Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переработка в дисперсии

    Дисперсии представляют собой сложные коллоидные системы, состоящие из частиц полимерной фазы, покрытых защитным веществом, и распределенных в дисперсионной среде, содержащей растворимые и нерастворимые ингредиенты. В соответствии с этим свойства дисперсий и процесс пленкообразования из этих систем определяются тремя основными факторами структурой и строением частиц, природой и характером распределения на их поверхности защитных веществ, составом дисперсионной среды. Роль каждого фактора в процессе пленкообразования и влияние этих факторов на свойства материалов и изделий определяются условиями переработки дисперсий. При получении пленок высушиванием посредством удаления влаги образование контактов между частицами происходит при определенной концентрации системы, и последние два фактора не оказывают существенного влияния на механизм пленкообразования. Однако природа защитных и других веществ, содержащихся в дисперсионной среде и остающихся в пленке после окончания процесса формирования, влияет на их свойства. При осуществлении процесса пленкообразования через стадию желатинизации путем удаления дисперсионной среды на пористых подложках или при воздействии растворов электролитов часть защитных веществ уходит с поверхности частиц, что оказывает влияние на процесс структурообразования при формировании пленок. Особенно значительно влияние природы защитных веществ и характера их распределения на поверхности частиц проявляется [c.201]


    Для переработки дисперсий машины снабжают воздушными щетками или ракельными валками и устройством для инфракрасной предварительной сушки, устанавливаемыми между устройствами для нанесения лака и для сушки. [c.203]

    При необходимости в латекс перед его переработкой вводят вулканизующие агенты (в виде дисперсий или растворов) и вулканизацию проводят при повыщенных температурах иногда вулканизация протекает и при комнатной температуре (например, в случае карбоксилатных латексов). [c.608]

    Известно, что система модификаторов адгезии, состоящая из резорцина, уротропина и высокодисперсной гидроокиси кремния, обеспечивает высокую прочность связи эластомера с химическими волокнами. Влияние системы модификаторов на механические свойства резин зависит не только от природы волокон, но и от фактора их формы. Это объясняют следующим. Прочность композиции пропорциональна фактору формы волокон. Если волокна очень длинные, суммарная поверхность контакта их с резиновой смесью весьма велика. Таким образом, волокна, длина и фактор формы которых выше критической, оказывают усиливающее действие на эластомер. Таково поведение полиамидных волокон в композициях. Существуют различные способы изготовления эластомерных композиций, наполненных волокнами смешение волокон с эластомерами в виде твердой фазы, жидкого каучука, водной дисперсии или раствора эластомера в органическом растворителе. Однако в производстве резиновых технических изделий жидкие композиции не получили широкого распространения. В основном изготовление и переработку резиновых смесей, содержащих волокнистые наполнители, ведут на обычном оборудовании резиновой промышленности — на вальцах, в резиносмесителях и экструдерах. [c.181]

    Задаваемые построчные вероятности (уровни надежности) для каждого вида сырьевого ресурса и продукта определяются дифференциально, на основе экспертных оценок, или в зависимости от дисперсии рассматриваемых случайных величин. При этом в соответствии с [43] по тем продуктам, для которых невыполнение вероятностного ограничения вызывает большие потери или дополнительные расходы, уровень надежности задан большим. Как показали проведенные исследования, в соответствии с практическими требованиями оказывается целесообразным уровень надежности для случайных технологических коэффициентов выбирать в зависимости от дисперсии, а для случайных компонентов вектора ограничений - в ряде случаев на базе рекомендаций экспертов-технологов, работников планового отдела предприятия (так как ограничения на объемы переработки сырья, полупродуктов и выпуск товарных продуктов определяются также вышестоящими органами и подвергаются неоднократным изменениям на этапе составления и реализации плана). При практических расчетах задаваемые вероятности изменяются от 0,75 до 0,96. [c.173]


    Д необходимо учитывать в технол процессах, связанных с переработкой дисперсных систем, при перемешивании бетонных смесей, формовании изделий из наполненных пластмасс, трубопроводном гидротранспорте водоугольных дисперсий и др [c.60]

    Способы и условия переработки П.м. определяются типом материала (термопластичный или термореактивный) и его исходным состоянием, т.е. типом полуфабриката (плавкий порошок, гранулы, р-ры или расплавы, дисперсии), а также видом наполнителей-нитей, жгутов, лент, тканей, бумаги, пленок и их сочетаний с полимерной фазой (см. Полимерных материалов переработка). [c.5]

