Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ион-молекулярные и межмолекулярные взаимодействия

    Обычно при расчетах полярность и поляризуемость молекул определяют в зависимости от диэлектрической проницаемости, молекулярной массы и плотности ПАВ и растворителя. Однако применительно к маслорастворимым ПАВ эти расчеты оказываются недостаточно точными, поскольку такие ПАВ, попадая в малополярную среду, принимают участие в межмолекулярных взаимодействиях между собой и средой, а энергия этого взаи-. модействия может быть весьма значительной. Поэтому для определения дипольного момента предлагают определять относи- [c.202]


    Рост прочности у синтетического полиизопрена без полярных групп с большой молекулярной массой и узким молекулярно-массовым распределением можно достаточно полно объяснить в рамках теории вязкоупругости линейных полимеров [23]. Высокие напряжения при деформации сажевых смесей стереорегулярных модифицированных полимеров, как было показано, связаны с их способностью к кристаллизации. Роль стереорегулярности в кристаллизации полимеров очевидна [24, с. 145—173 25 26, с. 205— 220]. Полярные группы увеличивают общее межмолекулярное взаимодействие и вязкость системы, усиливают взаимодействие с наполнителем за счет образования химических связей и адсорбционного связывания, которое способствует и увеличению напряжения при деформации и собственно кристаллизации, а также повышают суммарную скорость кристаллизации вследствие ускорения ее первой стадии — зародышеобразования. [c.235]

    Модификация политетрагидрофурана бутандиолом приводит к падению эластичности блоксополимеров при 20 °С вследствие возросшей жесткости полимерной цепи (увеличения концентрации уретановых групп и связанного с этим усиления межмолекулярного взаимодействия) [44]. С увеличением молекулярной массы кристаллического блока в сополимере наблюдается повышение напряжения при удлинении и твердости полимера. [c.538]

    Упрощая вопрос и заменяя совокупность сил межмолекулярного взаимодействия (молекулярное силовое поле) ее макроскопическим аналогом—внутренним давлением, можно положить, что при отсутствии химического взаимодействия свойства раствора определяются в основном различием во внутренних давлениях компонентов. Можно допустить, что при равенстве внутренних давлений двух смешивающихся жидкостей молекулярные силовые поля не изменяются существенно при смешении и молекулы обоих компонентов испытывают такое же воздействие окружающих молекул, что и в среде себе подобных. В этом случае можно ожидать простых законов для многих свойств растворов, в частности отсутствия теплоты смешения и наличия пропорциональности между давлением насыщенного пара компонента и его мольной долей в растворе. Последнее связано с тем, что возможность для отдельной молекулы растворителя перейти из жидкой фазы в пар остается в растворе (в рассматриваемом простейшем случае) той же, что и в чистой жидкости число же молекул, испаряющихся в единицу времени, уменьшается пропорционально мольной доле. [c.168]


    В веществах с молекулярной структурой проявляется межмолекулярное взаимодействие. Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее сил, приводящих к образованию ковалентной связи, ио проявляются они на больших расстояниях, В их основе лежит-электростатическое взаимодействие молекулярных диполей. [c.71]

    Существенный прогресс в развитии теории жидкого состояния достигнут в последнее время благодаря применению компьютерной техники — методов численного моделирования Монте-Карло и молекулярной динамики. Вначале эти методы были применены для описания свойств объемных жидкостей — термодинамических и физических — на основании потенциалов межмолекулярного взаимодействия. Это позволило, прежде всего, путем сравнения с известными свойствами реальных жидкостей уточнить вводившиеся межмолекулярные потенциалы. Наиболее надежные результаты получены для простых жидкостей, когда достаточно учесть сферически симметричные силы дисперсионного притяжения и борновского отталкивания, например в форме известного потенциала Леннарда — Джонса. [c.116]

    Таким образом, кроме общих закономерностей, присущих всем жидкостям, в воде проявляются эффекты, связанные с анизотропией потенциала межмолекулярного взаимодействия и присутствием ионов оксония и гидроксила. Эти особенности должны быть учтены при изучении молекулярно-статистических свойств воды. [c.118]

