Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия межмолекулярные фазах

    В гетерогенных системах различают межмолекулярные взаимодействия внутри фаз и между фазами. Притяжение атомов и молекул внутри отдельной фазы называют когезией. Она определяет существование веществ в конденсированном состоянии и может быть обусловлена межмолекулярными и межатомными [c.63]

    Поверхностное натяжение и межмолекулярные взаимодействия внутри фаз обусловливают процессы смачивания и растекания капли жидкости на твердой или жидкой поверхности, а также явления когезии и адгезии. [c.311]


    Поверхностное натяжение характеризует различия в интенсивности межмолекулярных взаимодействий граничащих фаз. Чем больше эти различия, тем больше ст. Для границы конденсированная фаза (твердая или жидкая) — воздух можно пренебречь межмолекулярными взаимодействиями в воздухе (Р гаа-гаа 0) И, значит, поверхност-ное натяжение характеризует интенсивность межмолекулярных сил в конденсированной фазе. В таблице 2.1. приведены значения ст некоторых веществ на границе с воздухом. [c.17]

    В наших рассуждениях придется пользоваться упрошенными зависимостями, дающими представление о взаимодействии межмолекулярных сил, которые оказывают решающее влияние на свойства исследуемых газовых или жидких фаз. При этом мы не будем рассматривать методы, которые позволили найти зависимости, характеризующие свойства реальных газов (вязкость, теплопроводность, диффузия и др.) .  [c.40]

    Табл. 4.5 показывает взаимосвязь между константами Роршнейдера и взаимодействиями неподвижной фазы и образца. Значение х характеризует взаимодействие, вызванное межмолекулярными силами в качестве примеров здесь приведены соединения ароматического и олефиновых рядов. [c.112]

    Знание термодинамических характеристик растворения (в частности, коэффициента активности) позволяет оценить основные виды межмолекулярных взаимодействий неподвижной фазы и анализируемых веществ, а также выявить закономерности термодинамических функций сорбатов с их структурой. [c.24]

    С точки же зрения межмолекулярных взаимодействий неподвижной фазы и компонентов разделяемой смеси существенное значение в характере избирательности фазы имеет диэлектрическая постоянная. Последняя определяется дипольным моментом и поляризуемостью молекулы, являясь одним из параметров растворимости, и может быть полезна при выборе неподвижной фазы [5]. [c.54]

    ИССЛЕДОВАНИЕ МЕЖМОЛЕКУЛЯРНЫХ И МЕЖИОННЫХ ВЗАИМОДЕЙСТВИЙ В ФАЗЕ ИОНИТОВ [c.13]

    В настоящее время получила распространение и иная точка зрения, согласно которой разрушение по поверхности раздела вообще не может происходить [51, 52]. Эти авторы считают, что, если адгезив распределяется по всей поверхности раздела и соприкасается с субстратом, разрьш произойдет либо по адгезиву, либо по субстрату, т. е. будет иметь место только когезионное разрушение соединения. Это объясняется тем [51], что, во-первых, адгезия всегда выше межмолекулярного взаимодействия в фазе адгезива или субстрата, и, во-вторых, вероятность роста трещины (при разрушении адгезионного соединения) по межфазной поверхности меньше, чем ее прорастание в адгезиве или субстрате. [c.24]

    Таким образом, физическую суть уравнения (1-17) можно объяснить следующим образом. Коэффициент распределения является функцией разности энергий взаимодействия распределяемого вещества с молекулами фаз и разности энергий межмолекулярного взаимодействия самих фаз. Этим объясняется экспоненциальная зависимость коэффициента распределений от межфазного натяжения и размера распределяемой молекулы. [c.28]


    Следствием влияния рассмотренных факторов является то, что концентрация концевых групп в поверхностных слоях полимеров на порядок превышает их концентрацию в объеме свободных образцов [464]. Этот факт, связанный с термодинамическим условием (1), предопределяет снижение межмолекулярного взаимодействия в фазе по мере удаления от ее геометрической поверхности. Тогда в поверхностных слоях толщиной порядка [c.101]