    Способы контактирования перерабатываемых углеводородов с расплавами различны — барботаж через слой расплава, переработка в дисперсии расплавленной среды или при пленочном течении расплава и др. По способу подвода к сырью теп-.ла расплавы могут служить теплоносителями либо тепло может передаваться в реакционную зону извне аналогично про- цессу пиролиза в трубчатых печах. Разрабатывался барботаж- [c.191]

    В стандартизаторе дисперсия нейтрализуется водным раствором аммиака до pH 4,5—6 с целью предупреждения коррозии оборудования при ее последующей переработке. Для предотвращения разбавления дисперсии, имеющей низкие значения pH, целесообразно нейтрализовать ПВАД порошкообразным оксидом или гидроксидом кальция [а. с. СССР 711043], [c.53]

    Спектры кадмия регистрируют на фотопластинках, чувствительных к ультрафиолетовой области (тип СП I, СП П1) с помощью спектрографов средней дисперсии (ИСП-28). Применение диф-фракционных приборов (ДСФ-8, ДФС-13) на порядок повышает чувствительность определения [156]. При непосредственном спектральном анализе порошкообразных проб (минералы, руды, продукты их переработки) 30 мг образца в большинстве случаев вводят в плазму дуги испарением из канала угольного электрода. Для стабилизации температуры к пробам и стандартным образцам добавляют буферные смеси (в основном соли щелочных металлов). Внутренним стандартом служат Ag, Мп, ЗЬ, Zn и некоторые другие элементы. Этим путем можно анализировать пробы, содержащие 3-10-3 - 1.10-2% Сс1. [c.128]

    Дисперсия рентабельности значительна, но общая тенденция проступает вполне отчетливо с увеличением глубины переработки нефти рентабельность довольно резко падает. Тем не менее, дальнейшее увеличение показателя ГП необходимо, во-первых, потому, что оно обеспечивает некоторый прирост массы прибыли, а во-вторых, расширяет ресурсную базу промышленности технического углерода и нефтехимической промышленности. Причина низкой рентабельности продукции НПЗ с большой глубиной переработки нефти помимо прочего в том, что ее экономический эффект в значительной части реализуется за пределами нефтеперерабатывающих заводов. Он достается специализированным нефтехимическим предприятиям, заводам технического углерода, электродным заводам и т. д. [c.447]

    Коалесценция при механических нагрузках. Подвергая устойчивую к коалесценции систему действию сдвиговых напряжений, вызывают деформацию частиц дисперсной фазы. Появляющиеся при этом слабые места в адсорбционных слоях могут быть не залечены из-за сравнительно малой подвижности адсорбированных молекул. Разрушение дисперсий происходит также в том случае, когда внешняя нагрузка достаточна для преодоления прочности адсорбционных слоев. Возможность изменения устойчивости пленок под влиянием механических напряжений имеет важное значение для процессов переработки латексов [249]. Сдвиг эмульсии обычно не вызывает коалесценцию а, наоборот, приводит к диспергированию, так как затраты энергии на разрушение слоев превышают работу образования новой поверхности. [c.124]

    Многие стадии процессов переработки полимерных материалов сопровождаются образованием газовых дисперсий в расплавах и растворах полимеров, а также и в пластифицированных полимерах. В одних случаях появление таких дисперсий желательно, в других, наоборот, нежелательно. В последнем случае приходится прибегать к различным методам разрущения газовых дисперсий, подробно рассмотренных в гл. IV. [c.76]

    Обычно реологию расплавов, растворов, дисперсий и твердых полимеров рассматривают как совершенно самостоятельные области. Совместное же рассмотрение всех этих систем в одной книге сделало многое понятным и очевидным. Все полимерные системы подчиняются основным законам течения. В процессе переработки могут происходить различные переходы полимера из одного состояния в другое. Раствор или дисперсия могут в конце концов стать твердым полимером, а твердый полимер—расплавляться и заливаться в форму, где он превратится в твердое изделие. [c.9]