    Полученные методами вычислительного эксперимента результаты позволяют сделать вывод о том, что рассмотренные потенциалы межмолекулярного взаимодействия приводят к качественно правильному описанию свойств воды в объемной фазе. Для того чтобы избежать растянутого состояния, достаточно увеличить плотность числа частиц, что слабо сказывается на рассчитанных значениях структурных и энергетических характеристик водных систем. Анализ показывает [339], что это заключение справедливо и для ряда других моделей. Поэтому выбор потенциала межмолекулярного взаимодействия для описания молекулярно-статистических характеристик воды определяется, в основном, минимумом времени, затрачиваемого на расчет энергии взаимодействия в системе. Кроме того, для сопоставления результатов, полученных при различных внешних условиях, необходимо использовать одну и ту же модель. [c.121]

    Изучение транспортных характеристик молекул воды в пленках представляет особый интерес. С этой целью выполняли расчет методом молекулярной динамики, в котором для описания межмолекулярного взаимодействия использовалась модель ВЫ5 [340]. Выбор этой модели связан с тем, что в ее рамках подробно исследовались свойства воды в объемной фазе [339]. В процессе расчета температуру системы поддерживали равной 306 К. [c.124]

    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]

    Таким образом, каждый тип мембраны характеризуется видом взаимодействия молекул газа и структурных элементов матрицы. Количественными характеристиками этого.взаимодействия являются энергия связи и потенциал, зависящие от параметров межмолекулярного взаимодействия, молекулярной природы и морфологии матрицы мембраны. Энергия связи определяется тепловым эффектом, сопровождающим образование системы мембрана — газ для сорбционно-диффузионных мембран— теплотой сорбции, в реакционно-диффузионных мембранах, кроме энтальпии растворения газов, заметный вклад вносит тепловой эффект химической реакции. В газодиффузионных мембранах энергия связи близка к нулю. [c.14]

    Чем выше критическая температура и ниже критическое давление, тем выше сорбируемость газа. Обычно рост критической температуры коррелируется с молекулярной массой критические давления для многих паров одного порядка (3—5 МПа), кроме веществ со специфическим межмолекулярным взаимодействием (НгО, МНз) или квантовых жидкостей (Не). [c.50]


    Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]

    А. Свойства, не зависящие от температуры, давления и состава, должны храниться в виде отдельных величин (например, молекулярный вес, критические параметры, энергия межмолекулярного взаимодействия и т. д.). [c.114]

    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]

    Согласно общепринятой модели ССЕ силы межмолекулярного взаимодействия парамагнитных ядер дисперсной фазы НДС формируют вокруг себя прочную сольватную оболочку, которая защищает частицы дисперсной фазы от коалесценции и приводит к их преимущественной коагуляции. Так, при формировании каждого нового иерархического уровня надмолекулярной структуры в НДС частицы предыдущего уровня во многом сохраняют свою индивидуальность. При этом толщина и молекулярный состав сольватных оболочек различных уровней могут существенно различаться. [c.5]

    Приводимые ниже данные относятся только к растворимости парафина, находящегося в крупнокристаллическом состоянии. Вследствие неоднородности парафина и множества входящих в его состав компонентов понятие о его растворимости является до некоторой степени относительным, поскольку насыщенный раствор наиболее высокоплавких парафинов будет ненасыщенным для находящихся в растворе легкоплавких компонентов.. Кроме того, легкоплавкие компоненты парафина являются растворителем по отношению к высокоплавким компонентам. Растворимость объясняется [41,42] взаимным притяжением молекул растворителя и растворяемого вещества. Современная молекулярная теория растворов базируется на том, что свойства растворов определяются в основном межмолекулярным взаимодействием, относительными размерами, формой молекул компонентов и их стремлением к смешению, которое сопровождается ростом энтропии [43]. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. Силы Ван-дер-Ваальса слагаются из следующих трех составляющих. [c.69]

    Основываясь на самых общих представлениях о строении вещества, можно считать, что плотность жидкостей при данной температуре определяется их качественным и количественным составом, молекулярной структурой и межмолекулярными взаимодействиями, зависящими от структуры молекулы. Если попытаться вскрыть влияние некоторых из этих факторов на величину плотности сераорганических соединений, то можно отметить следующие закономерности. [c.153]