    Теории межмолекулярных сил рассмотрены в предыдущей книге этой серии [1]. Здесь мы остановимся только на некоторых полезных для практики качественных представлениях. Хотя все взаимодействия — межмолекулярные и химические— имеют общую квантовомеханическую основу, их удобно условно разделить на отдельные виды (табл. 3.1). В разных вариантах хроматографии, а именно в газовой и в молекулярной жидкостной (столбцы 1—5 в таблице), в хроматографии с образованием комплексных соединений (лигандной, столбцы 6—9), в ионообменной (столбцы 10 и 11) ив биоспецифической (аффинной, столбцы 12—14) хроматографии используются разные виды физических и химических взаимодействий (отмечены крестиками). Простейший случай — это неспецифическое дисперсионное притяжение (строка I и столбец 1). Неспецифическое взаимодействие может также включать комбинацию (столбец 2) дисперсионного (строка I) и индукционного (строка И) притяжения, если в структуре компонента либо неподвижной фазы имеются ионы, жесткие диполи, квадруполи и т. д. [c.25]

    Считают, что физическая адсорбция вызывается теми же силами межмолекулярного взаимодействия, что и конденсация паров. По этой причине теплота физической адсорбции, небольшая по величине, близка к теплоте конденсации адсорбата из газовой фазы. При физической адсорбции металлическая поверхность, как правило, остается практически инертной. [c.183]

    Показатели ККМ и 0ГБ связаны между собой соотношением 0ГБ = 7/ККМ. Объемные и поверхностные свойства ПАВ определяются их химическим строением, а также полярностью и поляризуемостью молекул. Важное значение, кроме того, имеют межмолекулярные взаимодействия. По этим показателям и устанавливают, относится ли то или иное соединение к ПАВ, а также определяют степень его активности на границе раздела фаз. [c.199]

    Упрощая вопрос и заменяя совокупность сил межмолекулярного взаимодействия (молекулярное силовое поле) ее макроскопическим аналогом—внутренним давлением, можно положить, что при отсутствии химического взаимодействия свойства раствора определяются в основном различием во внутренних давлениях компонентов. Можно допустить, что при равенстве внутренних давлений двух смешивающихся жидкостей молекулярные силовые поля не изменяются существенно при смешении и молекулы обоих компонентов испытывают такое же воздействие окружающих молекул, что и в среде себе подобных. В этом случае можно ожидать простых законов для многих свойств растворов, в частности отсутствия теплоты смешения и наличия пропорциональности между давлением насыщенного пара компонента и его мольной долей в растворе. Последнее связано с тем, что возможность для отдельной молекулы растворителя перейти из жидкой фазы в пар остается в растворе (в рассматриваемом простейшем случае) той же, что и в чистой жидкости число же молекул, испаряющихся в единицу времени, уменьшается пропорционально мольной доле. [c.168]

    Рассмотрим результаты расчета некоторых свойств объемной фазы воды для двух моделей. В модели межмолекулярного потенциала ST2 [340] используются четыре точечных заряда, расположенных в вершинах тетраэдра. Электростатическое взаимодействие плавно выключается при малых расстояниях между молекулами. Короткодействующие силы отталкивания учитываются потенциалом Леннарда — Джонса 6-12 между атомами кислорода. Дипольный момент. молекулы воды равен 2,35 Д, а абсолютный минимум энергии.-димера воды составляет 28,4 кДж/моль при расстоянии 0,285 нм между атомами кислорода. [c.120]

    Полученные методами вычислительного эксперимента результаты позволяют сделать вывод о том, что рассмотренные потенциалы межмолекулярного взаимодействия приводят к качественно правильному описанию свойств воды в объемной фазе. Для того чтобы избежать растянутого состояния, достаточно увеличить плотность числа частиц, что слабо сказывается на рассчитанных значениях структурных и энергетических характеристик водных систем. Анализ показывает [339], что это заключение справедливо и для ряда других моделей. Поэтому выбор потенциала межмолекулярного взаимодействия для описания молекулярно-статистических характеристик воды определяется, в основном, минимумом времени, затрачиваемого на расчет энергии взаимодействия в системе. Кроме того, для сопоставления результатов, полученных при различных внешних условиях, необходимо использовать одну и ту же модель. [c.121]