    Дисперсии, относящиеся к восьмой группе (газообразная фаза в жидкости), представляют собой промежуточный случай, так как они получаются в процессе формования дисперсий типа газообразная фаза в твердой . В жидкие, т. е. находящиеся в процессе переработки, полимеры газ может вводиться или под высоким давлением или при разложении определенных веществ, предварительно смешанных с полимером. Пенопласты могут также образовывать латексы, так что и газ, и твердая фаза будут находиться в жидкости. При удалении жидкости из такой системы получается дисперсия типа газ в жидкости . [c.74]


    Большинство полимерных растворов и дисперсий применяют при атмосферном давлении и умеренных температурах. Это позволяет довольно легко наблюдать за поведением этих ма териалов в процессе переработки. Например, значительно про ще увидеть образование наплывов на окрашиваемой пленке чем наблюдать усадку полимера при литье под давлением В последнем случае мы видим лишь результаты, но не сам процесс. Кроме того, довольно легко измерить вязкостные свой ства дисперсий и растворов, поэтому существует огромное ко личество эмпирических данных, позволяющих сопоставить лабораторные результаты исследования растворов с особенно стями их поведения в реальных производственных условиях Растворы и дисперсии, применяемые в условиях произ водства, содержат обычно многочисленные ингредиенты, такие как красители, наполнители, воздух, и представляют собой многокомпонентные системы. Поэтому, даже если создать развитую теорию, описывающую реологические свойства простых дисперсий и растворов, то и в этом случае применить ее для производственных целей довольно затруднительно, [c.171]

    Следует отметить, что при анализе продуктов переработки нефти, содержащих большое количество нафтеновых фрагментов, величина е(Я ) может быть больше приведенных выше оценок для фракций сырой нефти из-за дополнительного перекрывания аналитических областей вследствие большей дисперсии химических сдвигов Н и более сложной мультиплетности сигналов. Для 60 МГц значение е(Яу) может в принципе достигать 15—20%. С целью уменьшения погрешности е(Яу) до указанных выше величин (5—10%) необходимо либо регистрировать спектры Н на спектрометрах с рабочей частотой не менее 200 МГц, либо корректировать результаты, сопоставляя данные ЯМР-анализа продукта переработки, получаемые при различных рабочих частотах. [c.166]

    В патенте описывается метод ингибирования процесса образования осадков на поверхности металла при переработке жидких углеводородов нефти путем добавления к перерабатываемой жидкости растворов или дисперсий органических серусодержащих соединений. [c.93]

    По др. способу получения искусственных латексов полимер смешивают в течение 2 ч на вальцах или в ре-зиносмесителе с водным р-ром диспергирующего агента (натриевой соли высших жирных к-т или к-т канифоли, казеина и др.) или с органич. к-тами Сю— Сао с последующим введением в смесь водного р-ра щелочи. Во время смешения полимера с диспергирующим агентом воду добавляют до тех пор, пока не образуется паста, в к-рой вода является непрерывной фазой. При содержании в смеси более 20—30% воды образовавшаяся первоначально ульсия воды в полимере превращается в дисперси1 т15лймера в воде последнюю разбавляют водой до требуемой концентрации. Способ имеет ряд существенных недостатков, из-за к-рых не получил широкого распространения в пром-сти 1) применение энергоемкого оборудования 2) введение больших количеств диспергирующих агентов (до 10% от массы полимера), что ограничивает возможности последующей переработки дисперсий 3) возможность изготовления только грубых дисперсий с размером частиц 1000 нм (10 ОООА), имеющих низкую стабильность при хранении 4) деструкция полимера при его обработке на смесительном оборудовании, что приводит к ухудшению свойств изделий. [c.25]

    Bastamol — органическое соединение, содержащее азот. Порошок желтоватого цвета растворяется в воде реакция слабокислая. Применяется как вспомогательный материал для переработки дисперсий синтетических смол. (81) [c.32]

