- [c.340]

    Первый и второй законы фотохимии применимы к любым фотохимическим реакциям. Третий и четвертый законы относятся главным образом к фотохимии органических соединений. Однокванто-вость поглощения связана с тем, что время жизни электронно-возбужденного состояния молекулы достаточно мало, а обычно используемые интенсивности света невелики (10 —10 квантов, поглощенных в 1 смз за 1 с). Если удается повысить интенсивность света (импульсный фотолиз, действие лазеров), или увеличить время жизни возбужденных состояний за счет устранения диффузионно-контролируемых процессов тущения (понижение температуры, увеличение вязкости среды), становится возможным поглощение кванта света молекулой, находящейся в электронпо-возбуж-деипом состоянии или одновременное поглощение двух квантов света молекулой, находящейся в основном состоянии. [c.132]

    Особенности, установленные нри помощи метода молекулярных пучков для реакций атомов щелочных металлов с молекулами Х , НХ и ВХ (X — атом галогена, R — органический радикал), в известной мере, очевидно, относятся и к бимолекулярным обменным реакциям других частиц. Как и в случае реакций атомов, щелочных металлов, здесь также встают вопросы об угловом распределении продуктов реакции и их энергии, о зависимости сечения или константы скорости от формы и распределения энергии реагирующих частиц, о продолжительности жизни промежуточного комплекса. Первый из этих вопросов в настоящее время удалось решить при помощи метода молекулярных пучков Лишь в ограниченном числе реакций (реакции атомов галогенов с молекулами галогенов, атомов Н с галогенами и галогеповодородами и D -f Hj = HD + Н). См. работу [213]. В отношении изучения распределения энергии в продуктах реакции большие возможности содержатся также в методе импульсного фотолиза [1163] и в методе, разработанном Дж. Полани с сотр. [628], заключающихся в исследовании спектров поглощения или испускания молекулярных продуктов обменных реакций атома с молекулой, например, реакций О -f NO2 = 02 + N0 или Н + I2 = НС1 С1. Это позволяет найти распределение внутренней (колебательной) энергии в продуктах реакции (сводку экспериментальных данных см. в [613]). Были также определены вероятности процессов типа Н -j- lj = H l (v) -f- l, F -f Hg = HF (v) - -+ H и некоторых других для различных значений колебательного квантового числа v (см. 411, 1364]). Так, например, относительные значения констант скорости реакции F Hj = HF + Н оказываются равными [c.281]

    Образующиеся в результате первичного фотохимического процесса электронно-возбужденные и триплетные молекулы могут вступать во взаимодействие между собой или реагировать с другими веществами, содержащимися в реакционной смеси. При этом могут протекать реакции между возбужденными и такими же невозбужденными молекулами с образованием димерных молекул (фотодимеризация) или полимерных веществ (фотополимеризация, фотоконденсация). В присутствии кислорода может происходить присоединение его к возбужденной молекуле. Для органических веществ очень характерны реакции фотораспада (фотолиз). Довольно распространены и имеют большое практическое значение реакции фотовосстановления и фотоокисления. Возможны и такие реакции, при которых происходит перенос электрона между двумя молекулами в электронно-возбужденном или в триплетном состоянии, что приводит к окислению одной молекулы и восстановлению другой (фото-диспропорционирование). [c.18]

    Основные научные работы посвящены изучению механизма фотосинтеза. Показал (1941), что первичный процесс фотосинтеза заключается в фотолизе молекулы воды, в результате чего образуются кислород, выделяющийся в атмосферу, и водород, идущий на восстановление двуокиси углерода. Используя радиоактивный изотоп углерод-14 в качестве метки и метод хроматографии на бумаге, установил последовательность фо-тосинтетического цикла (цикла Кэлвина) ассимиляция двуокиси углерода зеленььми растениями — превращение его в органические вещества — последующее восстановление. Создал (1956) схему полного пути углерода при фотосинтезе, ставшую классической. Предложил модель превращения световой энергии в химическую. Показал, что превращения фосфата пентозы играют большую роль в жизнедеятельности не только растений, но и животных. Изучал вопрос о происхождении и развитии жизни на Земле. [c.279]

    Известны и другие примеры повышения реакционной способности, вызванного образованием соединения включения. Кристаллическая решетка хозяина защищает неустойчивые или реакционноспособные молекулы- гости от внешних воздействий и тем самым повышает их устойчивость. Так, Бэр и Мейер [2] сообщили, что аддукты мочевины с диалкилами ртути гораздо меньше подвержены фотолизу, чем свободные алкилы. Радель и Хант [33] предположили, что алкилсиланы, образующие соединения включения, можно хранить в этой форме, так как достигается защита реакционноспособной кремниеводородной части молекулы, которая в свободном состоянии медленно разлагается под действием содержащейся в стекле щелочи. Самоокисление органических соединений подавляется при их включении в решетку мочевины (см. главу восьмую, раздел VII, Б) и декстринов (см. главу девятую, раздел IV, Б). [c.588]

    Помимо антрахинонов (о них кроме [43] см. [60—62]) в качестве фотопромоторов, восстанавливающих ионы металлов, могут использоваться другие молекулы, также способные к обратимым окислительно-восстановительным превращениям тиазиновые красители (например, метиленовый синий [43]), четвертичные соли 4,4 - и 2,2 -дипиридила и родственных гетероциклических систем [63, 64]. Другой класс негативных фотопромоторов образует восстановитель в результате необратимого превращения. Таковы, например, некоторые соли диазония, продуктами фотолиза которых являются фенолы — восстановители ионов серебра [53, 62], по-видимому, азиды, дающие при фотолизе амины [61, 62], соли Ре(III) и некоторых органических кислот [43, 50, 60, 61], карбонилы ме- [c.84]


Смотреть страницы где упоминается термин Фотолиз органических молекул: [c.60]    [c.36]    [c.138]    [c.130]    [c.302]    [c.81]    [c.94]    [c.316]    [c.316]    [c.16]   
Смотреть главы в:

Химия свободных радикалов -> Фотолиз органических молекул




ПОИСК





Смотрите так же термины и статьи:

Органические молекулы

Фотолиз



© 2025 chem21.info Реклама на сайте