    Изучение транспортных характеристик молекул воды в пленках представляет особый интерес. С этой целью выполняли расчет методом молекулярной динамики, в котором для описания межмолекулярного взаимодействия использовалась модель ВЫ5 [340]. Выбор этой модели связан с тем, что в ее рамках подробно исследовались свойства воды в объемной фазе [339]. В процессе расчета температуру системы поддерживали равной 306 К. [c.124]

    Поверхностное натяжение на границе раздела жидкость — газ убывает по мере возрастания давления, так как при переходе молекул из одной фазы в другую различие в межмолекулярных взаимодействиях становится меньше. Таким образом, растворение газа приводит к уменьшению поверхностного натяжения и возрастанию вихреобразования, если не происходит изменения полярности жидкостей. [c.143]

    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]

    В отличие от газов в жидких системах потенциальная энергия межмолекулярного взаимодействия превышает кинетическую энергию поступательного движения молекул. Расстояния между молекулами имеют порядок 10" см. Поэтому движение молекул в жидкости можно рассматривать как движение частиц в потенциальном ящике, или в клетке , размеры которой порядка 10 см. При малой длине свободного пробега и наличии потенциального поля это движение имеет характер колебательного движения, в результате которого молекула сталкивается со своими соседями. Число таких столкновений в секунду порядка 10 , что примерно в 100 раз больше, чем число столкновений молекул в газовой фазе при нормальных условия . [c.592]

    Первичной стадией элементарного каталитического акта в гетерогенном катализе является адсорбция реагирующих молекул из газовой фазы или из раствора на поверхности катализатора. Адсорбцией называется процесс самопроизвольного изменения концентрации вещества на границе раздела фаз. Различают два вида адсорбции физическую адсорбцию и хемосорбцию (химическую адсорбцию). Физическая адсорбция обусловливается силами межмолекулярного взаимодействия, возникающими между молекулами (атомами) твердой фазы, находящимися на поверхности, и молеку- [c.637]

    Согласно общепринятой модели ССЕ силы межмолекулярного взаимодействия парамагнитных ядер дисперсной фазы НДС формируют вокруг себя прочную сольватную оболочку, которая защищает частицы дисперсной фазы от коалесценции и приводит к их преимущественной коагуляции. Так, при формировании каждого нового иерархического уровня надмолекулярной структуры в НДС частицы предыдущего уровня во многом сохраняют свою индивидуальность. При этом толщина и молекулярный состав сольватных оболочек различных уровней могут существенно различаться. [c.5]

    Смолы образуют истинные растворы в маслах, а асфальтены в ТНО находятся в коллоидном состоянии. Масла и смолы в ТНО являются дисперсионной средой, а асфальтены - дисперсной фазой. Благодаря межмолекулярным взаимодействиям асфальтены могут образовывать 56 [c.56]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    В основе макроскопической теории молекулярного взаимодействия конденсированных фаз лежит представление о существующих в них флуктуациях электромагнитного поля, которые выходят за пределы фаз и, взаимодействуя в зазоре между кнми, создают силы межмолекулярного притяжения. Квантовый характер подобных флуктуаций приводит к тому, что основной вклад во взаимодействия создают так называемые нулевые колебания, не зависящие от температуры лишь при очень высоких температурах следует учитывать температурную природу флуктуаций. Частотная характеристика флуктуаций электромагнитного поля может быть найдена из оптических свойств конденсированной фазы — из зависимости от частоты ы коэффициентов истинного (не связанного с рассеянием света см. 1 гл. VI) поглощения света в контактирующих фазах. [c.249]

    Взаимодействие этпх фаз как с неполярными, так и с поляризуемыми или полярными анализируемыми веществами определяется исключительно или преимущественно дисперсионными силами. Таким образом, например, спирты выходят значительно раньше, чем при применении соответствующих полярных неподвижных фаз. Кроме того, межмолекулярные силы, вызывающие ассоциацию спиртов, не проявляются при малых концентрациях спиртов в неподвижной фазе, так что удельные объемы удерживания оказываются даже еще меньше, чем это соответствует температурам кипения. Для отделения первичных, вторичных и третичных спиртов алканового ряда от других органических соединений, прежде всего кислородсодержащих, углеводороды представляют собой особенно селективные неподвижные фазы. По исследованиям автора, это относится также к отделению перфторированных углеродных соединений от частично фторированных или нефторированных углеводородов. Для разделения углеводородов друг от друга рассматриваемые в этой группе неподвижные фазы обладают небольшой или вовсе не обладают селективностью таким образом, компоненты выходят, как правило, в порядке увеличения их температур кипения. [c.190]