    Введение пластификатора в раствор или эмульсию полимера перед его переработкой. Введение пластификатора в раствор полимера в органическом растворителе обычно не представляет никаких трудностей. Практически применение метода ограничивается теми немногими случаями, когда конечные продукты полимеризации непосредственно используют в лакокрасочной промышленности. Значительно шире используется модифицирование свойств продуктов водноэмульсионной полимеризации перемешиванием дисперсии полимера с пластификатором. Такая дисперсия полимера представляет собой зачастую довольно неоднородную смесь частиц разного размера и формы и введение в нее пластификатора может нарушить стабильность этой коллоидной системы. Для наиболее эффективного исиользования пластификатора необходимо тщательно учитывать, какие эмульгаторы, защитные коллоиды, буферные вещества и регуляторы полимеризации содержатся в исходной дисперсии. Во всех случаях, независимо от того, вводят ли пластификатор в заранее приготовленную дисперсию или предварительно эмульгируют пластификатор, а затем добавляют его в виде эмульсии, необходимо учитывать сольватирующее действие пластификатора на полимер. Взаимное влияние полимера и пластификатора может проявляться не только в процессе образования пленки из дисперсий, но уже нри хранении дисперсий. Это взаимное влияние следует учитывать также нри подборе дозировки пластификатора, чтобы предотвратить потери не связанного в сольваты пластификатора за счет миграции его в процессе переработки дисперсии. Если не учитывать сольватирующего действия, оказываемого пластификатором на диспергированные частицы полимера, то после испарения дисперсионной водной среды происходит выпотевание пластификатора, недостаточно прочно связанного частицами полимера. [c.858]

    Современные процессы переработки нефти основываются на исследовании углеводородного состава нефти и нефтепродуктов. В настоящее время наиболее надежным методом исследования химического состава является изучение колебательных спектров молекул. Основные принципы этого метода известны уже давно. Еще в 1800 г. Гершелем 122] было открыто излз ение, лежащее за длинноволновым пределом человеческого зревия. Ранние исследования были весьма ограничены вследствие применения приборов с различной дисперсией и различных способов регистрации излучения Б инфракрасной области. Однако уже в первых работах было замечено, чтс прозрачность так называемых бесцветных веществ зависит от частоты излучения. Иными словами, если бы глаз был чувствителен к энергии, излучаемой в инфракрасной области спектра, то эти вещества обладали бы цветом. [c.312]

    В последнее время всё больший интерес специалистов вызывают битумные и битумполимерные эмульсии. Известно, что битумная эмульсия - это мелкая дисперсия битума в воде, достаточно устойчивая в присутствии специальных ПАВ. Наиболее стабильны и достаточно легко получаются эмульсии из маловязких битумов или тяжелых нефтяных остатков, таких как асфальт пропановой деасфальтизации или тяжелые гудроны от переработки высокосернистых высокосмолистых нефтей. С применением эмульсий возможно проведение практически всех видов дорожных работ, гидроизоляционных работ и т. д. Применяются эмущлии в холодном виде, характеризуются хорошей адгезией к минеральным материалам различного происхождения, экологически безопасны, технологичны при применении. [c.40]

    По мнению авторов [80] в первой по ходу движения материала бисерной мельнице следует организовать такой режим диспергирования, чтобы обеспечивать максимальное снижение дисперсии размеров пигментных частиц как за счет более равномерной переработки диспергируемых паст, так и за счет уменьшения проскоков отдельных пигментных агрегатов. Этого эффекта можно достичь, целенаправленно формируя вращающийся поток в пространстве между смесительными элементами и уменьшая расстояние между ними и обечайкой контейнера бисерной мельницы. Исходя из такого подхода, предложена и испытана конструкция смесительных элементов усиленного диспергирующего действия (СЭУД) — специально профилированных по форме потоков дисков. Лучшие результаты были получены при использовании каскада из двух аппаратов одного модернизированного новыми смесительными элементами и второго обычного. Испытания каскадной схемы показали, что без корректировки рецептуры диспергируемой пасты удается достичь степени перетира 10 мкм. Разработанная схема диспергирования предназначена для непрерывной работы в установившемся режиме, что трудно реализовать на практике. При частых пусках и остановках БМ применение СЭУД может вызвать определенные трудности из-за возрастания пусковых токов в приводе ротора мельницы, поскольку увеличение диаметра смесительных элементов и соответственно центробежной силы на периферии дисков и уменьшение зазора между дисками и корпусом вызывает увеличение потребляемой мощности примерно на 30%. [c.110]