    В общем случае размеры образующихся надмолекулярных структур зависят от скоростей диффузии ВМС и их межмолекулярного взаимодействия. В момент равновесия парафиновые углеводороды, способные при данных условиях к межмолекулярным взаимодействиям, будут находиться в трех состояниях в растворе в молекулярном состоянии, в растворе в виде ассоциатов, а более грубодисперсные ассоциаты будут выпадать во вторую фазу. [c.41]

    При контакте реагентов с поверхностью углерода возможен третий вариант, когда энергия взаимодействия между молекулами реагентов и поверхностью углерода превышает силы межмолекулярного взаимодействия в массе углерода. Активные осколки молекул реагентов, формирующиеся на поверхности углерода, вступают во взаимодействия с самим углеродом. В итоге молекулярная структура реагента необратимо изменяется и происходит убыль углерода. [c.122]

    При термодеструктивных процессах переработки углеводородного сырья в результате протекания сложных реакций молекулярного и межмолекулярного взаимодействия различные углеводороды исходного сырья формируются в углеводороды более легкой (газообразные и жидкие) и более тяжелой молекулярной массы (кокс). Газообразные и жидкие углеводороды образуются главным образом в результате расщепления и дегидрирования парафиновых и непредельных углеводородов, деалкилирования ароматических и нафтеновых углеводородов, дегидрирования нафтеновых колец и их разрыва с образованием непредельных углеводородов. [c.153]

    Долгое время термодеструкция в промышленных условиях углеводородного сырья без учета его молекулярной структуры и склонности к межмолекулярным взаимодействиям приводила к формированию коксов нерегулируемой структуры, разнородной по свойствам массы (смесь коксов изотропной и анизотропной структуры в неизвестном соотношении). Изучению молекулярной структуры сырья способствовали работы, проведенные Смидович [116], Гимаевым [30] и автором [112]. [c.229]

    С проявлением межмолекулярных сил приходится сталкиваться как при рассмотрении поведения нефтяных газов, так и при изучении процессов взаимодействия молекул в жидких нефтяных средах, а также при исследовании процессов адсорбции на поверхности нефтяного углерода и т. д. В основу теории строения ССЕ положена концепция убывания потенциала межмолекулярных взаимодействуй по мере удаления от центра ССЕ и приближения к ее периферии. Поэтому совершенно необходимо краткое изложение современных представлений о молекулярных силах, действующих между молекулами нефтяных компонентов. [c.14]

    В кристаллическом состоянии молекулы н-алканов располагаются параллельно. Установлено, что с повышением температуры и уменьшением энергии межмолекулярного взаимодействия расстояния между молекулярными цепями н-алканов увеличиваются, при этом сохраняется предпочтительная параллельная ориентация. В точке плавления расстояния между молекулярными цепями изменяются скачкообразно, при дальнейшем повышении температуры происходит активное раздвижение молекулярных цепей до тех пор, пока молекулы не обретут полную свободу вращения. Структурные исследования жидких н-алканов показывают, что при фиксированной температуре равновесное расстояние (0,56 нм) между ближайшими молекулами обнаруживает тенденцию к незначительному укорочению, что связано с усилением межмолекулярных связей по мере роста числа атомов углерода [44]. [c.25]

    Неполярные и слабополярные растворители характеризуются тем, что притяжения между мсзлекулами растворителя и экстрагируемого вещества (компонента) происходит за счет дисперсионных сил. Поскольку дисперсионное взаимодействие зависит не от полярности, а главным образом, от поляризуемости молекул, и оно оказывает преобладающее влияние по сравнению с другими составляющими межмолекулярного взаимодействия, неполярные рас — ворители являются более универсальными по растворяющей способности. ио относительно мei ee селективными. Причем, избирательность неполярных растворителей проявляется, в первую очередь, по молекулярной массе углеводородов и только затем по фупповому химическому составу. [c.218]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Нефтяные остатки относятся к структурированным нефтепродуктам и обладают определенной механической прочностью и устойчивостью против расслоения. Увеличение молекулярной массы, связанное с усложнением струтстуры молекул, ведет к увеличению степени объемного наполнения системы и соответственному возрастанию структурномеханической прочности и снижению показателя устойчивости. На эти показатели влияют и физико-химические свойства дисперсионной среды, компонентный состав и, в частности, межмолекулярные взаимодействия. При малых значениях сил взаимодействия (алканы, алкано-циклоалканы с низкой молекулярной массой) показатели прочности и устойчивости изменяются по экстремальным зависимостям. При увеличении сил взаимодействия в дисперсионной среде (арены с высокой молекулярной массой) также происходят экстремальные изменения указанных показателей [14]. [c.30]