    Неароматические углеводороды, будучи неполярными, являются очень хорошими растворителями для всех анализируемых веществ углеводородного типа. На этих неподвижных фазах алканы обладают максимальными (по сравнению с другими неподвижными фазами с сопоставимыми значениями вязкости) удельными удерживаемыми объемами, которые значительно больше, чем можно было бы ожидать из давления пара чистых веществ. Взаимодействие таких фаз как с неполярными, так и с поляризуемыми или полярными анализируемыми веществами определяется исключительно или преимущественно дисперсионными силами. Поэтому спирты, например, элюируются значительно быстрее из колонок с углеводородными фазами, чем из сопоставимых колонок с полярными фазами. Кроме того, межмолекулярные силы, вызывающие ассоциацию спиртов, не-действуют при малой концентрации спирта в неподвижной фазе, так что удельные удерживаемые объемы на практике даже меньше, чем это следовало бы из температур кипения. Углеводороды в качестве неподвижных фаз особенно пригодны для отделения первичных, вторичных и третичных спиртов от других органических соединений, и прежде всего от кислородсодержащих веществ. По данным автора, это относится также к отделению перфторированных углеводородов от нефтори-рованных или частично фторированных углеводородов. Разделение углеводородов на неподвижных фазах этой группы происходит, как правило, в соответствии с их температурами кипения. В этом смысле обсуждаемые фазы неселективны по отношению к углеводородным соединениям или обладают лишь небольшой селективностью. [c.125]

    Однако полное исключение вероятности адгезионного характера разрушения склеек невозможно, поскольку разрыв высокомолекулярных соединений в отличие от низкомолекулярных всегда сопровождается разрушением макромолекул, что, как известно, обусловлено наличием узлов переплетений и превышением суммарной энергии межмолекулярных взаимодействий по длине цепи над энергией внутримолекулярной ковалентной свяг зи. Если при когезионном разрушении склейки эта особенность сохраняет свое значение, то при адгезионном характере разрыв макромолекул не обязателен. Так, хотя энергия единичного акта межфазного молекулярного взаимодействия выше, чем в объеме по крайней мере одной из фаз, плотность энергии адгезионных взаимодействий может быть ниже плотности когезионных взаимодействий в фазе вследствие ограниченности числа активных центров на поверхности субстрата. Поэтому удельная адгезионная энергия может не достигать удельной когезионной, и тогда становится возможным отделение макромолекул адгезива без их разрушения. Кроме того, следует принимать во внимание и маловероятность сорбции субстратом макромолекул с их развертыванием и укладкой точно вдоль поверхности. Учитывая, что контакты макромолекул с последней осуществляются главным образом в ограниченном числе точек, по вершинам образующихся петель , суммарная энергия этих контактов при физической адсорбции всегда ниже, а при хемосорбции может не превышать энергии единичной ковалентной связи это обстоятельство также способствует отделению макромолекулы адгезива без ее деструкции, т. е. реализации адгезионного характера разрушения склеек. И, наконец, следует учитывать [c.20]

    Для многокомпонентной полимерной системы, находящейся в твердом состоянии, возможны случаи кинетической, а не термодинамической длительной устойчивости системы, обладающей истинным равновесием в каждой частице любой фазы. Кинетическая устойчивость обусловлена высокой вязкостью, большим размером макромолекул полимеров и их надмолекулярных агрегатов, а также различием в межмолекулярном взаимодействии между одноименными и разноименными полимерами ( 1, ь 2,2 и 1,2). Такие системы с коллоидной степенью дисперсности одного полимера в другом могут подчиняться правилу фаз, и энергия межмолекулярного взаимодействия между фазами может удовлетворять условию 1,2 > 1, 1 + 2,2. В ряде случаев система может быть термодинамически неравновесна, так как из-за большой вязкости и размеров макромолекул не сможет достичь равновесия за время наблюдения, но это не означает, что в ней отсутствует межмолекулярное взаимодействие. Это проявляется в отклонении свойств системы от аддитивности. Если сосуществование фаз имеет кинетический характер и система обнаруживает отклонение физических и физико-химических свойств от аддитивности, то в зависимости от знака отклонения можно говорить о совместимости или несовместимости полимеров на уровне надмолекулярных структур. Такая система не может считаться [c.14]