    Решающее влияние на технологические процессы добычи, транспорта и переработки нефтяных дисперсных систем оказывают фазовые превращения, происходящие в различных реальных внешних условиях, Полиэкстремальные зависимости физико-химических свойств от внешних условий проявляются вследствие аналогичного изменения межмолекулярных взаимодействий между основными структурообразующими компонентами системы. Основной вклад в свойства углеводородных дисперсий вносят фазовые и полиморфные превращения высокомолекулярных соединений. Выявление и регулирование указанных превращений явл51ется важной прикладной задачей нефтяной отрасли. Особый интерес представляет изучение фазовых и полиморфных превращений в нефтяных дисперсных системах в присугствии поверхностно-активных веществ. Последние широко употребляются для регулирования процессов структурообразования в нефтяных дисперсных системах. В настоящее время проводятся интенсивные исследования влияния природы, концентрации и кристаллического строения дисперсной фазы на изменение межмолеку. ярного и контактного взаимодействия между элементами нефтяных дисперсных систем, взаимосвязи параметров фазовых и полиморфных переходов в этих системах, протекающих при изменении внешних условий их существования и различных воздействиях, с изменением физических и структурно-механических свойств рассматриваемых систем. [c.138]

    Явление прямой и обратной солюбилизации (углеводородов в воде и воды в углеводородах) в присутствии достаточных количеств мылообразных поверхностно-активных веществ, а также переход от одного типа соответствующих систем к другому с обращением фаз свидетельствуют о двухфазном характере минеральных растворов мыл. Вместе с тем эти явления имеют важное практическое значение, так как на них основаны процессы полимеризации и сополимеризации в эмульсиях с получением синтетических латексов — дисперсий полимеров, удобных для переработки в изделия. Обратная солюбилизация воды в маслах (в присутствии соответствующих коллоидно-растворимых в масле поверхностно-активных веществ со смещением баланса в сторону гидрофильных групп) имеет большое значение в пищевой промышленности. В производстве маргариновых эмульсий, например, такая солюбилизация воды может резка улучшить свойства маргарина, препятствуя разбрызгиванию при жарении вследствие испарения крупных капелек эмульгированной воды. [c.58]

    Для Н. ж. типа пластичных дисперсных систем эффективная вязкость изменяется от величин порядка 10 — 10 Па с, отвечающих твердообразному состоянию материала и практич. отсутствию течения, до 1—10 Па-с, что соответствует области течения с предельно разрушенной структурой. Для концентриров. р-ров и расплавов полимеров, когда доминирующим является релаксац. механизм неньютоновского течения, вязкость может уменьшаться в 10 раз, причем пределы изменения определяются концентрацией и мол. массой полимера. Ориентац. эффекты обычно приводят к изменению вязкости не более чем в десятки раз. С течением Н. ж. связаны мн. технол. процессы, напр, транспортировка дисперсий (пульпы, строит, и буровых р-Ьов, нефтепродуктов, лакокрасочных материалов), переработка полимеров. [c.372]

    Перед переработкой в латекс вводят вулканизующие агенты, противостарители, регуляторы удтойчивости и вязкости и др. ингредиенты в виде водных дисперсий и р-ров. Осн. методы переработки в изделия-макание, ионное отложение, желатинирование, термосенсибилизация-включают формирование каучукового геля в тонком слое или в объеме, сушку и вулканизацию. Из Л. и. получают НК, готовят тонкослойные маканые (в т. ч. медицинские) и губчатые изделия, нити, клеи и др. (см. также Латексы синтетические). [c.579]

    Пластикат-продукт переработки П., содержащего помимо компонентов, используемых при получении винипласта, 30-90 мае. ч. пластификатора (напр., эфиров фталевой, фосфорной, себациновой или адипиновой к-т, хлорир. парафинов). Пластификатор существенно снижает т-ру стеклования П., что облегчает переработку композиции, снижает хрупкость материала и повышает его относит, удлинение. Однако одновременно снижаются прочностные и диэлектрич. показатели, хим. стойкость. Пластикат перерабатывают преим. в виде паст и пластизолей (дисперсии эмульсионного П. в пластификаторе) выпускают в виде гранул или лент, листов, пленок (см. Пленки полимерные). Используют его гл. обр. для изготовлеьшя изоляции и оболочек для электропроводов и кабелей, для произ-ва шлангов, линолеума я плиток для полов, материалов для облицовки стен и обивки мебели, погонажно-профильных изделий, искусств, кожи. Прозрачные гибкие трубки из пластиката применяют в системах переливания крови и жизнеобеспечения в мед. технике. П. с повыш. теплостойкос- [c.621]