    До сих пор мы рассматривали теоретические вопросы, связанные с молекулярными колебаниями. Теперь мы остановимся на использовании экспериментальных данных. К этим данным относятся частоты полос в инфракрасных спектрах поглощения и частоты в спектрах комбинационного рассеяния (разности между частотами возбуждающей линии, и линий спектра), а также их поляризуемости. Строго говоря, эти данные нужно было бы получить для образцов, находящихся в газообразном состоянии, чтобы избежать возмущений, вызываемых межмолекулярным взаимодействйем. Однако ввиду того, что этот эффект для углеводородов обычно мал, часто пользуются спектрами, полученными для жидкого вещества, особенно спектрами комбинационного рассеяния. [c.300]

    Образование из эпокисей каучукоподобных полимеров связано с раскрытием напряженных окисных циклов под влиянием каталитических агентов и соединением в линейные цепи. Структурной особенностью этих каучуков является присутствие в основной полимерной цепи простых эфирных групп, придающих линейной молекуле большую гибкость [4]. Этот эффект обусловлен, по-видимому, низким потенциалом барьера вращения по связи углерод — кислород. В то же время полярность эфирного кислорода и наличие в цепи внутренних диполей должны привести к усилению межмолекулярных взаимодействий и повышению плотности энергии молекулярной когезии [1, 5, 6]. В результате подвижность цепей и свойства полимеров будет определяться сложным сухммар-ным эффектом двух противоположно действующих факторов [1, 6]. Отсутствие ненасыщенных связей в основной цепи придает эпоксидным каучукам значительную стойкость к действию тепла, кислорода, озона и других агентов по сравнению с непредельными каучуками, полученными на основе диеновых мономеров. [c.574]

    Молекулярные представления о природе поверхностных явлений основаны на механизме межмолекулярного взаимодействия между частицами твердого тела и газа, а такж частиц газа между собою. Если исключить пока хемосорбционные процессы, то основной вклад в поверхностные явления вносят дисперсионные силы. Оказывают влияние на энергетику поверхностного взаимодействия также электростатические силы и водородная связь. В целом можно утверждать, что чем больше удельная поверхность пор 5 и чем ближе разделяемая газовая смесь по своим свойствам приближается к неидеальным системам, тем сильнее будет сказываться влияние поверхностных явлений на процессы в пористой мембране. [c.42]

    Р, Р51 лиэтиленовых мембра1Н [15], сохраняется для легких газов эффект давления незначителен, с ростом молекулярных характеристик ац и гц, определяющих- энергетику межмолекулярного взаимодействия (см. разд. 3.2), влияние давления становится заметным. [c.103]

    Согласно молекулярной теории растворов [1], состояние системы определяется двумя противоположнодействующими факторами с одной стороны, межмолекулярным взаимодействием, обусловливающим потенциальную энергию молекул, и, с другой стороны, тепловым движением, которое определяет их кинетическую [c.42]

    Наибольшей адсорбируемостью на активированном угле обладают парафиновые углеводороды нормального строения, которые характеризуются неравномерным распределением сил межмолекулярного взаимодействия. Наибольшее значение имеют силы, направленные перпендикулярно оси молекул нормальных парафинов. Такой характер распределения сил взаимодействия, а также значительные дисперсионные молекулярные силы в направлении, перпендикулярном оси углеводородной цепи, обусловливают ряд явлений, свойственных углеводородам с прямыми цепями способность ориентироваться параллельно Друг другу с образованием жидких кристаллов и совместная кристаллизация углеводородов разных гомологических рядов. Высказана [4, 5] гипотеза, согласно которой наибольшая адсор бируемость нормальных парафиновых углеводородов на угле обусловлена их взаимодействием с поверхностью угля под влиянием тех же дисперсионных сил, направленных перпендикулярно к оси углеводородной цепи. [c.261]