    При сушке протекают физические процессы, связанные с переносом в пленке тепла и излучений (теплопередача), растворителей и продуктов, выделяющихся при отверждении пленки (массопередача), с изменением формы и подвижности молекул пленкообразователя (структурные изменения)- Химические превращения обусловлены ростом макромолекул, образованием сшитого пространственного каркаса за счет межмолекулярного взаимодействия отдельных функциональных рунн карбоксильных, гидроксильных, эпоксидных и других химических групп, способных к взаимодействию. Непрерывная фаза пленки лакокрасочного покрытия состоит из органического высокомолекулярною соединения, формируюитего кар- [c.35]

    В процессе взаимодействия фаз действуют два основных вида сил атомно-молекулярного взаимодействия межмолекулярные (ван-дер-ваальсова связь) и химические (химическая связь). Молекулярная связь имеет три основные разновидности ориентационную, индукционную и дисперсионную. Химическая связь имеет две основные разновидности гетерополярную (ионную) и гомеопо-лярную (ковалентную) связи. В соответствии с природой сил атомно-молекулярного взаимодействия можно выделить три основных вида сорбции молекулярную, гетерополярную (ионную) и [c.7]

    Установлено, что при экстракции неполярными экстрагентами при гемпературах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической про — исхо, ит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате, при определен — 1ГЫХ гемпературах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры — углеводороды с меньптей молекулярной массой. При температурах, превышающих критическую,из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов (рис.6.4). [c.221]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Состояние вещества на границе раздела фаз. Все жидкости и твердые тела ограничены внешней поверхностью, на которой онн соприкасаются с фазами другого состаЕа и структуры, например, с паром, другой жидкостью или твердым телом. Свойства вещества в этой межфазной поверхности, толщиной в несколько поперечни.-ксв атомов или молекул, отличаются от свойств внутри объема фазы. Внутри объема чистого вещества в твердом, жидком илн газообразном состоянии любая молекула окружена себе подобными молекулами. В пограничном слое молекулы находятся во взаимодействии или с разным числом молекул (например, на границе жидкости или твердого тела с их паром) или с молекулами различной химической природы (иапример, на границе двух взаимно малорастворимых жидкостей). Чем больше различие в напряженности межмолекулярных сил, действующих в каждой из фйз, тем больше потенциальная энергия межфазовой поверхности, кратко называемая поверхностной энергией. [c.310]

    По определению Л.Д. Ландау, фазовым переходом второго рода в общем смысле считается точка изменения симметрии. Иными словами, в такой точке скачкообразно изменяется упорядоченность системы. Поскольку вблизи точки фазового перехода второхо рода свойства фаз мало отличаются друг от друга, возможно образование зародышей большого размера одной фазы в другой. Такие зародыши называются флуктуациями [14]. При этом существенно изменяются динамические свойства системы, что связано с очень медленным рассасыванием флуктуаций. В многокомпонентных нефтяных системах под флуктуациями понимаются образующиеся ассоциаты нового структурного уровня. Благодаря силам обменного взаимодействия рассасывание таких флуктуаций, то есть спонтанный разрыв межмолекулярных связей, имеет существенно меньшую вероятность, чем их образование. Поэтому в точках фазовых переходов из флуктуаций довольно быстро формируется новый уровень надмолекулярной структуры. [c.7]


Смотреть страницы где упоминается термин Взаимодействия межмолекулярные фазах: [c.93]    [c.672]    [c.299]    [c.81]    [c.118]    [c.190]    [c.27]    [c.72]    [c.32]    [c.217]    [c.256]    [c.107]    [c.71]    [c.115]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.52 , c.55 ]

Высокоэффективная жидкостная хроматография (1988) -- [ c.52 , c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные



© 2025 chem21.info Реклама на сайте