    С. в виде расплавов, р-ров, дисперсий (латексов, эмульсий, порошков, суспензий) или в форме волокон и пленок сочетаются с наполнителями при получении полуфабрикатов полимерных композиц. материалов (премиксов, препрегов, литьевых, заливочных, прессовочных, герметизирующих, клеевых, лаковых и др. композиций) или в процессах формирования заготовок и изделий методами пропитки, напыления, мех. диспергирования и т.п. Решающую роль при этом играет смачивающая и пропитьшающая способность С., определяемая их вязкостью и поверхностной энергией. На стадиях переработки полуфабрикатов тип, кол-во и характер распределения С. определяет формуемость, объемные усадки и др. техиол. св-ва материалов. С. обеспечивают защиту наполнителя от внеш. среды, перераспределение и передачу напряжений между элементами наполнителей, а также вносят определяющий вклад в объемные и поверхностные, в т.ч. адгезионные, св-ва поли.мерных композиц. материалов и изделий из них. [c.306]

    Получают Ф. гл. обр. радикальной полимеризацией (или сополимеризацией) мономеров в массе, суспензии или эмульсии в орг. или водной среде в присут. разл. инищ1аторов, реже - в газовой фазе под действием ионизирующего или УФ излучения. Выпускают Ф. в виде паст, порошков, гранул, суспензий и дисперсий в водной среде, реже - р-ров. Перерабатывают многие Ф. по обычной технологии (см. Полимерных материалов переработка)-, для политетрафторэтилена используют технологию порошковой металлургии или получения керамики. [c.206]

    Продукт, содержащий 8-12% полимера, незаполимеризовавшиеся мономеры и метилхлорид, в переточной трубе смешиваются со стоппером (метиловым или изопропиловым спиртом) для дезактивации катализатора и поступают через крошкообразователь в водный дегазатор 7 (рис.7.31). Удаление основной массы метилхлорида и ненасыщенных углеводородов осуществляется при 345 3 К в дегазаторе первой ступени. Тепло, необходимое для удаления летучих продуктов, подводится за счет подогрева циркуляционной воды и острого пара высокого давления, подаваемого в крошкообразователь. В дегазатор первой ступени вводятся антиагломератор (суспензия стеарата цинка или кальция) и дисперсия антиоксиданта в воде (например, неозон Д или продукт 2 246). Пары растворителя и мономеров проходят холодильники 20 21, где конденсируются водяные пары, и направляются на компримирование, разделение и переработку возвратных продуктов. [c.330]

    В отличие от суспензионного ПВХ эмульсионный и микросуспензионный ПВХ выделяют, минуя стадию механического обезвоживания, непосредственно сушкой латексов в распылительных сушильных аппаратах. В процессе сушки капельки со взвешенными в жидкой фазе полимерными частицами превращаются в твердые частицы, представляющие собой зерна-агломераты сухих латексных глобул (рис. 4.1). Дисперсный состав, форма, пористость и прочность этих вторичных частиц в большой степени определяют свойства порошков ПВХ (сыпучесть, способность их к последующей переработке в материалы и изделия), а также технологические и эксплуатационные характеристики последних. Причем процесс формо- и структурообразования и конечные свойства сухого продукта зависят как от свойств самого объекта сушки (латекса, дисперсии), так и от условий проведения процесса распыления и сушки. [c.117]

    А. К. Русанов и С. М. Солодовник [82] разработали ускоренный метод визуального спектрального определения индия в растворах, полученных при химической переработке руд, легко осуществимый в условиях заводской лаборатории. Для работы требуется стеклянный спектроскоп с небольшой дисперсией (типа Бунзена-Кирхгофа). Спектр возбуждают в воздушноацетиленовом пламени. Анализируемый раствор вводят в пламя при помощи специального распылителя. Концентрацию индия определяют методом гашения синей линии In 4511 A. Для этой цели перед щелью спектроскопа устаналивают клинообразную кювету, наполненную 0,2%-ным раствором Kj rjO,. Вдвигая кювету, добиваются такого ее положения, при котором глаз перестает отмечать в спектре ацетиленового пламени присутствие синей линии индия. Толщину слоя раствора ( ), гасящего линию индия, определяют по нанесенной сбоку кюветы шкале. Величина d зависит от интенсивности спектральной линии, т. е. от концентрации индия в растворе. Для определения этой зависимости фотометрируют линию спектра, полученную при помощи ряда стандартных растворов индия. Для построения калибровочной кривой по оси абсцисс откладывается логарифм концентрации индия, а по оси ординат—соответствующие им величины d. [c.206]