    Установлен ряд закономерностей, характеризующих влияние природы растворителя на растворимость. К их числу относится правило Семенченко растворимость данного веще-ства проходит через максимум в ряду раство рителей, расположенных по вазрас тающему значению межмолекулярного взаимодействия в них. Максимум отвечает тому растворителю, молекулярное поле которого близко к молекулярному полю растворенного вещества. Это правило иллюстрирует рис. 2.20. В ряде случаев создается впечатление несправедливости правила Семенченко (когда удается экспериментально получить только часть кривой). Вместе с тем надо отметить, что это правило не является строгим. Так, при химическом взаимодействии между компонентами растворимость резко увеличивается (точки оказываются над кривой, отвечающей правилу Семенченко). [c.236]

    Ферменты — высокомолекулярные белковые соединения, состоящие из аминокислот, связанных пептидными связями. В составе природных белков встречается около двадцати аминокислот. Молекулярная масса ферментов лежит в пределах от 10 до 10 . Молекула фермента в своем составе имеет чередующиеся полярные группы СООН, ННа, МН, ОН, 5Н и другие, а также гидрофобные группы. Первичная структура фермента обуславливается порядком чередования различных аминокислот. В результате теплового хаотического движения макромолекула фермента изгибается, свертывается в рыхлые клубки. Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей другие участки могут взаимодействовать за счет электростатических или ван-дер-ваальсовых сил  [c.632]

    Критический коэффициент сжимаемости ( 2 ) является теоретичесю важным свойством химических веществ, характеризующим энергетику I структуру межмолекулярных взаимодействий. Он используется во многих корреляциях физико-химических свойств веществ, в частности, для расчетов критического параметра Риделя, фактора ацентричности Питцера,- констант меж-молекулярного взаимодейств1м потенциала Леннарда - Джонса и др. По 2 , предложено множество эмпирических уравнений (например, Риделя, Лидерсе-на). [c.101]

    Лекция 7. Основные положения метода молекулярных орбиталей (МО). Энергетические диаграммы распределения электронной плотности в молекулах. Применение метода МО к молекулам, образованным из атомов элементов первого и второго периодов. Объяснение магнитных свойств и возможности существования двухатомных частиц с помощью метода МО. Лекция 6. Межмолекулярное взаимодействие. Природа межмолекулярных сил. Ориентационное, индуктивное, дисперсионное взаимодействие. Водородная связь. Влияние водородной связи на свойства вешества. Конденсированное состояние вещества. Кристаллическое состояние. Кристаллографические классы и втя системы.. Ьоморфизм и полимор( )Изм. Ионная, атомная и молеклярная, металлическая и кристаллическая рещетки. [c.179]

    Неодинаковые виды сырья разного состава и молекулярной структуры имеют много общих химических и технологических свойств (склонность к межмолекулярным взаимодействиям, способность образования коллоидных систем, их расслаиваемость н т, д.). Общность и различие свойств сырья сказываются иа рав- [c.18]


Смотреть страницы где упоминается термин Ион-молекулярные и межмолекулярные взаимодействия: [c.267]    [c.74]    [c.143]    [c.83]    [c.341]    [c.17]    [c.72]    [c.30]    [c.502]    [c.164]    [c.170]    [c.14]   
Смотреть главы в:

Общая химия -> Ион-молекулярные и межмолекулярные взаимодействия




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Взаимодействия ион-молекулярные

Дисперсионные меж молекулярные взаимодействия. Межмолекулярные взаимодействия дисперсионные

МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ Дальнодействующие молекулярные силы

Межмолекулярные

Молекулярно-статистическая теория адсорбции при нулевом заполнении поверхности и полуэмпирическая теория межмолекулярных взаимодействий. Решение обратной задачи определение параметров структуры молекул из экспериментальных значений констант Генри

Молекулярно-статистические выражения константы Генри для адсорбции газа на инертном адсорбенте с однородной поверхностью Потенциальная энергия межмолекулярного взаимодействия адсорбат— адсорбент

Молекулярные спектры и межмолекулярное взаимодействие

Универсальные межмолекулярные взаимодействия . 4.9.2. Составляющие межмолекулярного взаимодействия по методу молекулярных орбиталей Специфические межмолекулярные взаимодействия. Водородная связь Агрегатные состояния вещества



© 2025 chem21.info Реклама на сайте