    Зачастую только механические или физико-химические методы не могут дать эффективного разделения, и, следовательно, обезвреживания из-за высокой стабилизации дисперсии (шлама). При этом отмечается закономерность чем более продолжительное время хранится шлам и сложнее пути его образования, перекачки и транспортировки, тем выше его стабильность. И в таких случаях обычно применяют комплексные схемы переработки, включаюш,ие отстаивание, флотацию, дегазацию, кондиционирование, осушку, обработку коагулянтами и флокулянтами, уплотнение, разделение. Заключительными стадиями обработки могут быть размещение на специальных полигонах с применением биотехнологий, сжигание, использование в строительстве и других отраслях промышленности. Примером такого подхода служит приведенная на рис. 3.12 комплексная схема обработки шламовых отходов фирмы Дегремон (ОеЕгетоп1), [c.334]

    Иногда переработка полимеров сопровождается химическими реакциями, в результате которых выделяются газообразные компоненты, которые могут образовать газовую дисперсию. Классический пример такого случая — формование вискозных пленок и волокон. За счет процессов разложения ксантогената и побочных продуктов, имеющихся в вискозе, выделяется большое количество газов и паров по примерной реакции  [c.77]

    Большинство технологических процессов в практике использования и переработки торфа связано с его деформацией. Являясь во влажном состоянии легкодеформируемой системой, торф, особенно малоразложившийся, обнаруживает при нагружении все три вида деформаций упругую, эластичную и пластичную. Степень развития каждой из них при постоянном напряжении зависит от многих факторов, среди которых решающим является прочность структурного каркаса. Как известно, его основу в торфе образуют малодеформируемые растительные остатки — дисперсии высокополимеров целлюлозной природы и вязко-пластичные продукты распада, в основном гуминовые вещества. Однако следует заметить, что если растительное волокно в силу своего строения мало-деформируемо, то образующийся из него каркас, заполненный продуктами распада и дисперсионной средой, даже при незначительных напряжениях деформируется необратимо. Возникшие в местах контакта напряжения легко релаксируют. [c.421]

    ТЕКСТИЛЬНО-ВСПОМОГАТЕЛЬНЫЕ ВЕЩЕСТВА, применяют в текстильной пром-сти при переработке, крашении и отделке волокнистых материалов. Используют в виде р-ров или дисперсий (в воде, орг. р-рителях, маслах), содержащих обычно неск. Т.-в. в. В зависимости от назначения различают замасливатели (см. Авиважная обработка) аппретирующие ср-ва (см. Аппретирование) смачиватели (г.и. обр. анионные или неионогенные ПАВ), повышающие скорость и эффектиность обработки материала р-рами щелочей, к-т, солей, красителей диспергаторы и стабилизаторы (продукты конденсации алкиларилсульфокислот с формальдегидом и др.), способствующие образованшо устойчивых дисперсий, напр, красителей выравниватели ЩАВ разл. строения), улучшающие равномерность окраски материалов благодаря способности взаимодействовать с красителем или волокном с образованием непрочных комплексов, распадающихся в ходе крашения переносчики (нерастворимые в воде производные нафталина, дифенила и др.), способствующие проникновению красителя в глубь структуры полизфирного волокна, окрашиваемого при атмосферном давлении резервирующие в-ва (гл. обр. анионные ПАВ), регулирующие скорость выбирания красителя разными волокнами при крашении их смесей и способствующие получ. однотонных окрасок, устойчивых к трению закрепители, повышающие устойчивость окрасок к разл. воздействиям (напр., при крашении целлюлозных волокон прямыми красителями примен, катионные ПАВ, образующие с красителем труднорастворимые стабильные соед.) гид-рофобизирующие препараты, напр, эмульсии парафина, стабилизированные солями металлов (Zr, Al и др,) препараты для масло- и грязеотталкивающей отделки, напр, на основе латексов фторсодержащих полимеров препараты для антимикробной и противогнилостной отделки, напр, медные или цинковые соли орг. к-т, галоген- или фосфорсодержащие орг, соед., катионные ПАВ, В кач-ве Т,-в. в. использ. также антистатики, антипирены, [c.561]

    Эластические свойства каучука, неожиданные превращения во время мастикации, эффекты, вызванные переработкой на вальцах, до установления макромолекулярного характера каучука объясняли различными теориями, лишенными научной основы. Так, Розенбаум, придерживавшийся взглядов Малкока [3], считал каучук по механическим свойствам эквивалентным смеси мела и масла, а Шенево и Хэйм [4] — дисперсией твердых частиц в мягкой основе при этом процесс мастикации объяснялся ими размягчением основы, не затрагивавшим твердых частиц. [c.62]

    Применение УФ- и ИК-спектроскопин. масс-спектрометрии. газожидкостной хроматографии, дифференциально-термического аналича совместно с электронной и поляризационной микроскопией лает важную информацию о составе твердых углеводородов нс( )ти. Значение состава и использование основных положений физико-химической механики нефтяных дисперсий позволяют управлять процессом криста.плизации твердых углеводородов и углубить тем самым переработку нефти. [c.32]

    Для определения следов мышьяка в тяжелых бензиновых фракциях, предназначенных для дальнейшей переработки, используют оксид алюминия в качестве адсорбента. Для обезвоживания и удаления частиц сульфида железа(II) пробу фильтруют через силиконовый фильтр. В 1 л фильтрата вводят 10 мг оксида алюминия для хромографии с размером зерен 30—40 мкм и пробу энергично встряхивают 0,5 ч. Пробу фильтруют через мембранный фильтр № 5, к фильтрату добавляют 10 мг оксида алюминия, встряхивают 0,5 ч и фильтруют через тот же фильтр, затем все операции повторяют еще раз. В результате на фильтре накапливается 30 мг оксида алюминия, который промывают небольшим количеством н-гексана. Фильтр отсасывают досуха, оксид алюминия переносят в агатовую ступку, смешивают с 1,5-кратным количеством смеси угольного порошка с хлоридом калия (4 1) и 50 мг смеси испаряют из канала угольного электрода в дуге постоянного тока силой 6 А. Спектр снимают на кварцевом спектрографе средней дисперсии через ступенчатый ослабитель. В качестве аналитической пары используют линию Аз 228,81 нм и фон. Для приготовления эталонов в смесь 600 мл бензола, не содержащего тиофенов, и 400 мл обычного бензина добавляют возрастающие количества раствора трифениларсина в изопропиловом спирте. Диапазон определяемых концентраций 5— 100 нг/мл. Эталоны обрабатывают так же, как и пробы. После трехкратного встряхивания с оксидом алюминия (по 10 мг) в фильтрате проб и эталонов практически весь мышьяк переходит в коллектор. Погрешность определения 20%, предел обнаружения мышьяка составляет 3—4 нг/мл [180]. [c.164]

    Чтобы определить следы (10 —10 %) мышьяка в тяжелых бензиновых фракциях, предназначенных для дальнейшей переработки, используют окись а гюминия в качестве адсорбента. Вкратце Методика заключается в следующем. Для обезвоживания и удаления частиц сернистого железа пробу фильтруют через силиконовый фильтр. В 1 л фильтрата вводят 10 мг окиси алюминия в виде зерен величиной 30—40 мкм, пробу энергично встряхивают в течение 0,5 ч и фильтруют. К фильтрату добавляют О мг окиси алюминия, встряхивают в течение 0,5 ч и фильтруют через тот же фильтр, затем все операции повторяют третий раз. Итого на фильтре накапливается 30 мг окиси алюминия. Его промывают небольшим количеством -гексана, отсасывают досуха, окись алюминия смешивают в агатовой ступке с 1,5-кратным количеством смеси угольного порошка с хлористым калием (4 1) и 50 жг смеси вводят в канал угольного электрода. Источник возбуждения — дуга постоянного тока (6 а). Съемку спектра производят на кварцевом спектрографе средней дисперсии. [c.147]


Смотреть страницы где упоминается термин Переработка в дисперсии: [c.184]    [c.128]    [c.162]    [c.561]    [c.86]    [c.424]    [c.7]    [c.345]   
Смотреть главы в:

Полиизобутилен и сополимеры изобутилена -> Переработка в дисперсии




ПОИСК





Смотрите так же термины и статьи:

Пастообразные дисперсии, переработка

Переработка из растворов или дисперсий



© 2025 chem21.info Реклама на сайте